

Bachelor’s thesis

Information and Communications Technology

2022

Vikas Singh

DEVELOPING A CI/CD

PIPELINE WITH GITLAB

Bachelor’s Thesis | Abstract

Turku University of Applied Sciences

Information and Communications Technology

2022 | 56

Vikas Singh

DEVELOPING A CI/CD PIPELINE WITH GITLAB

Developing software is a tedious process, especially when repetitive tasks are

performed manually. This thesis discusses a better alternative to this approach,

which is to automate these processes with a CI/CD pipeline. This thesis aims to

enhance the application development process by integrating Continuous

Integration (CI) and Continuous Deployment/Delivery (CD) methods with the

application development phase. Additionally, the thesis attempts to determine

whether, manual integration or auto integration is better and what kind of projects

that can benefit from CI/CD.

For automation purposes, a CI/CD pipeline was implemented with GitLab which

runs on a demo web-application that was created for this project. During

implementation, technologies such as GitLab, React, NodeJS, Cypress, Jest,

ESLint, Fly.io and Docker were used.

The outcome of this thesis is a successfully implemented CI/CD pipeline that auto

builds, tests, and deploys the demo application, therefore, improving

development process and increasing quality of the product.

These results are also going to be used by the Health Tech Lab TUAS, as

reference case for implementing CI/CD in their work environment.

Keywords:

Continuous Integration, Continuous Development, Continuous Deployment,

Docker, GitLab, React, NodeJS, Fly.io, Cypress, Jest, ESLint

CONTENTS

List of abbreviations 6

1 Introduction 8

1.1 Implementation structure 9

2 Concept and Background of CI/CD 11

2.1 What is CI/CD? 11

2.1.1 CI 11

2.1.2 CD 14

2.1.3 CI/CD pipeline 15

2.2 Advantages of CI/CD 17

2.3 Challenges of implementing CI/CD pipeline 18

2.4 CI/CD tools 20

2.5 Agile method and CI/CD 22

2.6 CI/CD and DevOps 22

2.7 Trends and growth of CI/CD 24

3 Implementing a CI/CD pipeline and developing Our Travel Gallery (demo

web-application) 26

3.1 Workflow design of development and implementation 26

3.2 The demo application development steps 26

3.2.1 Defining Our Travel Gallery application 26

3.2.2 Development stages of Our Travel Gallery 27

3.2.3 Testing Our Travel Gallery 32

3.3 Implementing CI/CD pipeline 39

3.3.1 Creating Docker file and setting up server 39

3.3.2 Setting up version control with GitLab 41

3.3.3 CI/CD pipeline 41

4 Results, analysis and discussion 48

4.1 GitLab CI/CD pipeline run result 48

4.2 Challenges faced during implementation 50

4.3 Answers to research questions 51

5 Conclusion 52

References 53

Figures

Figure 1. CI WorkFlow. 12

Figure 2. CD WorkFlow. 14

Figure 3. CI/CD Pipeline Structure. 16

Figure 4. Most significant security challenge CI/CD [16]. 19

Figure 5. DevOps cycle [18]. 23

Figure 6. Trend of CI/CD in application development industry [31]. 25

Figure 7. Growth of DevOps market [32]. 25

Figure 8. Front-end Folder Structure for the demo application. 28

Figure 9. Back-end folder structure of the demo application. 30

Figure 10. Adding static path to back-end. 32

Figure 11. Eslint file data. 33

Figure 12. Test run command for demo application. 34

Figure 13. Test Results from front-end of demo application. 35

Figure 14. Mongoose conditional Connection. 36

Figure 15. Test result from back-end. 37

Figure 16. Cypress file structure. 38

Figure 17. Cypress.config.js file. 38

Figure 18. Cypress test run result. 39

Figure 19. Docker File commands. 40

Figure 20. Build command front-end. 40

Figure 21. Final File Structure. 41

Figure 22. config.toml file. 42

Figure 23. Active GitLab runner. 43

Figure 24. CI/CD pipeline Jobs and connections. 44

Figure 25. Back-end installation job pipeline. 44

Figure 26. Front-end installation job pipeline. 45

Figure 27. Linting for for front-end. 45

Figure 28. Linting job for back-end. 46

Figure 29. Demo application front-end Jest test job. 46

Figure 30. Demo application front-end Jest test job. 46

Figure 31. E2E testing job of implemented CI/CD pipeline. 47

Figure 32. Deployment job of implemented CI/CD pipeline. 47

Figure 33. CI/CD pipeline job structure and dependencies. 48

Figure 34. Time taken by CI/CD pipeline to run. 49

Figure 35. Deployed Our Travel Gallery. 49

Tables

Table 1. Difference between DevOps and CI/CD. 24

List of abbreviations

Agile A project development method

API Application Programming Interface

AWS Amazon Web Services

CD Continuous Delivery/ Continuous Deployment

CI Continuous Integration

CLI Command Line Interface

DAST Dynamic Application Security Testing

DevOps Method of Development and Operations

DOM Document Object Model

E2E End to End

GUI Graphical User Interface

JS JavaScript

MERN MongoDB, Express, React, NodeJS

MTTR Mean Time to Resolution

MVC Model View Controller

NPM Node Package Manager

NPX Node Package Execute

OS Operating System

RASP Runtime applications Self Protection

RAST Runtime Application Security Testing

TDD Test Driven Development

UI User Interface

URL Uniform Resource Locator

UX User Experience

VCS Version Control System

YAML Yet Another Markup Language

 8

Turku University of Applied Sciences Thesis | Vikas singh

1 Introduction

The definition of the modern world would be imperfect without the mention of

software development. If we break down today’s era based on its defining forces,

software development would be included amongst its driving forces, becoming a

critical part of our world. Therefore, creating a never-ending demand for new

ideas and innovation, backed up by a massive software industry focused on

developing and maintaining these software’s [1].

Due to this rising demand for IT products, new methods are required to

revolutionize how software’s are developed. Although we have moved far away

from the traditional coding and developing styles, we are still far from the target

goal. Because of this reason, a massive demand for IT professionals to automate

the generic development of software codebases is seen in the job market all

around the world. According to Venture beat survey, 46% of software developers

see automation as a top priority [2].

In order to meet this rapidly growing demand, software companies have evolved

different methodologies, such as Agile, Continuous Integration (CI), Continuous

Delivery/Deployment (CD), Test Driven Development (TDD), DevOps, and more.

Depending on the project size, different combinations of these methods make

possible for the rapid rate development and delivery of projects. Furthermore,

these tools and practices are becoming prominent as they considerably refine the

scalability and automation of the software [3]. A survey shows that 65% of

organizations use CI/CD to some extent [4], signifying the importance of CI/CD.

Continuous Integration (CI), Continuous Delivery, and Continuous Deployment

(CD) are three frequently used methods for developing, automating, delivering,

and deploying an application. CI automates testing and merging different

developers’ code, thus, becoming an alternative to manual and tedious

processes. On the other hand, the role of CD is to take care of containerizing the

application into a usable product [5]. With the extensive use of CI/CD in the

software industry, keeping track of proper usage and implementation practices of

these methods becomes essential.

 9

Turku University of Applied Sciences Thesis | Vikas singh

The paper Implementation of CI/CD on automatic performance testing [6] shows

the implementation of CI/CD for performance testing where the authors aim to

improve the performance testing experience by automating the process using a

CI/CD pipeline. Another study on CI/CD for Agile Software Projects [7] shows an

implementation of CI/CD pipeline for projects using agile methodologies where

the authors try to increase efficiency of agile methods with the use of a CI/CD

pipeline. As a result, both these studies proves that a CI/CD pipeline, increases

the quality of software development process.

This thesis focuses on integrating a CI/CD pipeline with software development in

order to improve the application development and delivery process. To illustrate,

a CI/CD pipeline with GitLab is implemented followed by the development of a

React based demo web-application. This CI/CD pipeline auto builds, tests and

deploys the demo application to a server.

The result of this implementation is hoped to be a working example case of a

CI/CD pipeline with GitLab, with detailed overview of the pipeline’s workflow.

Additionally, the expected outcomes are hoped to be used to deduce answers to

the research questions: whether manual integration or auto integration is better

and which projects can benefit from CI/CD.

Lasty, this thesis contains step by step descriptive instructions of the

implementation process, to be used by other developers as a reference example

case of CI/CD with GitLab.

1.1 Implementation structure

This thesis comprises five chapters. Chapter one gives an introductory overview

of the thesis idea and its importance as well as a structural outline of the

implementation achieved, aiming to improve the reader’s understanding.

Chapter two is focused on setting up the baseline of CI/CD, briefly defining the

concept for the readers. This is followed by a discussion on the advantages and

disadvantages of using CI/CD and the industrial challenges faced during

 10

Turku University of Applied Sciences Thesis | Vikas singh

implementation process. Lastly, focusing on workflow, and the significance of

methods/tools like Agile, Cloud platform, and DevOps with CI/CD development.

Chapter three shows the implementation steps of the CI/CD pipeline and

development steps of the demo web-application. It starts with defining a rundown

of the workflow while mentioning modern techniques. Following it, there is an

execution of the example case, with details including all the requirements,

management, and development processes. In conclusion, the steps of deploying

the test case with the GitLab are described.

Chapter four focuses on documenting the results, answering research question,

and discussing challenges faced during the implementation and development.

Chapter five concludes this thesis.

 11

Turku University of Applied Sciences Thesis | Vikas singh

2 Concept and Background of CI/CD

2.1 What is CI/CD?

CI/CD is a software development process that combines continuous integration

and delivery. In other words, it’s an automated way to deploy code changes as

they are made. In the context of DevOps, CI/CD refers to a set of practices, that

help developers quickly build and test their applications to reduce risk and

increase quality [8]. It also enables them to make quick changes without

disrupting production environments.

The idea behind CI/CD is simple: Developers write code in small batches (often

called “pipelines”), then run tests against each batch before merging the results

into a master branch for deployment. The main goal here is to eliminate human

errors by automating repetitive tasks, such as testing new builds on staging or

QA environments before releasing them into production [8]. As a result,

developers can spend more time writing code instead of managing infrastructure

issues like deploying new versions of apps or fixing bugs caused by outdated

configurations or broken dependencies between different services. This helps to

ensure high-quality releases at a large scale while saving time and money on

manual processes like deployments every night or every week due to outages

caused by human error and malicious attacks.

2.1.1 CI

CI means continuous testing and integrating of work at regular intervals against

pre-defined requirements such as: code quality, security vulnerabilities,

performance, availability, etc. It's been around since the early days of computing

and has undergone many evolutions over the years. The term CI first appeared

in the book ‘Object Oriented Design with Applications written by Grady Booch in

1991 [9]. From then, it became an important part of the software development

process, making integration of code easy and feasible.

 12

Turku University of Applied Sciences Thesis | Vikas singh

Overall, it is a set of development practices that involves automating the building

and testing of source code, every time changes are committed to version control

systems like Git or Subversion [5]. It provides an additional level of assurance

that all tests have passed before deployment. This means developers can be

confident that their code works as expected when they push it live for others to

use.

CI cycle can be broken down into 4 phases planning, code, build, and test [10].

Figure 1 shows the diagram of a CI life cycle.

Figure 1. CI WorkFlow.

 13

Turku University of Applied Sciences Thesis | Vikas singh

Although all 4 phases together make up a CI cycle, the last 2 are the most

important ones as they are the bases of the CI pipeline and focus on automation

of the execution process.

These phases can be defined as follows: -

 Plan

The planning phase is the first step of a project. It includes all the necessary

steps to define and prepare for the actual implementation of an idea or a

product. It also includes the use of agile and scrum practices, defining the

frequency of product micro-build releases [10].

 Code

This phase is more focused on core coding/developing tasks. It includes

making major decision like deciding languages, frameworks to be used, etc

[10].

 Build

The build phase consists of actions like code compiling, defining workflow,

and building local code versions, making code ready for the testing phase

[10].

 Test

In the testing phase, integration of different developer’s work is done, after

running the local builds through an automated testing pipeline. Which is

accompanied by feedback and reviews on the work done [10].

These steps are defined differently from project to project, but the overall

structure remains the same.

 14

Turku University of Applied Sciences Thesis | Vikas singh

2.1.2 CD

Continuous Deployment or Continuous Delivery is a software delivery model that

relies on automated, reliable processes and tools. It's all about delivering value

to customers faster by continuously improving the quality of software through

automation and process improvements [11]. It means that developers can release

changes without waiting for code reviews, which makes it easier to get feedback

from customers often and early. In turn, this helps to deliver higher-quality

software more quickly. Since each change is tested thoroughly using an

automated testing pipeline before being released, there are fewer bugs when the

change gets deployed into production—less risk of introducing problems during

deployment or downtime [6]. Because these deployments happen frequently,

they become a vital part of an ongoing development cycle.

The life cycle of CD processes can be divided into four main phases- test, release,

deploy, and operate [12].

Figure 2 shows the diagram of the CD cycle, with phase description.

Figure 2. CD WorkFlow.

 15

Turku University of Applied Sciences Thesis | Vikas singh

All the four phases defined are connected and executed in the same order. First,

the CI methods are executed, resulting in a deployable product build version

which is followed by the execution of CD methods.

The four phases of CD can be defined as follows: -

1. Test

The test phase of CI/CD is comparable, with execution starting by

performing different tests, including a unit test to an integrated test.

Overall, this process aims to refine the code quality and create a runnable

product version [12].

2. Release

This phase focuses on documenting the committed changes and handling

the release version of the product [12].

3. Deploy

The released product from the last phase is ready to be deployed on a

hosting server, presenting the final product, and ready to be used by the

end-user [12].

4. Operate

After the code is live, constant monitoring and productivity outcomes

records are generated, helping further with update decisions [12].

2.1.3 CI/CD pipeline

In software engineering, a pipeline includes a sequence of processing factors

(such as processes, threads, coroutines, functions), organized so that the

output of every detail is the input of the next [13].

 Pipeline in CI/CD

 16

Turku University of Applied Sciences Thesis | Vikas singh

The CI/CD pipeline is a set of processes used to manage and deploy software.

If carried out properly, it decreases guided mistakes and beautifies the

comment loops during the SDLC, permitting groups to supply smaller chunks

of releases in a shorter time [14].

For the implementation of the pipeline, a YML-based script needs to be

developed and deployed, containing all the required details about the run time

environment and actions.

Figure 3 shows the structure of the CI/CD pipeline.

Figure 3. CI/CD Pipeline Structure.

The CI/CD pipeline is divided into four main phases Commit, Build, Test, and

Deploy [13].

First, the developers decided on a version control environment like GitHub,

GitLab, etc. organizing and structuring the base of the code. Further, the

development is done either individually or with collaboration, depending on

project to project [13]. Initiation of the pipeline can be customized based on many

actions like every pull request (a command used to download the code from

Version Control system to local machine), every push request (a command used

to add local code changes to remote Version Control System), and so on.

 17

Turku University of Applied Sciences Thesis | Vikas singh

Once the pipeline starts, the virtual environment command execution script (YML

Script) is added to the VCS, which auto executes the build for the project [10].

After the build is complete, it undergoes predefined tests that are added to the

code by the developers.

In the next step, the product goes for deployment after every check pass.

2.2 Advantages of CI/CD

Now that CI/CD pipeline is defined, it’s the right time to mention the advantages

of using CI/CD.

 Quality Code

One technical gain of non-stop integration is that it makes possible to

combine small portions of code at one time. These code adjustments are

easier and simpler to deal with than big chunks of code - leaving less repair

work for later [14].

 Reduced risk

Rapid releases open a possibility for product managers and advertising

specialists to interact with the improvement process. It opens opportunities

to update improvements with customers often and early – with this

approach method validation is possible earlier than investing. Meaning the

development process can be put on hold or completely scraped based on

early production results. [15]

 Effective Mean Time To Resolution (MTTR)

MTTR measures the maintainability of repairable skills and indicates the

typical time to restore broken functionality. Or simply a method to calculate

the average time to resolve the issues [14].

Because code commits and code improvements are minimal in CI/CD

compared to other methods, it becomes easy to detect faults and isolate

 18

Turku University of Applied Sciences Thesis | Vikas singh

them. Which further can be fixed fast, leading to a stable build, eventually

reducing the developing time.

 Simplify Maintenance and Updates

With the option of zero downtime updates, the process of software

upgrading gets reduced by a huge amount, benefitting both user and

customer in terms of time and money [15].

 Reduce Costs

CI/CD is all about reducing production time and resources with automation

of the generic processes. This process overall leads to fewer mistakes,

on-time product delivery, and reduces the load on developers, which

overall reduces the production costs [15].

2.3 Challenges of implementing CI/CD pipeline

The use of CI/CD in the software development industry has been increasing

steadily. Adopting CI/CD methods in a work environment can become

challenging, as setting up a CI/CD pipeline is time consuming and requires great

amount of work [16]. So, it becomes important to understand the common

challenges faced in implementing a CI/CD pipeline.

 Environment Limitations

Testing any kind of software is expensive, and software development

teams, in particular testing team, usually find themselves restricted by the

number of available resources (tools and technologies) due to a limited

budget, eventually hindering the testing process. In such scenarios,

developers are left with only one option that is to share the CI/CD pipeline

run environment amongst several projects [17]. Shared run environment

leads to a poorly deployed CI/CD pipeline, as scenarios like parallel testing

(multiple tests are performed parallelly and not one by one) failures could

be seen more often.

 19

Turku University of Applied Sciences Thesis | Vikas singh

 Security Tool Integration

Securing a software is necessary for user privacy and preventing data

leaks. Majority of the tools having a Command Line Interface (CLI) are

mergeable into a CI/CD pipeline [18]. But it becomes challenging to

correctly position security tools in a CI/CD pipeline, as a single

misplacement might cause a breakdown in the pipeline and make error

handling difficult [16].

The results in Figure 4, of the survey conducted by 451 Research on the

topic of ‘What are the most significant application security testing

challenges inherent in CI/CD workflow?’ shows that 61% of the

developer’s main concern was lack of automated and integrated security

testing tools in a CI/CD workflow.

Figure 4. Most significant security challenge CI/CD [16].

 Inefficient pipeline deployment

One of the large issues viewed in the software industry is the lack of

training in CI/CD pipeline building [17]. Although, a properly developed

 20

Turku University of Applied Sciences Thesis | Vikas singh

pipeline makes life easy for a developer, still building it is a complex and

time-consuming process.

 Implementation of ongoing/old projects

Changing the flow of an ongoing project is met by a lot of challenges,

especially if the base methodologies of the product need to be redone [18].

Any solution to resolve this requires a lot of resources and manpower,

specifically with older projects containing thousands of code lines. Thus,

becoming a challenge for developers.

2.4 CI/CD tools

The tools used in CI/CD processes are important to ensure the completion of

work on time. These tools automate the build and deployment processes for

different projects by integrating them with a CI/CD pipeline. It also allows

developers to create automated tests before they deploy their code into the

production environment. After successful execution of a CI/CD pipeline, it will

generate reports about the status of the project, making tracking application

progress easier. This way monitoring the entire project’s performance at any

given point in time is accessible without any involvement from IT team members

or managers. Similarly, there are many other kinds of tasks that require specific

development tools, and it is important to use the proper tool for each task.

There are many Versions Control System (VCS) that comes with integrated

CI/CD pipeline functionality. Some of the famous one’s are Jenkins, GitLab,

GitHub, Bitbucket and Circle CI. For this thesis project, GitLab is used, keeping

in mind its compatibility with web-applications and its use by the Health Tech Lab

TUAS.

 GitLab

Another famous and open-source VCS is GitLab, developed in 2011[19].It

is used to build applications in any language and supports Docker

 21

Turku University of Applied Sciences Thesis | Vikas singh

containers, including Ruby on Rails (RoR) apps. GitLab CI/CD also has a

plugin architecture that extends its functionality with custom plugins.

Around 7.7% of software development companies worldwide use GitLab.

For instance, Cisco, Intel, The Walt Disney Studio, etc. use GitLab [20].

Tools used for testing in a CI/CD pipeline are: -

 For testing Application Programming Interface (API)

API handles the communication between the application and the server.

Over the years, we have seen a dense network development of this

communication process. So, executing proper testing is becoming

significantly important. Tools like SoapUI, 3scale (Red Hat’s), swagger,

etc. are a few tools that can easily be embedded with a CI/CD pipeline

[21].

 For testing User Interface (UI) / User Experience (UX)

UI/UX testing is related to user testing, one of the dark areas where

chances of code breaking are high. By defining a strong Graphical User

Interface (GUI) test, code breaking issues on the side of the user are

isolated. Some of the step-by-step testing tools are Selenium, Appium, and

Cypress [22].

 For Application Security

In recent years, cyber security attacks have launched concerns in

developer society, pushing focus towards application security [23].

Security tools can be embedded into the CI/CD pipeline and run-

instructions can be added to the auto-run script. Some of the well-known

security tools are Dynamic Application Security Testing (DAST) tool,

Runtime Application Security Testing (RAST) tool, Runtime Applications

Self Protection (RASP) tool, and Amazon Web Services (AWS) security

tool [24].

 22

Turku University of Applied Sciences Thesis | Vikas singh

2.5 Agile method and CI/CD

Agile is a project management methodology, which promotes breaking down of

projects in small phases and development on at a time. In short, a collection of

techniques, values, and principles that help teams deliver working software

frequently [25]. They have three key characteristics: customer-driven, iterative

(emphasizing the importance of small batches of work), and flexible (encouraging

collaboration over strict adherence to plans). These methods are considered

amongst the best ways of developing software and are widely used in the

software industries.

Agile and CI/CD methods often can be confused as one, but they are two different

processes with cross compatibility. When used together, they are called Agile

CI/CD [26], combined enabling organizations to deliver the software’s in an agile

manner.

 Difference between agile and CI/CD

CI/CD methods are more focused on automation of the application

development lifecycle, making possible rapid development and

deployment. Whereas agile is more focused on developing processes to

deliver products in small chunks on regular basis [27].

 Importance of agile CI/CD

These two methods complement each other in many ways. Specially CI,

with its rapid development, integration, and testing acts as a base line for

Agile method. Another focus of Agile is small incremental delivery, which

is also a highlight of a CI/CD pipeline [26].

2.6 CI/CD and DevOps

DevOps is a set of practices that helps to develop and deploy software faster. It

is the merger of development and operations, where developers are given more

autonomy over their work while the operational staff takes on a greater share of

 23

Turku University of Applied Sciences Thesis | Vikas singh

responsibility for the business [28]. DevOps aims to improve software delivery

speed by reducing the time from idea to launch. This means early feedback

processing, which allows developers to make changes before they become too

costly or cumbersome. In addition, DevOps allows the automation of processes

so that they run smoothly without human intervention. All of this helps with

continuous improvement at different levels within organizations, from planning to

deployment and maintenance [29].

To summarize, DevOps is a superset of CI/CD [28]. Meaning, DevOps work-cycle

is similar to a CI/CD work-cycle. Figure 5 shows a DevOps roadmap cycle.

Figure 5. DevOps cycle [18].

Due to similar looking work-cycles, it becomes important to differentiate between

DevOps and CI/CD. Table 1 shows the differences between DevOps and CI/CD.

 24

Turku University of Applied Sciences Thesis | Vikas singh

Table 1. Differences between DevOps and CI/CD [27].

DevOps CI/CD

1. Set of processes, ideas, and
technologies, that combine the
process of development and
operations

1. Set of implementation practices, to
enable rapid integration,
development, and deployment

2. Focuses on reducing the
communication/collaboration gap
between developers and operators

2. Focuses on product development

3. For implementation whole office
environment needs to be changed
according to DevOps practices

3. Tools like GitLab, CircleCI, etc are
used for the implementation without
changing the environment

4. The main stages are: - CI/CD,
Continuous Testing, Continuous
development, Continuous monitoring,
and Continuous feedback

4. The stages are: - commit, build,
test, and deploy

In terms of software development, the use of CI/CD goes hand in hand with

DevOps. When used together, they improve the development workflow and

reduce communication gaps between developers, company, and customers.

2.7 Trends and growth of CI/CD

CI/CD pipeline was released in 2011, since then it has revolutionized the software

developing industry, with its new and effective ways of developing software’s [30].

As technology is constantly improving and the focus on automation is rising, many

software companies have already moved towards implementing CI/CD practice

in their work environment, at least to some extent.

A survey by the developer nation shows CI/CD adoption treads by mobile, web

and desktop developers, from the year 2016-2019. Indicating a stable to constant

growth quarterly. Figure 6 shows the results of the survey.

 25

Turku University of Applied Sciences Thesis | Vikas singh

Figure 6. Trend of CI/CD in application development industry [31].

Not only this, but the DevOps market, in general, has increased in the last few

years. According to Global Market Insight, ‘DevOps Market size exceeded USD

7 billion in 2021 and is expected to register over 20% gains from 2022 to 2028’

[32]

Figure 7. Growth of DevOps market [32].

All these trends, points out the importance of CI/CD in modern technology-

oriented world.

 26

Turku University of Applied Sciences Thesis | Vikas singh

3 Implementing a CI/CD pipeline and developing Our

Travel Gallery (demo web-application)

3.1 Workflow design of development and implementation

Now that the definition of CI/CD and its usage in the software development
industry is defined, the next stage is to create a brief execution plan followed by
a step-by-step execution.

The workflow of development and implementation comprises of four stages.

1. Developing Our Travel Gallery web-application (demo application) with
React, NodeJS, ExpressJS and MongoDB (MERN stack). The objective
of this stage is to provide a demo, planned and designed for CI/CD pipeline
implementation. Completion of this stage will lead to a fully functional Our
Travel Gallery application.

2. Testing Our Travel Gallery application, which is achieved by defining unit,

integration, and end-to-end (E2E). Only the most common test types are
defined in order to maintain the simplicity of implementation.

3. Setting up GitLab VCS for Our Trave Gallery application.

4. Setting up a CI/CD pipeline that includes creating an executable Yet

Another Markup Language (YAML) script, containing detailed instructions
for integration and deployment processes.

3.2 The demo application development steps

This section contains a complete process breakdown of the workflow from

development to deployment of Our Travel Gallery web-application.

3.2.1 Defining Our Travel Gallery application

This CI/CD pipeline implementation includes the development of a web-

application with MERN stack. Our Travel Gallery is the name of the application

developed during the process. It’s a web-application that acts as a general

platform to create a collection of travel images for an individual or a group. Aiming

 27

Turku University of Applied Sciences Thesis | Vikas singh

to solve problems of image management faced by groups of

friends/family/colleagues which is storing part of memory as images. The

application functionality is kept at a minimum, focusing more on build quality and

less on quantity. This demo application covers the most common scenarios many

software developers face while implementing a CI/CD pipeline.

The ways this application brings people together which are described below.

 Users can create an account and log in as well as log out to Our Travel

Gallery.

 Options of forming groups/private space.

 Users can upload a collage of images displayed in a general view area

only accessible/visible to people with restricted access.

 Images can be downloaded, edited, or deleted.

 Images are accessible 24/7.

The aim of development at this point is not to develop the entire application but

to start with the first version and use it as a test-case prototype to set up CI/CD

pipeline infrastructure. Furthermore, promoting DevOps practices from start to

finish in a work environment.

3.2.2 Development stages of Our Travel Gallery

As mentioned in the previous section, the focus of development at this point is to

get started with the first version of the demo application. The functionalities

focused on are: -

 Registration/Login/Logout

 Availability of the gallery to both registered and non-registered users

 Logged-in users can add photo collages

 28

Turku University of Applied Sciences Thesis | Vikas singh

There are three parts to this application which described below.

1. Front-end

The front-end of the application is developed using React, which is a

JavaScript library. React provides integration compatibility with several tools,

bringing the development process to the next level of flexibility and ease.

React supports browser-based rendering, reducing time for heavy data

loading, which improving application response time [34]. Our demo

application is initialized using the ‘create-react-app’ command, which auto-

creates project structure and downloads the basic necessary packages to

start React applications.

Figure 8. Front-end Folder Structure for the demo application.

 29

Turku University of Applied Sciences Thesis | Vikas singh

The file structure of the front-end application is shown in the figure 8, with the

main component breakdown as follows: -

 The build directory is a compilation of the front-end. It is a sum-up of

the client side for the production build.

 Coverage and Cypress directories are for testing, discussed in the

testing section 3.2.5.

 Node_modules contain all the downloaded libraries required by the

project.

 The public folder consists of static HTML, CSS, and JavaScript files

that make up the outermost structure of the application.

 The src directory contains all the user-developed view files, styling

sheets, scripts, and test files. App.test.js is a subfile of this directory

where all the unit tests for the front-end are written.

 .env file handles environment variables

 .eslintrc.js and .eslintignore are for lint testing, which will be discussed

later

 .gitignore contains instructions for the version control

 cypress.config.js contains instructions for Cypress

 package-lock.json locks the installed library versions, producing the

same result every time the app is initialized

 package.json is the heart of the project, containing different kinds of

metadata like: - installed dependencies, script run commands, entry

points, and many more.

 Readme.md have instructions about setting up the application.

Next comes the working structure of the application with respect to the

data travel structure: -

 User navigation consists of 3 pages: Gallery, Add, and login/logout.

 The gallery is a public view area with a collage display for the users,

accessible by both registered and non-registered.

Add page has the option of adding a photo collage, which is only

available for logged-in users.

 30

Turku University of Applied Sciences Thesis | Vikas singh

2. Back-end

The server-side of the Our Travel Gallery application is built using Node.js, an

open-source JavaScript-based runtime environment built on Chrome’s V8 JS

engine, and Express.js, an open-source web application framework that

allows developers to build robust web applications quickly and easily [34].

Together, making it possible to develop applications entirely based on

JavaScript.

Node 16.13.0 and Node Package Manager (NPM) 8.12.1 are the versions

used for developing this project. To initiate, ‘npm init’ command is used, which

auto-creates the package.json and package-lock.json and sets up the entry

points.

Figure 9. Back-end folder structure of the demo application.

 31

Turku University of Applied Sciences Thesis | Vikas singh

The back-end file structure shown in the figure follows an Model View

Controller (MVC) architecture. The main structure breakdown is as follows: -

 The bin directory contains the www file, an alternative to index.js, which

acts as a setup manual for the node run environment.

 The build folder is a production version of the front-end.

 The controller directory contains all the functions that control the API

endpoints with logic.

 Coverage, test, and image directories are for testing (discussed later).

 The model directory contains database models, helpers, and handlers.

 The node_module directory is the same as in the front-end.

 Public directory contains static files.

 The uploads folder contains all the images uploaded by the users to the

gallery.

 The Utils folder consists of middleware and logger functions which acts as

helpers for controller procedures.

 env file contains environment variables.

 .eslintrc.js and .eslintignore are for the lint test.

 App.js is the entry point into the application, linking all the files into a

runnable program.

Package.json and Package-lock.json contain all the metadata for the node

server.

On the back-end, there are three main routes (they are navigation options

available for users, usually referring to amount of page available in an

application), each one for handling user registration, user login, and image

get/post request. Additionally, there are middleware functions (middleware

function are helper function, with access to API’s request and response) for

user login checks and request/error loggers.

The Multer tool is used for image-handling purposes. It creates static disk

storage for storing user uploaded images. Only the location of these images

is saved in the database. The uploads folder is provided as a static path

 32

Turku University of Applied Sciences Thesis | Vikas singh

directory to the express server, which enables accessing the images using

Unified Resource Locator (URL) of type- 'http://localhost:<port>/<image

address in uploads folder>'.

Figure 10. shows the commands to connect the uploads directory as a static

path, appended to the app.js file, which auto allocates static files from the

build folder to URL endpoints.

Figure 10. Adding static path to back-end.

3. Database

MongoDB is used for storing data of the Our Travel Gallery application. It's an

open-source database that provides free data storage for low-level usage and

avails premium membership options for high-level usage. Additionally, it’s a

NoSQL database (NoSQL database is not build around rows and columns)

used to store and retrieve data in the same way as relational databases (built

around rows and columns) which makes data manipulation, storing and

transferring easy [35].

3.2.3 Testing Our Travel Gallery

Testing is the process of checking, verifying, and validating applications to

fix/remove possible breakdowns and errors. There are several ways to test an

application, from structural tests to end-user experience tests, but they can be

filtered out based on the application's functionality and requirements. List of

tests performed on this website are: -

 33

Turku University of Applied Sciences Thesis | Vikas singh

Lint test

Eslint is a tool for enforcing consistent JavaScript styles and fixing issues like

problematic code patterns or code inconsistency [36]. Its setup consists of a ‘.

eslintrc.js’ file with a defined set of rules modifiable according to personal needs.

Additionally, it’s compatible with the CI pipeline.

Eslint is configured on both the front-end and back-end of Our Travel Gallery

application, installed as a developer dependency using the command ‘npm install

–save-dev eslint’. Developer dependency is an option provided by NodeJS in the

package.json file. Tools required only for the development version, are saved as

devDependencies to the package.json file. Once the application goes for

production, these tools are ignored and therefore are not downloaded to the

servers, thereby saving space, and rendering time.

Figure 11. Eslint file data.

 34

Turku University of Applied Sciences Thesis | Vikas singh

To initiate eslint for a project, the command ‘npx eslint –init’ is used. Once

initiated, it launches a questionnaire regarding the required configuration and

creates a ‘.eslintrc.js’ file based on input answers.

The next step is to add a script run command for linting. The command from

Prgoram 1, is added to the package.json file under 'scripts'.

Program 1. ESLint run command

"eslint": "eslint './**/*.{js,jsx}'"

Now, the ‘npm run eslint’ command starts the linting test on the project. File/folder

names mentioned in the ‘.eslintignore.js’ file don't undergo a linting test.

Unit test and Integration test

Jest is a testing framework for JavaScript that helps write code that is easy to

read, reason about, and maintain. It directly interacts with the Document Object

Model (DOM) tree to check for code changes and compares the results using

DOM snapshots. Chai commands are integrated with Jest, giving access to

Expect and Should methods, making change comparison easy [37].

Jest comes integrated with React library, meaning a separate installation is

required only for the back-end folder.

 Jest with front-end -

‘@testing-library/jest-dom’,‘@testing-library/user-event’,‘@testing-

library/jest-dom’ and ‘babel-jest’ are some of the NPM packages used

with Jest for testing our application.

Figure 12 command is added to the package.json file under ‘scripts’.

Figure 12. Test run command for demo application.

 35

Turku University of Applied Sciences Thesis | Vikas singh

Executing the command ‘npm run test’ in the terminal starts the testing.

It runs on all the files with the extension ‘.test.js’, and checks for defined

tests in them. ‘—coverage’ creates the coverage folder, which has data

on test coverage. Furthermore, test commands ignore the

node_module directory to reduce execution time. So, any package

required by the test cases is added using “—transformIgnorePatterns

‘nodemodules/(?!(<packagename)/)’”.

Figure 13 shows the testing result from Our Travel Gallery front-end.

Figure 13. Test Results from front-end of demo application.

 Jest with back-end

Jest does not come integrated with NodeJS. It is installed separately

as a developer dependency with the command ‘npm install –save-dev

 36

Turku University of Applied Sciences Thesis | Vikas singh

jest’. Furthermore, to test HTTP requests, the supertest package is

installed.

Testing with the back-end is similar to client-side testing, with the

difference being in the setup, where back-end testing is more focused

on API testing. Additionally, a separate database is used when testing

the back-end. The image below shows two mongoose database

connections, selected depending on the env variable from the run

commands.

Figure 14. Mongoose conditional Connection.

 37

Turku University of Applied Sciences Thesis | Vikas singh

There are six tests, that are performed in back-end. Figure 15 shows

results of the test.

Figure 15. Test result from back-end.

End to End test (E2E)

Cypress is a JavaScript-based end-user testing tool. It provides a user-friendly

interface with options for choosing a runtime environment [38]. Set up for cypress

is added to the front-end of the application.

Cypress package is installed with the command ‘npm install –save-dev cypress’.

Executing the command ‘npx cypress open’ starts the interface and sets up the

runtime structure. It is important to mention that both the front-end and back-end

should be up and running before executing cypress tests. Files auto-created from

this command are: -

 38

Turku University of Applied Sciences Thesis | Vikas singh

 Cypress directory- main files inside this directory are spec.cy.js and
commands.js, containing test cases and helper functions.

Figure 16. Cypress file structure.

 Cypress.config.js - contains all the setup instructions like baseUrl and

projectId to track the run outcome (Figure 17).

Figure 17. Cypress.config.js file.

 39

Turku University of Applied Sciences Thesis | Vikas singh

For E2E test, cypress auto logs in the user, add images, and check if they are

displayed in the gallery. Figure 18 shows E2E test results.

Figure 18. Cypress test run result.

3.3 Implementing CI/CD pipeline

3.3.1 Creating Docker file and setting up server

Fly.io is an open-source hosting platform, which is used for deploying the Our

Travel Gallery application. At the start, we need to install the flyctl command-line

utility. For windows, the following command installs the flycts files, which enables

the use of flyctl commands in the terminal.

iwr https://fly.io/install.ps1 -useb | iex

Fly.io only accepts applications wrapped in docker images. So, the addition of a

docker file to the root of the project is required. Figure 19 shows the content of

the docker file.

 40

Turku University of Applied Sciences Thesis | Vikas singh

Figure 19. Docker File commands.

Before deploying the application, a command (Figure 20) is used to build a

version of the front-end which is then added to the back-end.

Figure 20. Build command front-end.

Running the command ‘flyctl login auth’ in the root directory terminal logs the user

in. Lastly, the command ‘flyctl launch’ creates a project on the fly server and helps

with setting up the fly.toml file locally, based on the docker files created before.

Every time the application is deployed, fly.io checks for fly.toml file in the root of

the directory, later executing steps and commands from the docker file. Now the

 41

Turku University of Applied Sciences Thesis | Vikas singh

project is ready to be deployed with the pipeline. Figure 21 shows the final file

structure.

Figure 21. Final File Structure.

3.3.2 Setting up version control with GitLab

As mentioned before, GitLab is the VCS used for storing code of the Our Travel

Gallery and implementing CI/CD pipeline. Steps that were followed to get started

with GitLab are: -

 Installing git on local machine

 Creating GitLab account

 Creating project repository in GitLab

 Learning Git Command Line Interface (CLI)

 Adding demo applications environment variable and CI/CD pipeline

environment variables to GitLab’s environment variables storage.

 Pushing the code to remote GitLab repository

3.3.3 CI/CD pipeline

In a GitLab pipeline script, tasks defined are separated into jobs and stages.

While jobs consist of all the executable components of a pipeline, stages

generally refer to divisions of a pipeline workflow. These scripts are executed by

runners- GitLab instances which executes CI pipeline job over various machines,

sending back results and data. The runners are of two types: shared runners and

specific runners.

 42

Turku University of Applied Sciences Thesis | Vikas singh

The application uses a specific runner type for pipeline implementation purposes.

Before starting, runners need to be installed on a local machine and registered

with GitLab. The application uses docker runner which is installed on Windows

Operating System (OS). Upon a runner installation, a GitLab-Runner folder is

created with contents: gitlab-runner.exe(execution file) and config.toml (setup

file).

Config.toml file is used to customize and control the runner’s environment.Figure

22 shows contents of a config.toml file.

Figure 22. config.toml file.

 43

Turku University of Applied Sciences Thesis | Vikas singh

The Docker container needs to run locally to access the docker runner in GitLab.

Additionally, all the runners are tagged. Tag names are allocated to jobs to point

towards the runner which needs to run the job.

GitLab displays the status of the available runners (Figure 23).

Figure 23. Active GitLab runner.

The .gitlab-ci.yml is a file for compiling GitLab CI/CD pipeline run commands.

Environment variables from inside the .yml file and GitLab storage are accessed

with ‘$<variablename>’.

Terminologies used in the .yml file are:

 stages- list of stages which runs in a queue

 variables- defines global variables, which are used in .yml file

 default- setting up a default configuration for the pipeline

 script- runnable commands

 stage- refers to one of the stages defined in stages term

 tags- direct the pipeline on which runner to use

 artifacts- a storage, used to store and move data between jobs

 path- a path to a file in the project directory

 expire_in- expiry time for artifacts

 when- run conditions for job execution

 dependencies- used to define dependencies of a job

 needs- defines requirements before running a job

 allow_failure- if true, continues running pipeline after a job failure

 44

Turku University of Applied Sciences Thesis | Vikas singh

 before_script- list of scripts that needs to be executed before a job

Figure 24 shows stages and respective jobs for Our Travel Gallery .yml.

Figure 24. CI/CD pipeline Jobs and connections.

The pipeline has three stages: -

1. Build- In this stage, project dependencies are installed, built, and stored

as artifacts. In the .yml file there are two jobs defined, one each for front-

end and back-end of the application. These jobs are marked with ‘stage:

build’, so the pipeline runs them under the first stage. After that, the term

‘tags’ allocates the specified runner which executes the command written

under the term ‘script’. These commands point towards the front-end and

the back-end folders, followed by the commands to install the

dependencies and saving them as artifacts. Figure 25 and 26 shows our

build stage jobs.

Figure 25. Back-end installation job pipeline.

 45

Turku University of Applied Sciences Thesis | Vikas singh

Figure 26. Front-end installation job pipeline.

2. Test- This stage executes the job specified for application testing. There

are five jobs: two for linting, two for unit testing and one for E2E testing.

All these jobs are tagged as ‘stage: test’.

Firstly, the linting tests are performed on front-end and back-end of the

application. The overall structure of the jobs in this stage is similar to the

jobs in the build stage, with addition of terms ‘dependencies’ and ‘needs’.

For every job execution, the GitLab runner creates a separate instance

and a new build space. To save resources and eliminate reoccurring

processes, build files from the jobs are saved as artifacts into the GitLab

memory. These files are transferred to other jobs by using parent job

names as dependencies, eventually saving time and money.

Figure 27 and 28 shows lint test jobs for the pipeline.

Figure 27. Linting for for front-end.

 46

Turku University of Applied Sciences Thesis | Vikas singh

Figure 28. Linting job for back-end.

Secondly, the unit and integrated tests with Jest are performed both on

the front-end and the back-end. Figure 29 shows unit test jobs for the

pipeline.

Figure 29. Demo application front-end Jest test job.

 And the Figure 30 shows unit-test jobs for the front-end of the app.

Figure 30. Demo application front-end Jest test job.

 47

Turku University of Applied Sciences Thesis | Vikas singh

Lastly, E2E test is performed with Cypress. For Cypress a separate

image needs to be added. Figure 31 shows the job for E2E testing

Figure 31. E2E testing job of implemented CI/CD pipeline.

3. Deploy- In this stage the application is deployed on the fly.io server. The

commands under the term ‘before_script’ installs and adds flyctl command

to the root of the docker image. At last, we set all the environment variables

and deploy the image to Fly.io. Figure 32 shows the deployment job for

the pipeline

Figure 32. Deployment job of implemented CI/CD pipeline.

 48

Turku University of Applied Sciences Thesis | Vikas singh

4 Results, analysis and discussion

4.1 GitLab CI/CD pipeline run result

After the complete development of Our Travel Gallery application, the master

code is pushed to GitLab, which activates the CI/CD pipeline. This pipeline

implements the instructions from the .yml file (created previously) on to the

master code, and during this process, creates a build application version out of

the master code, tests it and deploys it to the Fly.io server. The results of the

pipeline run are shown in Figure 33. The figure shows that the pipeline run’s

seven pre-defined jobs, two for building, four for testing and one for deploying the

application. All the passed jobs are marked with a green tick and jobs that failed

are marked with a red tick as seen in the figure below. Also, jobs that failed but

did not stop the pipeline execution are marked with an exclamation mark.

Figure 33. CI/CD pipeline job structure and dependencies.

The next step is to check the efficiency of the CI/CD pipeline. One way to test

the pipeline’s productivity is by checking the run time of the pipeline for one

complete execution. The execution time of the CI/CD pipeline for Our Travel

Gallery application was roughly 9 minutes, as shown in the Figure 34. This

means developers have to wait approximately less than 10 minutes before

receiving the results from the pipeline, which is quite fast. Hence, shorter the

run time of a pipeline, the better it becomes.

 49

Turku University of Applied Sciences Thesis | Vikas singh

Figure 34. Time taken by CI/CD pipeline to run.

After a successful pipeline run, Our Travel Gallery application is deployed on

Fly.io server. The hosted application’s URL is given in the Fly.io dashboard,

which is used to access the application. Figure 35 shows the successful

deployment of Our Travel Gallery.

Figure 35. Deployed Our Travel Gallery.

 50

Turku University of Applied Sciences Thesis | Vikas singh

4.2 Challenges faced during implementation

 Developing Our Travel Gallery web-application

Image data is known to be hefty and handling it slows down the

application’s response time. Also, an important function of Our Travel

Gallery application is to deal with image rendering, uploading, and storing.

Every time an image is uploaded to the application, it travels from front-

end to back-end to the database and back to be rendered in the UI/UX.

This caused a rendering lag of 1.6seconds in the application’s image

display area. A solution to this problem (not yet implemented in this

application) is to store the images in a separate cloud platform rather than

the application’s database, which will significantly reduce the image

rendering time and improve user experience.

 Deploying Our Travel Gallery web-application

Pre-production, the project size was 640 MB and when added to

production with docker image, it became more than 1GB. This is a problem

as the size of host Fly.io server provides free storage up to 250MB. To

solve this issue, two docker images were used during the deployment of

Our Travel Gallery application: node:16 and node:alpha (as shown in

Figure 19). Docker node:16 image comes with pre-installed packages and

tools, therefore is large in size. It was used to install the application’s

dependencies and to create a build version. Later, the build version was

copied to the node:alpha image, which has a base size of ~5MB. This way

the final production image size ended up being 246MB, which was

acceptable under Fly.io server free version.

 Heroku server policy change

Initially, the application was hosted on Heroku server which is an open-

source website hosting platform. Deploying with Heroku is easy, with just

a few commands, it auto build’s a deployable version of the application

before hosting it. Towards the completion of the project, Heroku team

 51

Turku University of Applied Sciences Thesis | Vikas singh

introduced new policy changes, including a removal of free deploying

services, which caused hindrance in the development process. For this

reason, new hosting platform Fly.io was adapted which has different

structural requirements than Heroku. Fly.io requires an application to be

containerized before hosting. This was the reason for adding docker image

to Our Travel Gallery application.

4.3 Answers to research questions

 Which is better manual Integration vs auto Integration?

From the implementation experience, it can be safely said that auto

integration is better compared to manual integration. If the size of the

application is small and only one developer is working, then adapting to

manual integration becomes less time-consuming. In all other cases, auto

integration stands out. Auto scripts run the integration process on every

push or pull command and reduces the manual work.

 What kind of projects benefit from CI/CD?

CI/CD pipeline is a useful tool, but it comes with extra work and an

additional budget. Developing a CI/CD pipeline requires knowledge of

different tools and technologies. Even if the tools are familiar, dynamic

changes in the pipeline are required to adjust to the changing project

environment. So, medium to large size projects with spare funding benefit

from a CI/CD pipeline the most. Additionally, companies having self-

hosted servers can benefit from CI/CD pipeline, as it cuts the project

hosting cost.

 52

Turku University of Applied Sciences Thesis | Vikas singh

5 Conclusion

The main goal of this thesis was to enhance the application development and

delivery process by automating the generic time-consuming development

processes such as application integration, testing, and deployment. This was

achieved by integrating the use of CI/CD methods with the development process.

The other objectives were to deliver a working example of CI/CD pipeline to the

Health Tech Lab TUAS and answer two frequently asked questions by CI/CD

developers. One question was which type of integration, namely, manual

integration or auto integration, can be considered more useful. The other question

was what types of projects which can benefit from CI/CD.

For the implementation of this thesis, technologies from Health Tech Lab TUAS

were used. These technologies required the use of GitLab for building a CI/CD

pipeline and React/NodeJS for building Our Travel Gallery web-application.

The outcome of the implementation is a simple and detailed CI/CD pipeline that

auto builds, tests, and deploys the demo application (Our Travel Gallery). At this

point, any break or job fail in the pipeline stops the execution and notifies the

developer through an email. Using this process developers can act fast and fix

the issues which leads the pipeline to failure, eventually, improving collaboration

and co-ordination between developing team, which leads to a better-quality

product.

This thesis is not an actual guide to building a CI/CD pipeline, but an example

case, with detailed step by step instructions that can be referred to for

implementing a CI/CD pipeline on GitLab.

 53

Turku University of Applied Sciences Thesis | Vikas singh

References

1. Bureau of Labor Statistics, U.S. Department of Labor, Occupational Outlook

Handbook, Software Developers, Quality Assurance Analysts, and Testers,

at https://www.bls.gov/ooh/computer-and-information-technology/software-

developers.htm (visited November 28, 2022).

2. Staff, V.B. (2021) Automation is key to growing software development, execs
say, VentureBeat. VentureBeat. Available at:
https://venturebeat.com/business/automation-is-key-to-growing-software-
development-execs-say/ (Accessed: December 11, 2022).

3. Continuous delivery market size, share: 2022 - 27: Industry forecast (2022)
Continuous Delivery Market Size, Share | 2022 - 27 | Industry Forecast.
Available at: https://www.mordorintelligence.com/industry-reports/continuous-
delivery-market (Accessed: December 12, 2022).

4. Schneckenberg, D. et al. (2021) ‘Value creation and appropriation of software

vendors: A digital innovation model for cloud computing’, Information &

Management, 58(4), p. 103463. doi: 10.1016/j.im.2021.103463.

5. Team, J.B. (no date) TeamCity CI/CD guide, JetBrains. Available at:
https://www.jetbrains.com/teamcity/ci-cd-guide/ (Accessed: November 19,
2022).

6. Pratama, M. R. and Sulistiyo Kusumo, D. "Implementation of Continuous
Integration and Continuous Delivery (CI/CD) on Automatic Performance
Testing," 2021 9th International Conference on Information and Communication
Technology (ICoICT), 2021, pp. 230-235, doi:
10.1109/ICoICT52021.2021.9527496.

7. Donca, I-C., Stan, O.P., Misaros, M., Gota D. & Miclea, L. Method for

Continuous Integration and Deployment Using a Pipeline Generator for Agile

Software Projects. Sensors. 2022; 22(12):4637.

https://doi.org/10.3390/s22124637

8. Team, R.H. (2022) What is Ci/CD?, Red Hat - We make open source
technologies for the enterprise. Available at:
https://www.redhat.com/en/topics/devops/what-is-ci-cd (Accessed: November
20, 2022).

 54

Turku University of Applied Sciences Thesis | Vikas singh

9. Karuturi, A.B.S. (2021) An introduction to continuous integration, Qentelli.
Available at: https://www.qentelli.com/thought-leadership/insights/continuous-
integration (Accessed: November 19, 2022).

10. Roper, J. (2022) CI/CD pipeline : Everything you need to know with
examples, Spacelift. Available at: https://spacelift.io/blog/ci-cd-pipeline
(Accessed: November 20, 2022).

11. Humble, J. and Farley, D. (2015) Continuous delivery: Reliable software
releases through build, test, and Deployment Automation. Upper Saddle River,
NJ u.a: Addison-Wesley.

12. Brigginshaw, D. (2022) Guide to CI/CD pipeline: Everything you need to
know (2022), Scriptworks. Available at: https://www.scriptworks.io/blog/ci-cd-
pipeline/ (Accessed: December 7, 2022).

13. Anastasov, M.. (2022) CI/CD pipeline: A gentle introduction, Semaphore.
Available at: https://semaphoreci.com/blog/cicd-pipeline (Accessed: November
22, 2022).

14. Team, K. (no date) Benefits of Continuous Integration & Delivery: CI/CD
benefits, katalon.com. Available at: https://katalon.com/resources-
center/blog/benefits-continuous-integration-delivery (Accessed: November 22,
2022).

15. Team, J.B. (2020) What are the benefits of CI/CD?: Teamcity CI/CD guide,
JetBrains. Available at: https://www.jetbrains.com/teamcity/ci-cd-guide/benefits-
of-ci-cd/ (Accessed: November 22, 2022).

16. Rao, M. (2018) Common security challenges in CI/CD workflows - dzone,
dzone.com. Available at: https://dzone.com/articles/common-security-
challenges-in-cicd-workflows (Accessed: November 23, 2022).

17. Rajora, H. (2021) CI/CD benefits, challenges and best practices for your
team, TestProject. Available at: https://blog.testproject.io/2021/04/22/ci-cd-
benefits-challenges-best-practices-for-your-team/ (Accessed: December 11,
2022).

18. Choudhary, N. (2022) Top 10 CI/CD pipeline implementation challenges
and solutions, LambdaTest. Available at: https://www.lambdatest.com/blog/cicd-
pipeline-challenges/ (Accessed: November 22, 2022).

19. GitLab Inc. (2021) History of Gitlab, GitLab. Available at:
https://about.gitlab.com/company/history/ (Accessed: November 22, 2022).

20. HG Insight Team (no date) Gitlab agile planning - discovery.hgdata.com,
GitLab. Available at: https://discovery.hgdata.com/product/gitlab-agile-planning
(Accessed: November 23, 2022).

 55

Turku University of Applied Sciences Thesis | Vikas singh

21. Katalon team (2022) Best automated API testing tools for software testing in
2022, katalon.com. Katalon. Available at: https://katalon.com/resources-
center/blog/top-5-free-api-testing-tools (Accessed: November 13, 2022).

22. Ashiq, F. (2022) 11 best automated ui testing tools in 2022, LambdaTest.
Available at: https://www.lambdatest.com/blog/top-ui-automated-testing-tools/
(Accessed: November 12, 2022).

23. Positive Technologies (2022) Threats and vulnerabilities in web applications
2020–2021, Positive Technologies - vulnerability assessment, compliance
management and threat analysis solutions. Positive Technologies. Available at:
https://www.ptsecurity.com/ww-en/analytics/web-vulnerabilities-2020-2021/
(Accessed: December 2, 2022).

24. Williams, L. (2022) 9 best security testing tools (2022), Guru99. Available at:
https://www.guru99.com/security-testing-tools.html (Accessed: December 2,
2022).

25. Red Hat Team (2022) What is agile methodology?, Red Hat - We make
open source technologies for the enterprise. Available at:
https://www.redhat.com/en/topics/devops/what-is-agile-methodology (Accessed:
November 26, 2022).

26. JetBrains (no date) CI/CD in Agile Development: Teamcity CI/CD guide,
JetBrains. Available at: https://www.jetbrains.com/teamcity/ci-cd-guide/agile-
continuous-integration/ (Accessed: December 12, 2022).

27. Steve, J. (2021) What's the difference between agile, CI/CD, and DevOps?,
Application Security Blog. Available at:
https://www.synopsys.com/blogs/software-security/agile-cicd-devops-difference/
(Accessed: November 16, 2022).

28. Mijacobs et al. (2022) What is DevOps? - azure DevOps, Azure DevOps |
Microsoft Learn. Available at: https://learn.microsoft.com/en-us/devops/what-is-
devops (Accessed: December 5, 2022).

29. JetBrains (2020) Understanding CI/CD in DevOps: Teamcity CI/CD guide,
JetBrains. Available at: https://www.jetbrains.com/teamcity/ci-cd-guide/devops-
ci-cd/ (Accessed: November 27, 2022).

30. Hall, J. (2021) A brief history of CI/CD, Jonathan Hall. Available at:
https://jhall.io/archive/2021/09/26/a-brief-history-of-ci/cd/ (Accessed: December
12, 2022).

31. Korakitis, K. (2020) DevOps CI/CD usage trends, Developer Nation
Community. Available at: https://www.developernation.net/blog/devops-ci-cd-
usage-trends (Accessed: December 12, 2022).

 56

Turku University of Applied Sciences Thesis | Vikas singh

32. Wadhwani, P. and Loomba, S. (2022) DevOps Market Size & Share, global
trends 2022-2028, Global Market Insights Inc. Available at:
https://www.gminsights.com/industry-analysis/devops-market (Accessed:
December 1, 2022).

33. Muhsin, M. (2022) AMP performance with react server-side rendering,
LogRocket Blog. Available at: https://blog.logrocket.com/improve-app-
performance-react-server-side-rendering/ (Accessed: November 21, 2022).

34. Heller, M. (2022) What is node.js? the JavaScript runtime explained,
InfoWorld. InfoWorld. Available at:
https://www.infoworld.com/article/3210589/what-is-nodejs-javascript-runtime-
explained.html (Accessed: December 1, 2022).

35. Tabirao, M.A. (2022) What is mongodb and why use it for modern web
applications?, Ubuntu. Ubuntu. Available at: https://ubuntu.com/blog/what-is-
mongodb (Accessed: December 2, 2022).

36. Gupta, S. (2021) ESLint: What, why, when, how, DEV Community. DEV
Community. Available at: https://dev.to/shivambmgupta/eslint-what-why-when-
how-5f1d (Accessed: December 6, 2022).

37. Vaidya, N. (2022) Jest framework tutorial: How to use it, BrowserStack.
Available at: https://www.browserstack.com/guide/jest-framework-tutorial
(Accessed: November 13, 2022).

38. Kinsbruner, E. (2021) What is Cypress Testing? what it is and how to get

started, Perfecto by Perforce. Available at: https://www.perfecto.io/blog/cypress-

testing (Accessed: December 12, 2022).

