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Currently, yield estimation of berry harvest is done manually by calculating berries in a predefined 
area. Manual counting is labour intensive and thus, the data created lacks scope. This thesis 
studied the method to estimate berry harvest as berry density value only with a consumer-level 
mobile phone camera. In addition, the thesis studied if berries detected from a top vegetation image 
could correlate with the berry density in the area defined by field measurement. 
 
The density estimation process was twofold. Part one was to study the possibility of detecting 
lingonberry and bilberry from an image in the growth phases: flower, raw and ripe. YOLOv5 object 
detection was applied for this process. The original image was split into smaller images for deep 
learning to avert losing pixel information by scaling. Two split methods were tested. 
 
Part two was to define the area for the image. Multiple methods were compared to define the most 
promising approach to estimating the area for berry density estimation. Field measurement values 
were used to describe the baseline area and to study the feasibility of determining berry density 
only from visible berries in the image. 
 
The complete practical process of training the YOLOv5 object detection model was described in 
the thesis, from annotating datasets through editing and balancing datasets to training. 
Inadequacies in the dataset were described, and future improvements were suggested. 
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1 INTRODUCTION 

Wild berries are essential non-wood forest products for recreational use and other emerging 

ecosystem usages (Kilpeläinen 2016). Accurate and comprehensive berry harvest statistics benefit 

the Natural Resources Institute Finland (LUKE) and the Norwegian Institute of Bioeconomy 

Research (NiBio). Object detection with the machine learning can potentially alleviate harvest 

inventory currently done by hand. 

 

Berry Machine project aimed to study machine learning to evaluate berry harvest using a 

consumer-level mobile phone camera. The financier was Interreg Nord fund, and the participating 

institutes were the Natural Resources Institute Finland (LUKE) and the Norwegian Institute of 

Bioeconomy Research (Nibio). Frostbit Software Lab at Lapland University of Applied Sciences did 

the actual implementation of machine learning. 

 

The project aimed to study the possibility of doing berry yield estimation using a mobile phone 

camera with machine learning object detection in the natural environment. Computer vision 

combined with a consumer-level mobile phone camera raises the possibility of crowdsourcing and 

simplifying data collection and promises to bring savings with more consistent data to participating 

institutes. Evaluation was planned to be done by detecting berries in images with computer vision 

and estimating berry density with statistical or other means. The thesis focused on the technical 

process of using object detection to classify and detect berries from images. The number of 

detected berries was used to study the possibility of estimating berry yield density by estimating 

area visible in image based on detected berries and rectifying the resulting berry count divided by 

area (berry density) with linear regression. 

 

The harvest state was observed by counting berries in different stages of development. Currently, 

LUKE collects data manually for berry yield estimation by counting berries in predetermined places 

(Kilpeläinen 2016). Counting is done by marking one m². Berries are then counted one berry at a 

time inside a square. One square berry count represents the number of berries per one m². Multiple 

squares compensate for deviation in square meter count values (marjahavainnot.fi 2022). Data 

collection with field measurement is both laborious and expensive and simultaneously not available 

for more elaborated studies (Bohlin 2021). Field measurement data is nevertheless valuable 



  

 

information for current, and future studies like this thesis, as results are created with and tested 

against field measurement data. 

 

Berries were counted in three stages of the growth phase: Flower, raw, and ripe. The study was 

limited to two berry species: Lingonberry (Vaccinium Vitis-idea) and bilberry (Vaccinium Myrtillus). 

Bilberry and lingonberry are common berries harvested by households and companies and are 

abundant in evergreen conifer forests. Both berries act as a significant food source for local fauna. 

Intensive forest management can harm berry yields. (Kilpeläinen 2016). Bilberry yield is best in 

mature stands with medium or poor fertility, while lingonberry yield is highest in low tree density 

environments with poor mineral soil (Ihalainen 2002). 

 



  

 

2 THEORETICAL FRAMEWORK 

The main techniques were explained in this chapter. The neural network in this thesis was used to 

detect objects from an image. For more context, Convolutional Neural Network, the technology on 

which object detection is based, was explained in this chapter, along with different methods of 

classifying images. Finally, the YOLO Object detection technique used to train detection models 

was explained briefly in this chapter, along with the other methods used to derive berry density 

estimation results. 

2.1 Convolutional neural network 

 

Figure 1. Artificial Neural Network. 

An Artificial Neural Network (ANN) is constructed of an input layer, hidden layers and an output 

layer shown in Figure 1. The processed data is placed as values in input neurons (Gogul 2017). 

The weight and bias values define the neuron values in the following hidden layers, and as a fully 

connected network, each neuron value is impacted by all neurons in the previous layer. 

 



  

 

 

Figure 2. Convolutional Neural Network. 

Convolutional Neural Network (CNN) is a breakthrough deep learning technology (Marmanis 2016) 

and an improvement over ANN that outperformed competing methods on image classification tasks 

in 2012 (Marmanis 2016). CNN architecture applies local receptive fields as convolution layers that 

can extract edges, endpoints, and corners (Figure 2). The architecture allows the detection of high-

order features from input data. Data sub-sampling or pooling is also used in CNN architecture 

(Figure 2) to reduce potentially harmful irrelevant precision after convolution and output sensitivity 

caused by positional shifts and distortions. (Lecun 1998) 

 

Deep neural network architectures like CNN have the potential to achieve significant detection 

results using purely supervised learning with challenging datasets (Krizhevsky 2012). CNN is 

capable of human-level or higher accuracy (Galanty 2021). 

2.2 Image classification 

The image classification process categorises images by labelling images. Image classification is 

essential for computer vision research (Bayraktar 2020). Convolutional Neural Networks (CNN) 

succeed in image classification and are the only method used in this thesis context to classify 

images. Image classification with CNN produces a label for a given input image from a 

predetermined label list. 



  

 

2.3 Object detection 

A well-written description of object detection is found in the article "Deep Learning for Generic 

Object Detection: A Survey" by Liu et al. "Object detection, one of the most fundamental and 

challenging problems in computer vision, seeks to locate object instances from many predefined 

categories in natural images" (Liu 2018). 

 

 

Figure 3. Ways to classify or segment images in computer vision. 

Multiple ways to spatially detect object location in an image exist, as Figure 3 shows. Object 

detection with object bounds marked with a bounding box is one detection technique (Liu 2018). 

Object detection with bounding boxes is used in this thesis context. Object detection returns the 

object pixel coordinate position in the input image and object classification label (Bayraktar 2020). 



  

 

2.4 YOLO object detection 

 

Figure 4. YOLO (You Only Look Once) object detection visualization. 

Before YOLO (You Only Look Once), object detection from images was done with techniques like 

the sliding window approach that ran image classification multiple times in part of the image so that 

the detection area moved an equal amount each time. Other methods like R-CNN (Regions with 

CNN) existed but had complex optimising pipelines (Redmon 2015). YOLO object detection uses 

a single neural network for detection by dividing an image into a grid (Figure 4), and each grid 

predicts the object and its bounding box. Finally, multiple bounding boxes are joined with 

classification probabilities for each grid cell (Redmon 2015). YOLO Object detection was designed 

to be simple, fast and accurate (Redmon 2015). Originally YOLO was not effectively capable of 

detecting small objects 2021 (Ni 2021). However, Recent improvements in newer YOLO object 

detectors improve YOLO small object detection capabilities while retaining the YOLO signature 

speed property (Benjumea 2021). 

 

Berry detection is done using the YOLOv5 Object detector. YOLOv5 promises to be faster and 

more accurate than previous YOLO iterations (Solawetz 2020). A critical aspect of the YOLOv5 

detector is that it is built on the PyTorch framework (Solawetz 2020). PyTorch makes YOLOv5 

deployment easier in some platforms like IT Center for Science (CSC) supercomputer with 

preinstalled PyTorch and limited user privileges. YOLOv5 also offers embedded data augmentation 

to data processing, like rotation and translation of images (Dongjian 2021). 



  

 

2.5 Linear regression 

"Linear regression is a fundamental building block of statistical data analysis. It amounts to 

estimating the parameters of a linear model that maps input features to corresponding outputs" 

(Gast 2019). With simple linear regression, observation data of two variables can be used to create 

a model for predicting the second value based on other values. The linear regression model can 

be evaluated with the Pearson correlation coefficient. (Hackeling 2017) 

2.6 Intersection over union (IoU) 

 

Figure 5. Visually explained formula to calculate Intersection Over Union. 

Intersection over union (IoU) is a standard method to benchmark object detection labels with 

rectangle bounding boxes (Rezatofighi 2019). IoU is calculated as a relation between two areas by 

dividing the intersection area by the union area (Figure 5). 

𝐼𝑜𝑈 =  
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
 

Equation 1. Calculating the intersection of the union 

IoU is calculated with Equation 1 (Rezatofighi 2019). With complete overlap, when an area of union 

and the area of intersection are the same, Intersection over Union (IoU) is one. When the object 

position shifts to a different position, the IoU value drops closer to zero. Typically, a 0.5 threshold 

is used as the limit to determine the prediction as a correct result (Zitnick C Lawrence. Dollár 2014). 



  

 

2.7 Homography 

 

Figure 6. Homography perspective correction (OpenCV 2022) 

2D Homography is a projective transformation and a fundamental task in computer vision (DeTone 

2016). Performing homography projective transformation requires at least four matching points in 

the original image and resulting coordinates (Malis 2007). These points form a homography 3X3 

transformation matrix (Malis 2007). The homography matrix is used to transform, as visualised in 

Figure 6. Use cases, for example, are perspective removal or image correction (OpenCV 2022). 

 



  

 

3 DATA COLLECTION 

During the summer and autumn of 2021, three groups took berry pictures in the plants natural 

habitat. The pictures were collected during the summer and autumn to gather material from different 

growth phases (flower, raw and ripe). Multiple locations were used to give variation. Also, bilberry 

and lingonberry grow differently in different environments (Ihalainen 2002). Multiple consumer-level 

mobile phones and a single digital SLR (single-lens reflex camera) were used to take pictures. 

 

Groups were instructed to count berries using the current method of manual counting in a square 

meter. Pictures were taken from multiple distances. The first distance was to include counting 

squares in the picture. The second distance was closer to the ground to include multiple berries in 

the image. Close-up images of berries were also taken. Pictures were taken from eight central 

locations around the Rovaniemi region. Images were taken six times on every two berries in three 

growth phases. One separate location image set was taken afterwards later in autumn to get a ripe 

lingonberry dataset where these red berries were against a reddish autumn background. 

 

Two groups took approximately 10000 pictures in multiple locations. These groups installed and 

counted a large number of squares and collected images. Six phones were used, belonging to 

three models and one SLR. One group used three phone models in only one location, taking only 

bilberry images. Additional devices were used to add a variation to the device spectrum. 

 

Device type Number of 

devices 

Group 

Apple iPhone 6s 1 3 

Apple iPhone 11 1 3 

Apple iPhone 12 pro max 2 1 and 2 

Nokia 7 plus 2 1 and 2 

Nokia 3.4 1 3 

Samsung a40 2 1 and 2 

SLR 1 1 and 2 

Total 10  

Table 1. Devices used in data collection 



  

 

Two groups took most of the images and used similar phone sets. These two groups comprised 

mostly agrologist students (groups 1 and 2) with iPhone 12 pro max, Nokia 7 plus, Samsung a40 

and SLR. The complementary group used iPhone 6s, Nokia 3.4 and iPhone 11 (group 3). Data 

collected by the complementary group has the limitation that three models were only used in one 

location and only took bilberry images. A complementary group, formed chiefly of information 

technology students, was created to increase the number of devices used, create quick access 

data, and acquaint developers with the current manual harvest estimation technique. 

 

 

Figure 7. Counting frames. 

One square meter counting squares were custom-made aluminium frames or wooden poles in each 

corner, and sides formed with wires running from one pole to another (Figure 7). Manual calculation 

results were written on paper, and this paper was arranged next to the frame so that the count 

value would be visible in the image taken from the frame. Typically, images following full frame 

images were taken closer and inside the frame, but this was by no means certain. An extensive set 

of other berries images was also taken from around the frames from multiple distances. Groups 

were instructed to take a varying range of berry images for the training dataset 

 

Images were stored, so the device and berry phase target area or location was visible in folder 

naming. For example, "Tervola_26_7/iphone12/IMG_1107.JPG". 26.7.2021 in the Tervola region 



  

 

target berry phase was ripe lingonberry. Thus, all images had the following meta information: 

Location, target berry species and phase and device. 

 

 
Figure 8. Example of the autumn dataset from Kivitaipale. 

After the planned field measurement data collection was finished, an additional dataset with a more 

colourful background was collected. The assumption was that deep learning would detect ripe 

berries primarily based on colour, as red and blue colours are rare in the collected dataset 

background. However, some rare colours from measurement group material were visible in the 

image dataset. Autumn colours were a concern. How would deep learning separate a red leaf from 

a red berry? Therefore a separate autumn dataset of 168 images was created and annotated fully. 

Dataset was collected from Kivitaipale, Rovaniemi, using Samsung a40 and different SLR (Canon 

1100D). Different SLRs were used to add variation in devices, but the original SLR was unavailable 

in autumn. The example image from the autumn dataset is visible in Figure 8. 

 

 Bilberry   Lingonberry  
Location Flower Raw Ripe Flower Raw Ripe 

Pöyliövaara X   X   

Hirvas X X X    

Juotasniemi X X X    

Käyrämö X X     

Levi  X X    

Pisa    X   

Tervola X X X X X  
Ounasvaara X X X    



  

 

Unknown      X 

Kivitaipale      X 

Table 2. Image dataset locations  

The image dataset was collected from several locations (Table 2). Ounasvaara images were 

collected by Group 3. Kivitaipale images are an additional autumn dataset. 

3.1 Annotation 

 

Figure 9. The difference in classification and object detection. 

High-quality and large-scale datasets are essential for training CNN-based object detection 

methods (Z.-Z. X. Wu 2022). Therefore, the aim was a fully supervised instance-level annotated 

dataset despite being labour-intensive and time-consuming (Z.-Z. X. Wu 2022). Instance level is 

referred to object detection differentiating from image classification. Image classification is referred 

to the process of labelling whole images. Object detection is the process of labelling instances in 

images (Russakovsky 2015). This difference is shown in Figure 9. 

 

Predesigned object detection neural network scales images to "native" resolution, which depends 

on the selected predesign. For example, the first step of the YOLO object detection framework's 

native resolution is 416x416 (Borel 2019). Yolov5 is available in two resolutions: 640x640 and 

1280x1280 (Jocher 2022). In the collected dataset, mobile phone and SLR original image sizes 

are, for example, 4032x3024 pixels (Nokia 7 plus). Scaling a single image to object detection 



  

 

resolution would cause severe data loss. Especially berries are small objects to detect. Our 

challenge was to decide on data rescaling or/and slicing images for annotation before choosing 

object detection technology. No scaling or slicing was done before and during annotation to avoid 

possible issues with wrong image size or data loss. Instead, annotation was done directly to the 

original image sizes. 

 

Annotation was done via premade open-source annotation tool – Label studio (Label Studio 2021). 

Label Studio is a web application with premade backend and frontend. The application was 

deployed on our server and was made available in the local area network. Label Studio, as a web 

tool, allowed annotation to be done efficiently to the same dataset by multiple persons without 

overlapping work. 

 

Figure 10. Examples of annotations of single lingonberry flower and lingonberry flower bunch. 

The annotation process was done using rectangle labels. The main goal is to differentiate bilberry 

flowers, raw bilberries, ripe bilberries, lingonberry flowers, raw lingonberries, and ripe lingonberries. 

These berries and their growth phases were the first annotation labels. Three additional labels were 

added: Lingonberry bunch of flowers, ripe and raw. These were added due to the difficulty 

annotating single lingonberry phases from each other in a bunch (Figure 10). Single lingonberry 

phase annotation labels were kept alongside bunch labels. Both were annotated to enable as many 

possible ways to use annotation data in future. 

 

Phase  Species label 

Flower Bilberry bilberry flower 



  

 

Raw Bilberry bilberry raw 

Ripe Bilberry bilberry ripe 

Flower Lingonberry lingonberry flower 

Raw Lingonberry lingonberry raw 

Ripe Lingonberry lingonberry ripe 

Flower Lingonberry lingonberry bunch flower 

Raw Lingonberry lingonberry bunch raw 

Ripe Lingonberry lingonberry bunch ripe 

Table 3. Dataset labels in annotation 

The primary dataset was created with nine labels (Table 3), including the single lingonberry and 

bunch sets. Annotation was initiated with six labels. Therefore, some previously annotated images 

needed to be relabelled by the final annotation directions. 

 

Three thousand eighty-one (3081) images from approximately 10000 images dataset were selected 

for the annotation process. No more resources were available to annotate more images. The image 

selection process was mainly affected by timetables. Group 3 bilberry dataset was always 

annotated as this dataset was the first to be available. Also, the group 3 dataset was smaller and 

more critical as it was created with different devices, thus diversifying the final dataset. As soon as 

groups 1 and 2 datasets were available, flowers and raw lingonberries were added to the annotation 

process. Ripe lingonberries and ripe bilberries were available later as both berry phases of the data 

collection came available later in the summer. The initial dataset in annotation was supplemented 

with the berry phase with the least number of annotations. Raw and ripe lingonberries were added 

later in autumn and annotated from autumn to the start of winter 2021. 

 



  

 

 

Figure 11. Machine learning pre-annotation results in Label Studio. 

Label Studio application also supports machine learning pre-annotation (Label Studio 2022). 

Machine learning pre-annotation was used to help annotation after the first preliminary object 

detection was trained. Pre-annotation was used more with lingonberry raw -additional annotation. 

Automatic pre-annotation in practice received mixed reactions from personnel annotating whether 

pre-annotation was wanted depending on the berry type and the person in question. Pre-annotation 

made locating some berry types, like raw ones, easier, but several false positives in pre-annotation 

diminished pre-annotation value, especially with easier-to-spot berry phases like ripe ones. Label 

Studio's pre-annotation user interface is shown in Figure 11. 

3.2 Primary annotated dataset 

The primary annotated dataset was 61269 annotated labels consisting of 2855 annotated images. 

The number is smaller than the original annotated dataset size (3081). However, 226 images had 

no annotations. Images without annotations were due to two reasons: One is that the image did 

not have any visible berries, or the image was unusable in quality and thus had nothing to annotate, 

for example, due to camera shake.  

 



  

 

 

Figure 12. Number of images taken per phase area in the annotated dataset 

The annotated dataset was unbalanced, considering images taken per phase area (Figure 12). The 

phase area is a predefined target phase area where the goal is to take specific berry species and 

phase images. Although the goal was to take, for example, ripe lingonberry images, some images 

taken in that area may contain more other annotations. The target berry phase in an image is 

defined as the phase area. Target may be a single berry phase, but results may include other 

phases. Phase area does not mean dataset annotated labels will end up similarly unbalanced as 

berry density may vary in images taken from different areas. 

 

 

Figure 13. The number of phase area images from different locations. 



  

 

Observing annotated dataset per location (Figure 13) reveals that location diversity was ignored 

while balancing species phase numbers. Presumably, having species phase images from multiple 

locations would create a more comprehensive dataset. The location itself was not the primary 

criterion for data diversity. Still, different locations can produce more varied backgrounds due to 

different weather conditions, soil types and field personnel actions. 

 

 

Figure 14. Number of phase area images per device in the annotated dataset 

Images selected for annotation per device are numbering between  300 to 400, except for the SLR 

camera, which had 665 images taken (Figure 14). A possible significant issue with the dataset 

collecting devices is that some devices take only certain types of berries, as shown in Figure 14. 

The dataset structure is two-fold as it contains results from two different types of field measurement 

groups. Group 1 and 2 with devices SLR, Samsung a40 and Nokia 7+. Group three with devices 

Nokia 3.4, iPhone 6s and iPhone 11. The annotated dataset was supplemented in autumn by 

annotating missing lingonberry raw and ripe images. Raw lingonberry images were only from SLR 

data (Figure 14). 

 



  

 

 

Figure 15. Annotated labels count 

Phase area (Figure 13) was not the main factor when balancing the annotation dataset. The main 

factor was the annotation label count (Figure 15). After the first annotation status checks, the 

dataset was quite uneven. More images were added to balance the dataset—mostly raw 

lingonberries. After balancing, the number of raw lingonberries increased more than initially 

intended. The increase is visible in Figure 15. The inability to accurate balance datasets was due 

to how the annotation process was organised. With group 3, the bilberry dataset was entirely 

annotated as it was first available, smaller in image count and added three new devices for variety. 

Group 1 and 2 datasets also contained many bilberry images, but the immediate target was to add 

lingonberry images to the dataset to cover all berry species and phases fully. 

 

 

 



  

 

Figure 16. The number of most common species phase images per device in the annotated dataset. 

The annotated dataset was more varied in label-device relation (Figure 16) than the image phase 

area suggests (Figure 14). The main berry species phase was formed by counting all annotations 

in an image and selecting the most common species phase as the primary berry type. Figure 16 

shows, in comparison with Figure 14, that the phase area contains a variety of other berry species 

and phases. The difference between phase area and the most common species phase annotated 

is 9%. Images produced in the phase area mainly contained expected berry species phases but 

not always. Different labels in images positively add variety to the annotated dataset. 

 

 

Figure 17. Examples of annotation difficulties: Berry species excluded from annotation object in the 
edge of visibility and berry phase borderline case. 

Bog bilberry (Vaccinium Uliginosum) and Crowberry (Empetrum Ingrum) were present on 

annotated images, and it is possible that in 60 000 annotations are, an unknown percentage of 

labels added as the wrong species. Crowberries are a common sight but easily distinguished due 

to their sprig-like leaves (Figure 17). Bog bilberry is hard to distinguish from bilberry, but the 

assumption was made that bog bilberry mislabelling is assumed not to cause issues due to species 

assumed rarity in images. Therefore, bog bilberries annotated are not likely to cause issues in deep 

learning due to similarity with bilberry, thus adding to the capability to detect bilberries. 

 

The annotation process's main issue with personnel annotating was the difficulty of deciding 

whether to annotate barely visible assumed berries or not, for example, in Figure 17, middle image. 

Images were instructed to be taken from multiple distances and angles, so many images contained 

edge cases of berry phases on the edge of visibility. The decision to annotate is dependent on the 

person annotating. As a rule, annotating personnel were directed to annotate in cases when the 

berry was assumed recognisable as a separate cropped image. Although human intuition suggests 



  

 

that a white spot between lingonberry-like leaves is most likely a lingonberry flower bunch, it also 

may not be. The human decision can be based on overall picture properties, not on features in the 

object. Annotating too mysterious objects were assumed to cause exaggerative sensitivity in deep 

learning model results. 

 

Berry changes its phase from flower to raw and finally ripe. This process happens gradually, and a 

borderline state exists between phases (Figure 17, last image). Converting continuous pixel value 

image data to nominal annotation label data is bound to cause difficulties in borderline cases. 

During the annotation process, this borderline issue was nominal. Most likely due to the timing 

when data was collected. Field measurements were timed to happen when berries in the area were 

almost entirely in the target phase, minimising the risk of unnecessary field trips. The timing was 

adjusted based on summer 2021 conditions. Berries, mainly in the target phase, have the following 

result: the dataset does not contain many borderline cases based on observations during the 

annotation process. The limited number of borderline cases has the unwanted consequence that 

insufficient data on how the deep learning model will behave with borderline cases is unavailable. 

3.3 Benchmarking dataset 

 

Figure 18. The first model compared the annotated dataset with a 50% IOU Threshold. 

The first model with nine classes trained resulted in a large amount of false positive detection 

(Figure 18). The possibility of mismatches was found to be nominal. The number of false negatives 

was low compared to false positives. The main issue was to solve false positives and find possible 

reasons for such a high number.  



  

 

 

 

Figure 19. Sample of initial bilberry flower detections classified as false positive.  

For determining the nature of false positives, detected labels were cut into separate images divided 

into folders mismatch, false negative, correct match and false negative for visual inspection. Visual 

inspection of false positives revealed many correct matches (Figure 19). It is unclear why such a 

large number of berries was not annotated, but an assumption was made based on personnel 

experiences. In annotating large images, f. ex., 4032x3024 pixels, human concentration was 

insufficient to find accurately every berry in the image. In many cases, this can be compared to the 

allegory of finding a needle in the haystack. Therefore, the assumption was made that the original 

annotation data is inaccurate for benchmarking. Two options remained: 1) Fix the original dataset 

or 2) Annotate a second smaller but accurate dataset. Option two was selected. Fixing the original 

dataset was deemed too time-consuming as revisiting every image would likely take as much time 

as the original annotation. The option to create a specialised application to accept or deny machine 

learning findings quickly was considered. Still, this solution was abandoned for development time 

and possibly caused unknown issues. 

 

The second dataset for benchmarking was created. Two changes were made to enable more 

accurate annotation better to prevent similar issues from emerging in this dataset. 1) All images 

were 640x640 pixels and thus were much faster to annotate. Smaller images could fit on a computer 

screen as size 1:1 without zooming. A glance was usually enough to determine all berries in the 

image. 2) Lingonberries were annotated only as bunches. If only one lingonberry phase were 

visible, it was instructed to be annotated as a bunch. Both changes simplified the annotation 

process, and a simple annotation process was assumed to lead to more accurate results. Also, 

personnel were directed to invest in accuracy detriment to speed. In addition, the newest version 



  

 

of annotating program Label Studio was deployed. Some glitches were experienced with the initial 

version, but smaller image sizes with version updates are assumed to make annotation more 

graceful. 

 

 

Figure 20. Benchmark dataset number of labels. 

A random selection of 640x640 images with a balanced number of labels was selected for 

benchmark dataset annotation. The data set was formed from already annotated images to balance 

labels. Selected images were split into smaller images. Annotated benchmark dataset consisted of 

2034 640x640 images with 5958 labels. The final size was formed based on personnel time 

available for annotation. Benchmark dataset quality was reviewed using the latest deep learning 

model and comparing results to annotations. Labels were cut into separate images. Label images 

were divided into folders mismatch, false negative, correct match and false negative for visual 

inspection like previously with original annotations. Only a tiny number of annotation errors were 

found, and these errors were corrected in the annotation. This dataset is used to benchmark deep 

learning models. The number of species phases in the benchmark dataset is significantly 

unbalanced, as shown in Figure 20. 



  

 

3.4 Count frame image dataset 

 

Figure 21. Berry count result documented in field measurement. 89 berries counted inside the 
frame. 

From count frame images, two datasets were created. The first dataset table was to link field 

measurement count number (Figure 21), species counted, and phase to file path. This data is to 

label the image with the actual berry density value for final comparison. The second dataset was 

frame geometry annotations to enable more accurate area estimation through cropping or ground 

plane estimation. 

 

All frames in prediction dataset images (expanded dataset including annotated dataset) were 

collected in a data table. Collected information for a single image row was: 

• File path 

• berries per m² from post-it paper visible in image or image location with known berry density 

• Filename 

• Count label. Berry species and phase counted to post-IT paper 

• Frame visibility. Is the frame entirely or mainly visible in the image? This Boolean value is 

to separate close-up images from "full frame" images  



  

 

 

 

Figure 22. Frame annotation with Label Studio Segmentation mode. 

Berry frames are annotated as a polygon in image coordinates to enable more accurate image 

cover area estimation in berry density analysis. Label Studio segmentation was used as an 

annotation tool as this tool was already familiar, segmentation labelling is the same as polygon 

draw, and Label Studio format parsing tools were already developed within the project (Figure 22). 

Label Studio segmentation results were frames as polygons. This data was not used as machine 

learning segmentation training but with cropping berries from inside and homography 

transformation. Frame annotation process directions were to annotate frames with four edges only. 

If a frame was not entirely inside the image, the frame was not annotated. 



  

 

4 DATA PROCESS PIPELINE 

After data collection and annotation, created dataset format was standardised and flattened into a 

single folder. Images are also split into smaller images for training to prevent loss of detail. These 

and other steps require an image processing pipeline to be implemented. Pipeline was described 

in chapter 4.1 Data formats in and from label studio. 

 

Before the first trained model, it was decided not to scale images to preserve all available pixels 

when detecting small objects like berries. However, as object detections have a native resolution, 

writing a script to split images into smaller ones was necessary before using an image for training 

or inference. The image split process was described in chapter 4.2 Splitting images. 

4.1 Data formats in and from label studio 

 

Figure 23. Annotated dataset folder structure. 



  

 

Label Studio annotation application can read image datasets with images in subfolders. The image 

dataset was annotated in a subfolder structure (Figure 23). Label Studio annotations are exported 

in Label Studio custom format JSON file. 

 

 

Figure 24. The file conversion process to a more standard format. 

For training the deep learning model, a subfolder structure is needed to flatten into a single folder 

level. Training data with Yolov5 is split into three folders: train, test and validate. Data is split into 

three folders randomly. No image must have the same filename to be able to split image data in 

folders without issues randomly. The dataset is flattened into one single folder by renaming files 

based on the original filename and folder names added to the filename prefix to prevent filename 

collision. The conversion process (Figure 24) changes the file from hivas_bilberry_raw_8_7/ 

iphone12/IMG_0936.JPG into hivas_bilberry_raw_8_7_iphone12_IMG_0936.jpg. Location and 

device information is preserved in the filename. The covert script also creates the 

hivas_bilberry_raw_8_7_iphone12_IMG_0936.xml -file in the same folder with the image. 

 

Label Studio format was used when exporting annotations from the Label Studio annotation 

application. Label Studio -format stores annotation coordinates relative to the image width and 

height. PASCAL VOC is an XML-based format for annotation data (Russell 2008). Pascal VOC 



  

 

XML -files are stored in the same folder with images. XML files are given the same filename as the 

corresponding image file but with the .xml filename extension. VOC format benefit is that it is widely 

supported in different annotation tools (Puertas 2022). Widely supported format enables annotated 

dataset visual inspection with a tool, like LabelImg (Tzutalin 2015) and assumed ease to change 

neural network framework. decision was made to use Pascal VOC as default annotation data 

format. 

4.2 Splitting images 

 

Figure 25. Splitting image process 

Split process (Figure 25) input is an image and Pascal VOC format annotations. Output in the 

format defined in script options. The main task was to split image data into neural network native 

resolution. With annotation data, this includes several tasks: 1) Select labels for each split image 

based on object location being inside split image bounds. 2) covert annotation coordinates to the 

split image extend 3) save split image corresponding annotation in the format defined in options. 

 



  

 

Annotated dataset after the converter was formed from images and Pascal VOC -files in a flat folder 

structure. Depending on the selected framework, the data format may not be suitable for machine 

learning training. In the case of Yolov5 large, 640x640 pixel image size is the native resolution, and 

label format is YOLO-format. YOLO-format is a txt file with the same filename as the corresponding 

image. Inside the file, each text row is a single bounding box -annotation: 

1 0.160938 0.085938 0.025000 0.040625 

On each row, data cells are separated by space. The file has no header row, and the format follows 

the header: object-id x-centre y-centre width height (Hatab 2020). Coordinate units are relative to 

the image width and height. With Yolov5 image split script output was 640x640 pixel images with 

YOLO-format annotations.  

 

The split script can also extract annotations in separate images inside a folder name based on a 

label. This option allowed producing datasets for image classification and was an easy way to 

inspect annotations visually. 

 

 

Figure 26. Pyramid split 



  

 

Multiple ways to split an image into smaller parts exist. An equal split is the simplest way to split an 

image into smaller pieces. The image was split, defined size pieces with a grid. The first version of 

the object detection training dataset used a pyramid split with overlap (Figure 26). Assumed 

performance improvements were:  

1) the Same annotation was in training data several times in differently scaled versions  

2) With overlap, overlapping annotations were more likely included in the dataset 

3) Generated machine learning model was capable of detecting close-up images of berries 

Original image sizes were not divisible by split size, so the spare part of a split image is filled with 

black. If no annotation was inside a split image, this image was rejected from the final dataset. Only 

images with annotations were kept. 

 

In the pyramid split, annotation coordinates were also scaled when scaling images. The annotation 

was discarded if the annotation size dropped below 13px due to the annotation coordinate scaling. 

The pyramid split process still produced a more significant amount of label annotations per single 

full image than the original label amount due to single labels being visible in all zoom levels. 

However, the annotation size threshold removed some amount. If used, the overlap between 

images added more labels than initially present in images. 

4.3 Detection process and prediction dataset 

A detection or inference pipeline was developed to support multiple use cases. The detection 

pipeline process's main requirement was to fulfil three inference cases: 

1. Berry density estimation using deep learning prediction results required an inference 

process. 

2. Benchmark dataset inference results were needed to compare prediction results with 

benchmark dataset annotations. 

3. The prototype application required a machine learning model inference backend. 

 



  

 

 

Figure 27. Prototype or dataset inference pipeline backend 

For the detection process, Inference speed was not required but preferred as one single image is 

split into multiple images and amount of full images was in the thousands. With a CPU-only 

Kubernetes inference server with a limited CPU quota, the detection process for all image pieces 

can take minutes. With a GPU-supported dedicated server, detecting all image pieces can take 

only seconds. Therefore, one architecture requirement was the capability to deploy the inference 

process separately (Figure 27). 

 

Main properties for the inference pipeline backend: 

1. Receive image as URL and respond task as received. 



  

 

2. Separate inference backend for modularity to allow deployment of the inference backend 

into a dedicated GPU-supported server. 

3. Split image and host image pieces for inference backend. The split technique is kept the 

same as the training data split technique. 

4. Orchestrate image piece inference process into a queue of requests to the inference 

backend. 

5. Merge detection result labels into original image coordinates. 

6. Delete image pieces after inference. 

7. Optionally draw detection labels into the image for visualisation purposes. 

8. Notify that the image process is ready at the given address. The processing time of a single 

image may reach minutes highly depending on the inference server. 

 

The entire backend architecture contained three separate backends (Figure 27). The first part is 

the main backend with API (Application Programming Interface) to act as the main entry point to 

the user. This main backend differed depending on the user's task. For example, if the task was a 

prototype application, the main backend was REST (Representational state transfer) API. API can 

save the image, and on image receive, request the pipeline backend to start inference and receive 

results from the pipeline backend. The prototype backend stores results and the user can request 

results for each corresponding image. Dataset inference process was another main entry point 

backend. Dataset process looped all images in the folder and ran the pipeline backend process for 

each image. After receiving the result, it saved it to a separate JSON (JavaScript Object Notation) 

file. 

 

The pipeline backend split images, hosted image pieces, requested inference backend, merged 

result labels in original image coordinates, and passed results by requesting a predefined address. 

The inference backend was a minimal API with an endpoint to request model inference. It 

responded with detected labels in the JSON array. 

 

From the dataset of approximately 10000 images, 5000 images were selected for processing 

through the inference pipeline as a prediction dataset. This dataset contained all 3081 images 

selected for the annotation process. Processing annotated images enable comparing annotations 

with machine learning predictions.  



  

 

5 MODEL TRAINING PROCESS 

After the data process pipeline, the dataset was ready to be used as a training dataset for machine 

learning. First, an initial model was trained from the dataset created by the steps described 

previously. 

 

Machine learning model results were analysed to study achieved accuracy and find ways to 

improve learning results. Input data was adjusted when the initial model results indicated issues in 

the training dataset. Different data process pipeline configurations were used with the adjusted 

dataset to train four models. Finally, model results were compared with the help of the 

benchmarking dataset. The fourth model was selected as the final machine learning model for the 

density estimation chapter based on the comparison results. 

5.1 Training the initial model 

Pyramid split produced 39 949 split images from 2855 primary annotated images—an average of 

13 split images from one image. A pyramid split could produce a much larger number of image 

pieces. Still, image pieces with zero annotations were discarded, so the final number of split images 

was much smaller than the theoretical maximum. For the first training, the pyramid split overlap 

between the same zoom level images was set to zero percentage (0%). 

 

 

Figure 28. Examples of first training data. 



  

 

39 949 split images contained 185 191 annotated labels. The original annotated dataset contained 

61 269 annotations. Pyramid split with overlap generated more than double the number of labels 

into split images (explained previously). An example of pyramid split training data is shown in Figure 

28. This split image dataset was divided into three groups: 

1. Train dataset (27 727 images) 70% 

2. Test dataset (3 993 images) 10% 

3. Validation dataset (8 229 images) 20% 

 

 

 

 

Figure 29. YOLOv5 dataset YAML config file content example. 

Annotation labels were saved into YOLO format for the YOLOv5 object detector. The training was 

done with the 2021 autumn version of YOLOv5. Separate image and label folders were created 

with identical folder structures (train, test, valid) inside with image files and corresponding text label 

files in the labels folder. The folder structure with YOLOv5 is added to created dataset config file 

(Figure 29). 

 

 

Figure 30. Mahti supercomputer batch job script. 

The training was done with CSC (IT Center for Science) Mahti supercomputer (Center for Science 

2020). Training is done via a patch script (Figure 30) added to the work queue. The training was 



  

 

supported with Nvidia A100 GPU nodes available in the Mahti supercomputer (Center for Science 

2022). Batch script important defined settings were: 

• 32 CPU nodes 

• 1 Nvidia A100 with 40GB memory 

• 36 hours maximum amount of processing time 

• Image size 640px 

• 150 epochs 

• Batch size 64 

• YOLOv4 5l model with pre-trained weights 

• Dataset config file 

5.2 Analysing the initial model results 

 

Figure 31. Initial model training results. 

150 epochs were selected as the maximum epoch number after initial test training runs, indicating 

overfitting after 100 epochs (Figure 31) in validation results as metrics/mAP get worse after 100 

epochs. YOLOv5 saves two model weight files. Best and last The last is model weights after 150 

epochs. The best weight file is always used. Metrics define the best epoch. The batch size selected 

was 64. The batch size was selected based on initial test training runs as large as possible with 

40GB GPU memory. 

 



  

 

 

Figure 32. Initial model annotation instances per class. 

Training data object instances were unbalanced. Mainly Bilberry flower and lingonberry flower 

bunch (Figure 32). Autumn 2021 raw lingonberry additions were visible in the dataset as the most 

numerous class. 

 



  

 

 

Figure 33. Nine class confusion matrix. 

The confusion matrix (Figure 33) indicated a large number of issues. Overall results were weak in 

the confusion matrix. Single lingonberry flower and a bunch of lingonberry flowers results were 

especially weak. In Figure 31, metrics indicate 0,6 precision and 0,55 recall. 

 

 



  

 

Figure 34. Single lingonberry flower false negative examples compared to false positive examples. 

The main issues were in lingonberry classes by confusion matrix (Figure 33). For visual inspection, 

predictions were cut into separate images in four categories: False positive, False negative match 

and mismatch. Cutting labels into separate images was done for annotated images, and division 

was made with intersection over union (IoU) -comparison. IoU-Comparison was made between 

predictions and annotations. Visual inspection of single lingonberry flower predictions in categories 

highlighted issues with single lingonberry classes. For example Figure 34, false positive and false 

negative single lingonberry flower predictions were side by side compared. Single lingonberry class 

was difficult to detect by humans as a flower often in an image is only a white area. 

 

Visual inspection and confusion matrix indicated that separate single lingonberry detection contains 

issues within the dataset. One way to solve this was to remove single labels and only detect 

lingonberries bunches, thus removing the most problematic classes. This conversion in the dataset 

has the potential also to improve bunch detection results. 

5.3 Adjusting data 

Results from initial training implied possible changes to the dataset to improve object detection 

results. As a result, Dataset annotation class changes were implemented, and the image split 

method was redesigned. 

5.3.1 Removing and renaming labels 

Having nine labels was not necessary. Original annotated data could be simplified by removing 

duplicate lingonberry labels but solving nine label issue had multiple challenges. Simply renaming 

bunch and single berry labels to have the same label left the dataset with overlapping labels of the 

same lingonberry phases and berry phases cropped differently. Typical annotation of a single 

lingonberry image contained annotated bunches with single berries inside, and bunches with one 

berry labelled as a single. 

 



  

 

 

Figure 35. Images with lingonberry as the main species but no bunch labels in the image. 

It was detected that the original annotation dataset contains images not properly annotated with 

bunches. Figure 35 shows the number of lingonberry images without any bunches annotated by 

phase. Missing bunches were due to some annotations being annotated before a bunch of labels 

were introduced in the annotation process. All lingonberry images needed relabelling, but 

approximately 100 images were not corrected. These images were removed from training. Removal 

was deemed to be acceptable, as it similarly made the final dataset more balanced. Lingonberry 

flower images were overrepresented in training data when no balancing was done. 

 

Phase  Species label 

Flower Bilberry bilberry flower 

Raw Bilberry bilberry raw 

Ripe Bilberry bilberry ripe 

Flower Lingonberry lingonberry bunch flower 

Raw Lingonberry lingonberry bunch raw 

Ripe Lingonberry lingonberry bunch ripe 

Table 4. Dataset labels used in later trained object detection models 

It was assumed that bunch as a separate label would be a more consistent way to count 

lingonberries. Single lingonberry phase labels were kept for comparison in the annotation phase. 

Single lingonberry labels were removed from training data to improve lingonberry detection and 



  

 

limit false positives occurring in the first model with nine classes (Figure 18). The final class list is 

shown in Table 4. 

 

Bunch did cause challenges when counting a single berry amount in nature. One possible option 

was deciding the average number of berries/flowers in a bunch and multiplying with that number. 

Another option was to create an image classification neural network for counting single berry growth 

instances in a bunch. Still, in this method, the issue arose that not all berries were visible in the 

image, as an object may be hidden behind each other. Therefore, the loss of the information in the 

form of a single berry count to gain more accuracy in detection was assumed to be an improvement. 

 

 

Figure 36. Visualisation of bunch-only lingonberry dataset conversion process 

A dataset edit script was created to convert the dataset from three lingonberry labels into six labels 

(Table 4). The script does this conversion while simultaneously designed to solve issues in the 

dataset. Script steps: 

1. Remove images from the dataset with 50% labels are lingonberry, but no bunch of labels 

present 

2. Merge intersecting labels maintain the largest bounding box label name as the label. Set 

newly created merged label extends to maximum extends of labels in merge 

3. Grow remaining single lingonberry bounding box sizes with 10% padding 

4. Rename single lingonberry labels to bunch category retaining phase 

Removing images with lingonberries but no bunch annotations was done to confront non-corrected 

annotations. The image was removed if an image had 50% of lingonberries as species but no 

bunches. A 50% limit was set to prevent removing many images with only a small number of 



  

 

lingonberries. For example, the target label in the image as bilberry ripe may have one or a few 

single ripe lingonberries visible. This image was acceptably annotated. A visual example of the 

data conversion process in Figure 36 illustrates merge conversion. Overlapping annotations were 

merged into a single label with extends from maximum extends from the overlap group. The label 

name was derived from the largest annotation in a group by size. Single lingonberry labels left in 

the dataset were resized larger. 10% more padding was added to single lingonberry width and 

height in all directions providing resize does not extend over image bounds. Resize action was 

done to uniform lingonberry labels. Bunch labels containing other features forming a bunch were 

annotated, like a branch connecting berries. Single lingonberry annotations were tightly annotated 

around a berry flower shape. Adding more padding to single lingonberries left was assumed to help 

uniform resulting bunch-only dataset. 

5.3.2 From pyramid split to simple equal split 

With such a large number of false positives, the first model was too sensitive. Pyramid split (Figure 

26) was assumed as one cause. Pyramid split scaled images and labels within. Thus, the label with 

12x12px bounds was scaled to 6x6px. Scaling caused by the pyramid split was decided to be too 

small as it was nearly impossible for a human to classify. Therefore, the pyramid split had a 

minimum label size limit. All annotations smaller than the limit were removed. Scaling created many 

annotations that were not annotated by humans and likely contained a large number of ambiguous 

annotations. Arbitrary limit likely removed annotations that were valid by human standards but were 

removed as too small. This added complexity to the dataset by pyramid split was problematic, and 

removing the pyramid split could diminish a large number of false positives. 

 

The pyramid split was built with an inference pipeline in mind. As training data needed splitting, so 

also will the inference process. Detection in prototype and training data split would have the same 

split technique. Pyramid split theoretical advantage with detection was that predictions overlapping 

split images were likely detected in different zoom level split if the object is large enough. If the 

object were too small to be detected after scaling, the split overlap would enable the object to be 

detected. But with overlap between images at the same zoom level and other zoom levels, the 

same object could be detected multiple times from multiple split images. Therefore, pyramid split 

detection requires merging detections. Also, the detection label would affect merging as a slightly 

overlapping object may occur. Only the same class object would be merged in case of overlapping 



  

 

more than a given threshold. Merging detected berries in different zoom levels increased 

complexity, so it may uncontrollably affect detection results. 

 

 

Figure 37. Equal split with optionally overlapping cut grid and threshold to include objects partially 
outside the piece bounds. 

The pyramid split was replaced with an equal split at a 1:1 pixel zoom level. The split codebase is 

planned to use in inference also due to code reusing advantages. As a detector split technique, 

pyramid split could detect close-up images of berries and remove double detections of the same 

berry located between images. A simple equal split in detection was deemed adequate. Detecting 

berries in close-up images is not essential, and double detection due to the berry located between 

images is likely to be a minor issue. 

 

Label split must overlap image -threshold percentage Lost annotations percentage 

100% 17% 

70% 7% 

Table 5. Lost annotations with different thresholds of required overlap with annotation and image.  

The pyramid split was done with an overlap in the image grid for each zoom level (Figure 37). The 

second training dataset removed the overlap property, simplifying the image split process. The 

dataset image split process loses annotations when the berry was located on the edge of the image. 



  

 

The overlap threshold lowers the number of labels removed, but some numbers of labels are not 

included when the threshold is more than 50%. Between two split images. If the threshold is 50% 

or less, the label was added in both or just one split image. With a 100% overlap requirement, the 

label must be entirely enclosed in a split image area. 

 

17% of labels were lost in a simple equal split (Table 5), using 100% overlap. Losing 17% of labels 

is assumed to hurt model training. A large number of labels were only slightly over the image, and 

thus model received images with berries on the image edge but not annotated. A decision was 

made to keep the overlap threshold value between 60-90% to prevent images with annotations cut 

in half or more but to keep as many annotations as possible. With a 70% label threshold, only 7% 

of the labels were lost. Using an overlap threshold significantly improved from 17% missing with a 

100% overlap threshold (Table 5). 

5.4 Incremental test training for the adjusted model 

New object detection training was initiated with the adjusted dataset and the dataset process 

pipeline. Training was done incrementally with different dataset pipeline process parameters to 

evaluate optimal settings. The final, fourth model, was looked into more depth as it created the 

most accurate results. 

 

Data adjusting decisions were made based on multiple incremental model test training. Common 

properties applying to all trained models are: 

1. Six (6) classes. Single lingonberry classes were removed from all models 

2. Instead of the pyramid split, a simple equal split was used with different parameters 

3. Model type YOLOv5 Large 

4. Modified primary annotated dataset as training data 

 

model date image overlap label threshold Description 

8.2.2022 0 1 A balanced dataset with single lingonberries 

simply removed 

28.2.2022 0 1 An unbalanced dataset with single 

lingonberries simply removed 



  

 

9.3.2022 0 1 Unbalanced dataset with single to bunch 

conversion 

2.5.2022 0.1 0.8 Unbalanced dataset with single to bunch 

conversion. Image split with  

Table 6. Four six-class model descriptions 

The first model (8.2.2022) trained used a balanced dataset with approximately 4000 instances in 

each class. This number was the number of bilberry flower instances—the lowest class amount in 

the dataset (Figure 15. Annotated labels count). The first model dataset modification removed 

single lingonberry labels but did not merge them with bunches. Instead, a simple equal split method 

was used with no overlap between split images. The label threshold was 1. Therefore, all labels 

not entirely inside the split image were discarded. 

 

 

Figure 38. Benchmark dataset results comparison between four models. 

The second model (28.2.2022) was like the first model but without dataset balancing. The second 

model contained more class instances. This training was to test balancing dataset impact on 

benchmark results. The second model was 62% correct, while the first was 60% correct. The larger 

unbalanced dataset had better benchmark dataset results (Figure 38). Mismatch represents a label 

with 50% IoU but the wrong label compared to the annotated benchmark label. 



  

 

 

The third model (9.3.2022) implemented fully the steps described adjusted data -chapter. Dataset 

used was a bunch-only lingonberry dataset done with the conversion script process. Less false 

negative results were the most likely consequence of changing single lingonberries to bunches. 

Therefore, the third model was more capable of detecting bunches with only single lingonberry.  

5.5 Final and fourth model results 

The fourth model (2.5.2022) implemented the fully steps described adjusting data -chapter. In 

addition, compared to the third model, image overlap was set to 10% (Table 6) and label overlap 

to 80%. Benchmark dataset results did not improve noticeably compared to the third model (Figure 

38).  

 

 

Figure 39. Fourth model annotation instances per class. 

Training dataset unbalance remained in six class data (Figure 39) as in initial model training. 

Merging single lingonberries with a bunch of lingonberries solved most lingonberry unbalance 

issues. The number of bilberry instances related to each other remained similar to the initial training. 

Total amounts differed from the initial due to split method differences. For example, a pyramid split 

created more instances than a simple equal split. Overall, merging lingonberry classes solved some 

imbalance issues in the dataset. 

 



  

 

 

Figure 40. Fourth model training results. 

Train settings were like the initial training. YOLOv5 training was done with 150 epochs (Figure 40). 

The batch size selected was 64. The best model was selected for production, not the last model 

after 150 epochs. Training result metrics improved notably compared to the initial model (Figure 

31). 

 

 



  

 

Figure 41. Six class confusion matrix. 

The confusion matrix indicated notable improvements in training results compared to the initial 

model, as most problematic classes were removed from the dataset. In addition, training validation 

data results (Figure 40) with different benchmarking results (Figure 38) indicate the training dataset 

improved compared to the initial trained model. 

 

The main issues remaining in the confusion matrix training results indicated that they were partly 

caused by the bilberry unbalance in the training dataset (Figure 41). Weak bilberry results can be 

caused by the significantly lower number of instances in training data. However, this does not 

explain raw bilberry results, as the number of raw bilberry instances was the highest in the dataset 

(Figure 39). Two other options for why bilberry flower and raw had weaker results than other classes 

were dataset diversity and class difficulty. 

 

The Dataset diversity issue stems from the primary dataset selected for annotation. In the primary 

dataset, bilberry images had only one extraction location (Figure 13. The number of phase area 

images from different locations.). For all phases, images were collected only at a single time and 

in a single location. This bilberry dataset homology likely had an impact on results. For example, in 

the primary dataset, all raw bilberry images were homogenous in colour and feature because the 

data is a single point of the day and location data had single weather condition lighting. 

 

 

Figure 42. Example of annotated classes in primary dataset. 



  

 

Class difficulty refers to visual differences between classes; some classes are more difficult to 

recognise than others. Initial dataset classes had difficulty annotating due to class visual ambiguity. 

For example, single lingonberry classes were difficult to define in annotation due to the low amount 

of detail. As single lingonberries were removed and merged with bunches, after likely most difficult 

class visually became especially bilberry raw and bilberry flower (Figure 42). Raw berry was difficult 

to detect for annotating personnel, but lingonberry raw as a bunch had enough detail to make it 

easier to detect than raw bilberry (Figure 42). The Bilberry flower was also quite difficult to detect 

when annotating. Class difficulty estimated based on visual inspection of the dataset indicated that 

bilberry flower, especially bilberry raw, was expected to have the lowest results. Ripe berries were 

easiest to detect when annotating. Class difficulty effects model results in two ways: Annotating 

had more errors due to detection difficulty, and data contained fewer features for the model to use 

for classification. 

 

Regarding class difficulty, bilberry classes in the original dataset lagged in balance and variety. 

Adding more variety to the dataset and annotations can improve the fourth model results. 



  

 

6 DENSITY ESTIMATION 

After berry detection with deep learning was achieved with the accuracy described in the fourth 

model section, berry density estimation methods were tested. Four main density estimation 

methods were tested, and methods frame mean counterparts. Finally, all eight results were listed 

and compared in the results section. 

6.1 About density estimation goals 

Bilberry and lingonberry field measurements aimed to find berry yield in kg/ha. In the field, this was 

done by counting berries inside multiple sample plots of a 1m² area. The mean was calculated from 

multiple sample plots, and the berries/m² number was converted to kg/ha using the mean fresh 

weight of a single berry—0,35 g for bilberry and 0,23 for lingonberry. (Kilpeläinen 2016). In this 

thesis, conversion to yield was not done, and the target unit was kept as berries/m². 

 

The number of berries in the photographed area was estimated by calculating the berries in an 

image. In the image, not all berries are visible as an unknown number of berries is lost behind 

leaves or other visual obstacles present in an image. Therefore, the presumption to study was that 

the number of berries visible in a certain area would correlate with the berry density estimation. 

Berries were counted from an image, the image area was estimated, and results were compared 

to the field measures to test this presumption. 

 

Previous scientific literature confronts challenges of density estimation from a single image in 

estimating people density (Silveira Jacques 2010). With pixel level density estimation, the 

background was subtracted from detected objects and thus reaches the estimation value but skips 

the actual object count (Silveira Jacques 2010). The texture level approach estimates the number 

of people and density value. As an example of the texture level approach, Wu et al. propose to 

create image cells and a support vector machine (SVM) to solve the regression problem of 

estimating density (X. G. Wu 2006). A significant drawback of the described method is that density 

cells depend on camera parameters (Silveira Jacques 2010). 

 



  

 

The thesis density estimation method underlining techniques can be divided into two groups. 1) 

Object-level density method based on detected berry objects. Object level density estimation tends 

to produce more accurate results than pixel or texture-based (Silveira Jacques 2010). 2) Using 

reference scale visible in the image. This reference scale was a counting frame with measured side 

lengths of 1 meter each. 

 

In field measurements, density was estimated by counting berries inside a 1m² area marked with 

physical boundaries and frames. The deep learning model trained estimates the number of berries 

by searching for berries from images taken from the frame. Image area is estimated with various 

methods, which are compared below. Four methods are: 

1. The label count in frame images was done via selecting images from the same general 

distance. The distance was estimated based on the physical frame being visible in the 

image. Assumed images were from the same distance and thus comparable to each other. 

2. Label count inside a frame. Berries were selected by cropping labels inside the frame 

visible in the image and counting only berries selected inside the 1m² frame. 

3. Label count after homography transform image. Homography transforms an image to 

represent the image as an orthographic projection image straight up. The transformation 

was done with four frame corner points. Homography transformation enabled estimating 

more labels than counting only inside the frame. 

4. Estimate image area from detected berries bounding box size means. If detected berries 

were smaller, the image area was assumed to be higher. 

 

Correlation value and linear regression were estimated between field measurement result berry 

density and from various area estimation methods. Linear regression corrected berries in 

surface/m² to the assumed berries/m². Methods were compared by evaluating correlations with 

field measurements. 

 

The best result was a high correlation because detecting the actual berry amount was highly 

unlikely with one image. Using correlation to estimate density means that the actual berry count 

was unnecessary with lingonberry bunches. Instead, bunch count was assumed to correlate. The 

bunch count was directly compared with field measurements for correlation. In this thesis, 

lingonberry count meant bunch count. 

 



  

 

The primary correlation improvement method was instead of one image from the frame, one could 

use the mean value from multiple images. Eight methods in the following chapters were based on 

the four methods mentioned above and their mean grouped counterparts. Single method 

correlation results were grouped by count frame, which was assumed to be the same frame across 

multiple images when field measurement value and location were the same. 

6.2 Frame versus count number of berries 

 

Figure 43. Frame image was defined as an image with a frame fully enclosed inside view. 

First, simple image area estimation was done by comparing images' berry numbers with frames in 

near or full view (Figure 43). These images were assumed to cover an approximately similar area. 

This assumption most likely caused noise in correlation, but it was done due to simplicity and a set 

baseline. Data was also easily available as a table connecting frame image name to field 

measurement value (number of counted berries inside the frame). For simplicity, the frame image 

area was defined as one (1). 

 



  

 

 

Figure 44. Scatter plot of frame values compared to same label berries found by deep learning in 
full frame images. Colouring represents image mean label percentage width from image width. 

The predicted labels table was created by running the detection process on the primary dataset. 

Next, the amount of prediction in the image table was created from the labelled dataset, grouping 

all labels with identical image paths and unstacking detected label names into separate columns.  

 

The count frame table dataset was merged with predicted labels using the image path. Field 

measurement value (per_m2) was compared to the number of detected berries in the image target 

label. The target label was the berry phase counted in the field measurement process, and the 

count value was written down. Image target label or count label was the column in the count frame 

dataset. 

 

Pearson correlation was calculated for each class separately between columns count label value 

and field measurement value (per_m2) values in Figure 44. Each dot in Figure 44 represented a 

single image. Dot colouring was the mean detected label width in the percentage of the image 

width. Colouring was an additional visual image area estimation inspection. As images from 

assumed similar distances should have approximately similar mean label width values. 

 



  

 

Several interpretations was drawn from the resulting scatter plots (Figure 44) and corresponding 

Pearson correlations per class. 

• Horizontal lines forming from dots were caused by images taken from the same physical 

frame with the same count values from field measurement. The deep learning model 

detected different amounts for each image. 

• The colour of the mean label width indicated that images with larger labels have fewer 

berries found by the model. Again, the result was expected, as close-up images, in theory, 

should have a smaller area and thus fewer berries. 

• Colours of mean label width were like each other, suggesting that label size could be used 

to estimate the image area. 

• A large vertical line in bilberry raw with near 150 counted berries by field measurement 

was due to dataset unbalance. All Ounasvaara images with the frame visible were from 

the same single-count frame. 

• Correlation existed. Better area estimation and better deep learning model results could 

improve the correlation. However, model deficiencies were likely to cause weaker 

correlations in bilberry flower, and raw results as the fourth model results were weakest 

with the classes in question. 

 

An assumption was made from the first scatter plots (Figure 44) that using multiple images' mean 

berry number values could improve the correlation. Two columns grouped images—location and 

field measurement value (per_m2). Location grouping was used to minimise images grouped with 

identical field measurement values but not taken from the same frame. Image group mean row 

label values were used. 

6.3 Mean frame versus count number of berries 

 



  

 

 

Figure 45. Label scatter plots grouped images row compared taken from same count frame. 
Colouring represents the mean model score in the image group. 

Mean berry count Pearson correlation with field measurements mainly improved, except with 

bilberry raw (Figure 45). Improvements indicated that yield estimation improves using the mean 

value from multiple images. 

 

Label Frame images Grouped frame images 

lingonberry bunch raw 137 27 

bilberry ripe 157 26 

bilberry raw 180 35 

bilberry flower 216 23 

lingonberry bunch ripe 285 34 

lingonberry bunch flower 299 37 

Table 7. Amount of frame data in each class as a single image or grouped by location and berry 
frame count value. 

Table 7 illustrated the number of frame images. Grouping caused significantly reduced data for 

correlation comparison. The limited number of grouped images was because the primary dataset 

was not designed to be grouped. The dataset was mainly training data for object detection. Field 

crews were not instructed to take many images from a single frame. 



  

 

6.4 Frame versus frame cropped berries 

 

Figure 46. Example of frame area cropped labels. 

The polygon area of the frame dataset was used to crop detected labels inside each image, 

selecting only labels inside the frame (Figure 46). The cropped image has only inside frame labels; 

thus, all labels were from a 1m² area. Cropping produced accurate area-to-berry number relation, 

but two issues remained. First, the example figure demonstrated how a large image area was not 

utilised when cropping. Secondly, cropping requires the frame to be entirely in the image. Using 

only images with the entire frame lowered available images for scatter plot analysis. In addition, 

using entire frame images raised a new issue. The distance required for a full-frame image is so 

high that visually inspecting is likely too far for the computer to detect all surface berries that would 

be detected in more detailed images. Finding the best distance to take an image requires a deeper 

study. With a dataset of different distance images with different size frames, one could determine 

the optimal distance with current consumer-level mobile cameras. 

 



  

 

 

Figure 47. Scatter plot of frame values compared to frame cropped label berries found by deep 
learning. Colouring represents image mean label percentage width from image width. 

Pearson correlation with single image data pointed improved with crop compared to label count in 

frame images. On the other hand, in two of the worst correlations, bilberry flower and bilberry raw, 

correlation results decreased.  



  

 

6.5 Mean frame versus frame cropped berries 

 

Figure 48. Label scatter plots grouped images row compared taken from same count frame. 
Colouring represents the mean model score in the image group. 

Images grouped by location and field measurement count value Pearson correlation results 

changed from single images, similar to the label count in frame images (Figure 48). Overall the 

correlation results were higher than the grouped label count in frame images. 

 

Label Frame images Grouped frame images 

bilberry ripe 105 26 

bilberry raw 119 34 

lingonberry bunch raw 134 27 

bilberry flower 142 23 

lingonberry bunch ripe 248 34 

lingonberry bunch flower 261 37 

Table 8. Amount of frame data in each class as a single image or grouped by location and berry 
frame count value. 



  

 

The number of frame images for analysis dropped slightly (Table 8) as the annotation process of 

drawing required the whole frame to be visible in the image. Frame images in the simple label count 

method included images with frames partially visibly. Annotated frames with polygon required the 

whole polygon to be visible. 

6.6  Frame versus homography two m² berry count 

 

Figure 49. Homography converted images with labels in homography image coordinates. 

Homography perspective correction was done to frame images with a frame annotated as a 

polygon with four corner points. Homography conversion requires a minimum of four points (Malis 

2007). Homography was done to enable a larger area of the original image to be used for density 

analysis than simply cropping labels with a frame polygon. The source image was a frame image 



  

 

with polygon annotation. Anchor points were the four corners of the frame polygon. The target 

image was created from an empty image with dimensions 1400x1400 pixels. Frame anchor points 

in the target image form a square polygon in the centre of the image with dimensions 1000x1000 

pixels. The target image was a frame image corrected to show the frame as a square in the middle 

of the image with 200 pixels padding in each direction (Figure 49). Frame side length is one (1) 

meter, and the image was translated to 1000 pixels in the target. With padding of 200 pixels in all 

directions, the target image represented an area of 1,96 m² with 1,4m (meter) sides.   

 

A homography correction matrix transformed image labels into target image coordinates. The 

original image likely extended over the 1,96 m². Thus, some number of original image cover area 

was lost. Labels left outside the image were discarded. Sometimes, the original image's visible area 

did not cover the entire target image area. This area can see as black (Figure 49). The Black area 

left in the target image area was calculated and removed from the total area available for density 

analysis. The benefit of homography as to have nearly double the area for density analysis 

compared to simple label cropping with a frame. 

 

 

Figure 50. Scatter plot of frame values compared to labels in homography converted frame images 
by deep learning. Colouring represents image mean label percentage width from image width. 



  

 

Pearson correlation results per class wer like the frame cropped dataset (Figure 50). Correlation 

values were not significantly improved. 

6.7 Mean frame versus homography two m² berry count 

 

Figure 51. Label scatter plots grouped images row compared from the same homography corrected 
images. Colouring represents the mean model score in the image group. 

Mean results from grouped images by frame with homography correlation (Figure 51) improved 

correlation compared to frame images separately like in all previous area estimation methods. 

However, compared to cropping, homography did not significantly improve with current data.  

6.8 Frame versus label size estimated berry count 

Estimating image area with image mean label size (detected berry size) emerged as an option 

when frame images were filtered from the dataset. Frame images mean label side width or height 

affected to be 1% of parent image width or height. Thus mean label size was assumed to be 

proportionate to the parent image area. The opportunity of estimating an image with label size was 

to estimate berry density without a frame in the image. Without a visible frame, estimating berry 

density could be done anywhere. 



  

 

 

The base dataset should include known berry densities from images taken from varying distances 

to create a density estimation method that does not depend on frame reference. The target result 

from the analysis for a base for the prototype was linear regression formula to estimate the area 

based on detected labels. This linear regression was devised from a scatter plot, comparing the 

estimated area based on label sizes with field measurements. Therefore, frame value was needed 

for comparison. Frame annotation dataset contained frame images and images without visible 

frames. Images without a visible frame were assessed to be taken from the inside known frame. In 

theory, these images pose the same berry density per m² as the corresponding frame. Frame 

dataset contained 1274 images with visible frames and 949 images with known berry density values 

but no frame in the image. 

 

 

Figure 52. Main dataset prediction label height and width scatter plot—values as a percentage of 
corresponding image width or image height. The first plot is before removing labels with a 10 times 
larger area than other labels in the same image. Second plot after removing. 

Predicted labels in the dataset varied in size due to multiple reasons. Image angle causes closer 

labels to be larger than labels further away, and different berry species or phases may differ in size. 

With image area estimation with mean label size, a single mislabel with a significantly larger label 

size can negatively affect image area estimation results. Large mislabels were observed in the 

dataset. Single mislabel has a minor effect on the total of berries counted, but label size estimation 

may be significant. Data cleaning from significantly different labels with significantly larger label 

sizes than the rest of the labels in the same image:    

1. Calculate the label mean width and height of each image. 

2. Calculate the area on each label. 



  

 

3. Calculate the mean label area in the image. Mean prediction width multiplied with mean 

prediction height. 

4. Calculate the difference in the area (area_diff) as label area divided by the mean label area 

in the current image 

5. Remove labels with an area difference value of more than ten (10). Therefore, labels with 

a 10 times larger area than the mean area in the current image are removed (Figure 52). 

 

 

Figure 53. Label width and height percentage from frame image width and height using a dataset 
of only images with frame in view. Above label sizes before aspect ratio normalisation and below 
with normalisation.  

For initial viability, the dataset of images with the frame visible was assumed to be from a similar 

distance. Plotting image mean label width and height in scatter plot revealed two distinct clusters 

(Figure 53, top row). The scatterplot colour (Figure 53, top right) was the image aspect ratio 

calculated by dividing image width by image height. Figure 53 top left colouring was the device 

number. Colouring was to check if the device was the reason for the two clusters, as device camera 

differences can affect the label size in the corresponding image. 

 

Image width and height were normalised by swapping width and height values in images with 

portrait aspect ratio to mitigate noise caused by aspect ratio. Removing aspect ratio derived 



  

 

difference results in a single cluster in the scatter plot (Figure 53, bottom row). In figure 51, the 

bottom right was a close-up of the bottom left scatter plot with different colours for each berry label. 

Colouring likely indicates that label type affected label size and thus affected the estimated image 

area from the label size. Field measurement environment differences between berry phase and 

species impacted cluster formation. 

 

Images with visible frames were normally distributed around one (1) m². So practically image area 

included a larger area than just the frame. This gap is corrected with the final linear regression. As 

a consequence, the error in area value was systematic. Thus linear regression from surface 

detected berries to total area berry density will also account for this error. 

 

 

Figure 54. Outliers of label width and height were removed from the frame dataset. 

The label means width and height per frame image were normally distributed with outliers (Figure 

54, top row). Outlier images were removed from the dataset such that normally distributed dataset 

peaks remain in the centre (Figure 54, bottom row). One finding was that in frame annotation, 

0.68% width and 0.9% height from image size meant that it was most likely an average frame 

image. Therefore image with a mean of 0.68% width and 0.9% height label size indicated that the 

image is the mean frame image. We assume that the frame image had a 1m² surface area. 

 

 Bilberry Lingonberry 

Width 0,60 0,74 

Weight 0,82 1,01 

Table 9. Berry species coefficient values for width and height. 



  

 

As label type likely affected image area estimation due to species class size differences, different 

coefficient values were made for each species: lingonberry and bilberry. The coefficient value was 

the total mean estimated width or height for each species from the frame dataset with removed 

outliers (Table 9). 

 

 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑤𝑖𝑑𝑡ℎ =
𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑤𝑖𝑑𝑡ℎ 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

𝑖𝑚𝑎𝑔𝑒 𝑚𝑒𝑎𝑛 𝑙𝑎𝑏𝑒𝑙 𝑤𝑖𝑑𝑡ℎ % 
 

Equation 2. Calculating estimated width with species width coefficient and image mean label width  

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 ℎ𝑒𝑖𝑔ℎ𝑡 =
𝑠𝑝𝑒𝑐𝑖𝑒𝑠 ℎ𝑒𝑖𝑔ℎ𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

𝑖𝑚𝑎𝑔𝑒 𝑚𝑒𝑎𝑛 𝑙𝑎𝑏𝑒𝑙 ℎ𝑒𝑖𝑔ℎ𝑡  %
 

Equation 3. Calculating estimated height with species height coefficient and image mean label 
height  

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑎𝑟𝑒𝑎 = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑤𝑖𝑑𝑡ℎ ∗ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 ℎ𝑒𝑖𝑔ℎ𝑡 

Equation 4. Calculating estimated image area 

 



  

 

 

Figure 55. Example image widths are estimated from the mean label size. 

Equations 2, 3 and 4 were used to calculate the estimated width, height and area of the dataset 

containing all images with known berry density values from field measurement. Visual inspection 

of results indicated close-up images having smaller estimated widths than images with the larger 

assumed area (Figure 55). 

 

 

Label Frame images Grouped frame images 

lingonberry bunch raw 149 27 

bilberry ripe 169 26 

bilberry raw 217 35 

bilberry flower 219 23 

lingonberry bunch ripe 311 34 

lingonberry bunch flower 336 37 



  

 

Table 10. Amount of data with known berry density in each class as a single image or grouped by 
location and berry frame count value. 

The dataset for Pearson correlation was larger than in other methods as it can now include images 

without a visible frame but with a known berry density value (Table 10). However, the dataset size 

was only slightly increased. 

 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑠𝑡 𝑐𝑜𝑚𝑚𝑜𝑛 𝑙𝑎𝑏𝑒𝑙𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑎𝑟𝑒𝑎
 

Equation 5. Calculate estimated berry density. 

With several labels detected and estimated image area, berry density with visible berries was 

counted with Equation 5. Calculate estimated berry density. The estimated density was calculated 

for the dataset. 

 

 

Figure 56. Scatter plot of images compared to estimated density with label size. Colouring 
represents the estimated image area. 

Scatter plot of estimated image area based on label size compared to field measurements (Figure 

56). The dataset contains close-up images without visible frame and frame images with known 

berry density values. Noticeable vertical lines in bilberry scatter plots were Ounasvaara single 



  

 

frame images. With a single location having a single frame only, theoretically, all images taken 

around the frame, close or far, in the same phase have the same berry density. This difference in 

the field measurement process produced more data from Ounasvaara than any other place. 

 

The scatter plot's colour was the estimated image area in the image (Figure 56). The Scatter plot 

did not show significant clustering with the estimated image area. 

6.9 Mean frame versus label size estimated berry count 

 

 

Figure 57. Scatter plots grouped images row compared to estimated density with label size. 
Colouring represents the estimated mean image area in the group. 

The correlation of images was grouped with field measurement density value, and the location was 

shown in Figure 57. Pearson correlation values were similar to the previous area methods, but 

unlike previous methods, no frame data was needed to estimate density after species coefficient 

values were estimated. This freedom from visible frame makes the method of estimating density 

with berry size usable, for example, in prototype density estimation applications.  



  

 

 

Figure 58. Linear regression for each class from grouped images. 

A scatter plot created a linear regression model for each class separately (Figure 58). Intercept and 

slope -values was extracted from the regression model. 

 

Class Intercept Slope 

bilberry flower 89,5788 3,461025 

bilberry raw 27,86355 1,510091 

bilberry ripe -12,7022 2,445188 

lingonberry bunch flower 23,78982 1,81838 

lingonberry bunch raw -10,6856 4,946505 

lingonberry bunch ripe 9,616994 1,927011 

Table 11. Linear regression slope and intercept values per class. 

𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

= 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑠𝑙𝑜𝑝𝑒 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

Equation 6. Regression adjusted estimated density calculation. 

With slope and intercept values (Table 11), the regression model adjusted estimated density was 

calculated with Equation 6. Regression adjusted estimated density calculation. The first estimated 



  

 

image area was calculated with the mean label size from the most common berry class. After 

estimating density, regression adjustment was done with slope and intercept.  

 

image per_

m2 

label_

sum 

est_image

_area 

est_de

nsity 

est_density_

to_reg 

import/poyliovaara_cowberry_30_6/

slr/IMG_0427.JPG 

88 26 1,6151 16,098 53,0622 

Table 12. Example image with calculated estimation values. 

In the example image, the label calculated was lingonberry bunch flower. The field measurement 

density value is 88 berries per m². The estimated image area from lingonberry bunch label sizes 

was 1,6 m². The estimated density was the label sum divided by the estimated image area. The 

resulting estimated density with only detected berries was 16 berries per m². After linear regression 

adjustment with lingonberry bunch flower slope and intersect values, regression adjusted berry 

density was estimated as 53 berries per m² (Table 12). 



  

 

7 RESULTS 

Different Pearson correlation results were compared for each density estimation method. Density 

estimation was done separately for a single image and multiple images from the same location. 

Eight different results were compared. Four single image correlations and four grouped by location 

mean correlations. The eight methods were (See chapter 6.1): 

1. The label count in frame images. Single image density correlation. 

2. The label count in frame images. Mean density in frame location correlation. 

3. Label count inside a frame. Single image density correlation. 

4. Label count inside a frame. Mean density in frame location correlation. 

5. Label count after homography transform image. Single image density correlation. 

6. Label count after homography transform image. Mean density in frame location correlation. 

7. Estimate image area from detected berries bounding box size means. Single image density 

correlation. 

8. Estimate image area from detected berries bounding box size means. Mean density in 

frame location correlation. 

 

 



  

 

Figure 59. Comparison of density estimation technique correlations by class. 

Results for each class in different methods can be seen in Figure 59. Figure 59 shows Pearson 

correlation values for each method and label. Weak results were presented in the classes bilberry 

raw and bilberry flower. Especially bilberry flower results were significantly weak with less than 0,2 

correlation with label size density estimation without image mean. Bilberry raw results were erratic 

as in other classes mean from multiple images improved correlation, but not with bilberry raw. 

Lingonberry bunch ripe class correlations were high with or without mean. Mean density from 

multiple images impacted a positive correlation, especially when the dataset had a weak correlation 

with a single image. 

 

 

Figure 60. Comparison of density estimation technique correlation by mean of all classes. 

All classes mean correlation graph per method in Figure 60. The main observation was that mean 

density from multiple images positively correlated with all classes. The simple mean label count in 

frame images yielded the best results, but not a significant amount. Correlation implied that no 

single method was distinctly better than any other method. Density estimation with label size as an 

unconventional method was relatively comparable with mean image correlation requiring mean 

density from multiple images as single image results were significantly weaker than any other 

method. This weak result was possibly due to close-up image results being more varied than frame 

images. 

 



  

 

 

Figure 61. Correlation of lingonberry density estimation techniques by mean of all classes. 

A separate comparison with only lingonberry classes was done, as bilberry correlations are more 

erratic than lingonberry (Figure 61). The bilberry correlation results likely stemmed from smaller 

frame datasets and homogenous deep learning training datasets. Correlation method results with 

only lingonberry implied that improvement of a single image and mean from multiple images may 

not be that significant with a more balanced dataset.  

 

With all results considered, cropping labels with frames was the most promising method of density 

estimation (Figure 61). Homography results indicated that this more complex process did not yield 

significant improvement and thus did not justify its utilisation. The simple label count in the frame 

image method was viable if no alternative density estimation method was available. Density 

estimation with the label size method was significant in its capability to function without a frame in 

the image, and correlation results were not significantly weaker with the multiple images mean 

method. Although in future, a method to create a cropping polygon without a physical frame in an 

image with a known size would be more promising with correlation and yield better and more 

consistent results based on were estimation methods results. 

 

According to the results, using the reference scale visible in the image yielded more accurate 

results than object-based density estimation. The simple label count in the frame image method 

yielded a higher correlation than density estimation with the label size method. Using pixel or 

texture-based methods are likely unnecessary, as an object-based method should produce better 

results (Silveira Jacques 2010), and the thesis results indicated using a reference scale was even 

more accurate. 

 



  

 

8 CONCLUSIONS 

The thesis described collecting image datasets and annotating lingonberry (Vaccinium Vitis-idea) 

and bilberry (Vaccinium Myrtillus) berries in three phases: The raw, flower and ripe. The resulting 

annotated dataset was used to train the YOLOv5 Object detection model. The process of improving 

the object detection model and the dataset were described. After adjusting and training the 

improved model, berry density was estimated with different techniques. The estimated correlation 

with field measurement density with multiple methods was compared. 

 

The thesis suggests computer vision as a viable and highly potential method of detecting berries 

in different phases with deep learning computer vision. A computer is fully capable of detecting 

berries in their natural background. YOLOv5 object detection method can learn to detect berries 

from images without scaling the original image if an image is sliced into the object detector's native 

resolution. Berry density estimation with images yields promising results. 

 

Splitting full-resolution consumer-level mobile phone camera images with a grid split into multiple 

smaller images is required to detect small objects in meaningful amounts. Pyramid split has 

potential, but more complex issues arise with a more complex method. Splitting the original image 

into smaller chunks is an excellent method to keep as much data as possible, but one should Keep 

It Simple, Stupid (KISS-principle). For training split, labels between split lines should be partially 

visible if 80% of the label area is contained in an image. This improved berry detection results. 

 

Dataset balance is important. Saying "garbage in, garbage out" is not without merit. From this 

saying, "Mediocre in, mediocre out" could be deducted. The primary dataset initially lacked raw and 

ripe lingonberries. After this unbalance was corrected, bilberry annotations were the least robust 

classes. Results suggest deficiencies in bilberry classes with only a single main location 

(Ounasvaara) and the least number of annotations negatively affect results. In future, more bilberry 

annotations from other locations are required to balance the dataset. 

 

The annotating process is labour intensive (Z.-Z. X. Wu 2022). Therefore, one should plan to 

annotate classes rigorously. Dataset quality was lowered with the decision to annotate 

lingonberries as single berry and bunch. More classes were also more complicated and reserved 



  

 

valuable time available for annotation. The main experience of berry annotation was periodically 

evaluating current annotations to keep the generated dataset as balanced and varied as possible. 

 

A more balanced dataset with synthetic data would likely improve the object detection model 

(Nowruzi 2019). The additional synthetic dataset has the potential to generate more data in less 

time. A synthetic dataset would also help with balancing, as the number of generated synthetic 

images could vary between classes. The synthetic dataset also has the potential to limit 

misclassification with the dataset resembling the dataset used in this thesis. As all images had a 

natural background, plain white and other backgrounds in the dataset would likely minimise errors 

like object detection assuming blue shoes to be ripe bilberry. As a large label, this strongly and 

negatively affects the method of estimating the image area with label size. 

 

Consumer-level mobile phone camera used for berry density estimation with berries in different 

phases detected from an image with deep learning object detection and image area estimation 

using various methods yields promising results. More reference data is needed for more 

comprehensive results as the primary dataset frame image number is low and not varied enough 

as images were mainly from a single distance from the ground. The main question is the correlation 

between field measurement control data with only seeing the top layer of berries visible in the 

image. The thesis suggests that estimating only with images taken on top of the growth shows 

promising results in estimating berry density in different phases. Combining results from multiple 

images from the study location yields more accurate results. The most preferred area estimation is 

cropping detected objects with a known area in an image. In future, this could be achieved, for 

example, with augmented reality applications creating a virtual frame in an image for cropping. 

 

Estimation density with a mobile phone has potential. Berries can be detected from their natural 

background with computer vision. Density estimation from only visible berries correlates with field 

measurement density. Suggested improvements are: Combining object detection improvements, 

implementing an Augmented Reality virtual frame to estimate the image area, and instructing the 

user to take multiple images could lead to improved results and give potential to practical 

applications. 
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