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1 INTRODUCTION
Artificial intelligence (AI) is used for different prediction tasks in various fields, such as

finance and healthcare (Arrieta et al. 2020). Applications can also affect human lives,

such as COVID-19 identification and self-driving cars (Angelov et al. 2021). Because

AI can also relate to life or death decisions, it is essential to interpret and communicate

about it properly (Rothman 2020). Governments have also started to implement laws re-

lating to explainable models (Goodman & Flaxman 2017, Freeborough & van Zyl 2022).

However, the interpretation of complex model structures and predictions has been found

challenging because model explainability and predictive accuracy are inversely propor-

tional (Angelov et al. 2021, Freeborough & van Zyl 2022).

Because the models are commonly carrying out critical tasks that can affect human lives,

the lack of interpretability is a significant drawback (Arrieta et al. 2020, Rojat et al. 2021).

Therefore, it is critical to aim to find the balance between model performance, structure,

and use. To better understand how the model works, how different data and structures

affect its performance, how its performance could be improved, and to gain confidence

in the model predictions and model usage on a specific problem, investigating the model

further is necessary. Model behavior can be investigated, for example, by studying how

model inputs affect outputs and how the model works at certain levels of its structure. Al-

though explainable AI, or XAI, is a relatively new term, it is evident that it greatly impacts

the overall usability of a model. However, to ensure XAI establishes and maintains its po-

sition as good practice in model development, the tools for investigating explainability

need to be, for example, easily available, easy to use, and as intuitive as possible.

In this thesis, selected time series regression models were developed with Python by using

S&P 500 index data. The explainability of models was also investigated by utilizing

selected methods found in the literature. Financial data was selected because S&P 500

data is easily available and well-known. Explainability analysis was included in this thesis

mainly because of two reasons. Firstly, explainable artificial intelligence has increased

interest in research in recent years (Arrieta et al. 2020, Angelov et al. 2021). Secondly,

explainability methods available for financial forecasting, or broadly regression, problems

have been found rather limited in comparison to those available for classification problems

8



(Freeborough & van Zyl 2022).

The work is based on three research questions: 1) What is meant by the explainability of

AI?, 2) How explainability of AI can be evaluated in practice?, and 3) What evaluation

methods can be used for investigating the explainability of time series forecasting models?

The first research question is about familiarizing with the term and, for example, summa-

rizing the pros and cons of XAI. The second research question is more practical than the

first one by summarizing what methods can be used to investigate model explainability.

The purpose of the third question is to show what selected explainability methods output

and how the outputs can be interpreted. As it is possible to understand from the research

questions, the main goal of this thesis is to show in practice how different explainability

methods could be used and how well the selected methods can explain the model behav-

ior. On the side, to investigate model explainability, selected machine learning models are

developed for a time series problem.

The thesis consists of seven sections. After the introduction to the thesis, Section 2 covers

topics related to the thesis, such as XAI, time series forecasting and S&P 500 index.

Section 3 is reserved for summarizing the content of data used in this thesis. Methods

used for processing data, developing and testing models, and investigating explainability

are covered in Section 4. The remaining Sections 5–7 are reserved for results, discussion,

and conclusions, respectively.
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2 BACKGROUND

2.1 Artificial intelligence
The term artificial intelligence was already introduced in the 50s (Mehrotra 2019). In

practice, AI can be used to refer to a human-like behavior of a machine or system. Thus,

a machine that can recognize, learn, reason, or solve problems holds AI (Mehrotra 2019).

The behavior has been adapted from an extensive number of examples that define what to

detect and how to react to detections.

The relations between AI, machine learning (ML) and deep learning (DL) are shown in

Figure 1. On the hierarchy level, AI is at the top, whereas ML follows AI and DL follows

ML. ML utilizes statistics to build algorithms that can constantly learn and improve using

historical data (Mehrotra 2019). It can be classified into three categories: supervised,

unsupervised (Hastie et al. 2009), and reinforcement learning (Sutton & Barto 2018). In

supervised learning, the model inputs and outputs are known and the model is trained so

that the predicted outputs are close to the true outputs. Supervised learning can be further

divided into classification and regression. There are several supervised learning methods

available, such as linear regression, decision trees, support vector machines, k-nearest

neighbors, tree ensembles, and artificial neural networks. In unsupervised learning, the

model outputs are unknown, and the purpose is to detect patterns from the data in use and

group data accordingly. Unsupervised learning methods include, for example, different

clustering algorithms, principal component analysis, and singular value decomposition.

Lastly, reinforcement learning means iterative learning with reinforcement. Depending on

the action, correct or incorrect, the reinforcement is either a reward or punishment.

DL is an ML technique. It is based on similar operation principles as a human brain

filters information. Deep learning methods typically use neural network architectures and

they have several adjustable parameters and layers, resulting in complex structures. The

number of layers included in a model can also be used to explain the depth of the model

(Mehrotra 2019). There are several architectures of DL available, such as convolutional

neural networks (CNN), recurrent neural networks (RNN), and RNN-based long short-

term memory (LSTM) and gated recurrent unit (GRU) (Goodfellow et al. 2016).
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Figure 1. Differences between AI, ML and DL. Retrieved from Wikimedia Commons (with Creative
Commons Licence CC BY-SA 4.0): https://commons.wikimedia.org/wiki/File:AI-ML-DL.svg, author Tuki-
jaaliwa. Accessed 14.11.2022.

2.2 Time series forecasting

2.2.1 Usage of time series data

Time series data represent variables that vary over time. Consequently, time series data is

available everywhere. It can be utilized in different industries, such as in the financial and

medical fields. By utilizing machine learning, it is possible to train models for various

prediction problems in which temporal changes and time dependency matter.

Several prediction tasks are possible with time series data, such as classification, regres-

sion, and clustering. Classification means that data is arranged in groups or categories

according to learned criteria. In regression, the relation between selected input and out-

put variables is estimated. Regression can also be used for forecasting, in which historical

data is used as input to estimate the future trend. Lastly, clustering is used to group similar

data points in the same groups.
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2.2.2 Examples of forecasting methods

Linear regression

Linear regression is based on the assumption that variables X and Y are linearly con-

nected. The relation between the variables Y and X is visualized by a linear equation

Y = A+BX , (1)

where A is the intercept between the linear regression and the y-axis. Linear regression

example is shown in Figure 2. Blue dots represent the data and the red line represents the

fitted line. In Scikit-learn (2022c), a linear model with coefficients w = w1, ...,wp is fitted

by minimizing the sum of squared errors between the data points and linear approxima-

tion.

Figure 2. Linear regression example. Retrieved from Wikimedia Commons (with Creative Commons Licence
CC BY-SA 3.0): https://commons.wikimedia.org/wiki/File:Residuals_for_Linear_Regression_Fit.png, au-
thor Thomas Haslwanter. Accessed 14.11.2022.

Decision tree regressor

Decision tree (Breiman et al. 2017) is a model that is based on a recursive if-else-structure.

Due to if and else logic, which utilizes features and corresponding thresholds, the decision

tree always splits into two parts, either to another if-else-structure or outputs. The starting

point of the tree is called a root node. Regions where the tree splits, are called internal

nodes or decision nodes and regions, where responses are defined, are called leaves or

12
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terminal nodes. Nodes are connected with branches.

When training a regression decision tree, the aim is to optimize the number of splits

by creating branches with similar responses. Different metrics can be used to calculate

the quality of a split. In Scikit-learn (2022a), the default is mean squared error. The

error is based on the difference between responses in the terminal nodes and the mean of

responses in the terminal nodes. It can be calculated according to Equation 2 (Scikit-learn

2022a)

H(Qm) =
1

nm
∑

y∈Qm

(y− ȳm)
2, (2)

where the mean of responses in terminal nodes is

ȳm =
1

nm
∑

y∈Qm

y (3)

and Qm is data in a terminal node m, n is the number of samples in a terminal node, and y

is the response in a terminal node.

K-nearest neighbors regressor

K-nearest neighbors (KNN) method predicts the grouping of a data point. The prediction

is based on k nearest known data points or in other words k nearest neighbors. The

known data points are stored from training data. Different distance metrics can be used to

calculate the distance between the query point and known data points, such as Euclidean

distance. In Scikit-learn (2022b), the default distance metric is Minkowski and k is 5. The

distance between two data points x and y can be calculated according to Equation 4

Minkowski distance = (
N

∑
i=1

|xi − yi|p)
1
p . (4)
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Tree ensembles

Ensemble methods have become popular in machine learning applications during the last

decade (Raschka & Mirjalili 2019). According to Arrieta et al. (2020), tree ensembles are

nowadays among the most accurate machine learning modes. Tree ensembles consist of

different trees, also called weak learners or base models, to obtain predictions. This struc-

ture helps to tackle overfitting, which is a common challenge with decision trees.

The structure of tree ensembles tends to be rather complex due to the numerous decision

trees included in the final model. Also, ensembles are computationally more demanding

and thus, it is worth comparing computational costs and prediction accuracy critically

(Raschka & Mirjalili 2019). Different tree ensembles exist, such as random forest (RF)

(Breiman 2001) and gradient boosting (GB) (Friedman 2002). These are briefly covered

next.

Random forest regressor

Random forest model consists of multiple decision trees that are averaged. By using mul-

tiple decision trees, it is possible for example to generalize the model more, decrease over-

fitting, and make the model more robust to noise than individual decision trees. (Raschka

& Mirjalili 2019)

According to Raschka & Mirjalili (2019), creating a random forest model consists of

four main steps: 1) take random n samples from the training data with replacement, 2)

train a decision tree with the data extracted in step 1, 3) repeat steps 1 and 2 k times,

and 4) collect decision tree predictions to make random forest prediction. Step 2 can be

further divided into two parts; at each decision tree node, first, select random d features

without replacement and then, split the node using the feature resulting in the best split.

With replacement means that the selected sample is returned to the pool of samples, and

without replacement means that the sample is excluded from the pool of samples. In

step 4, prediction can be made based on majority voting (Breiman 2001) or averaging

tree-specific predictions (Scikit-learn 2022e).
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Gradient boosting regressor

Like random forest model, gradient boosting model consists of base models, which are

trained using random subsets of training data. Gradient boosting can decrease both bias

and variance. Creating a gradient boosting model consists of four main steps: 1) train

base model C1 by using random d1 samples extracted from the training data without re-

placement, 2) train another base model C2 by using random d2 samples extracted from the

training data without replacement and 50% of previously incorrectly predicted examples,

3) train third base model C3 by using data set d3 consisting of examples that base models

C2 and C3 were not able to predict correctly, and 4) make gradient boosting prediction by

using predictions from base models C1, C2 and C3. (Raschka & Mirjalili 2019)

The concept of gradient boosting is similar to that of AdaBoost (Schapire 1990). Ac-

cording to Raschka & Mirjalili (2019), the way how weights are updated and how the

base models are combined differ, though. In Adaboost, complete training data is used

to train base models and subsets are reweighted based on prediction error. A new, more

computationally efficient version of the gradient boosting method called XGBoost (Chen

& Guestrin 2016) exists, too.

Deep learning

As stated by Rojat et al. (2021), state-of-the-art time series forecasting methods have

been commonly based on deep learning, especially on recurrent neural networks. RNNs

can adapt to the time series trend by learning relations from the trend and updating the

network state at each timestep. In addition to RNN, CNNs have been popular, too, due

to the possibility of learning relations and extracting features from raw data. In general,

deep learning methods have both helped to increase prediction accuracies as well as to

reduce the need for data preprocessing.
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2.3 Explainable artificial intelligence

2.3.1 Purpose and goals

The purpose of explainable AI, or XAI, is to explain reliably and understandably how

models work. Explainability analysis is especially useful for those models that are other-

wise challenging to understand as they are. By clarifying how the model works, it is also

possible to improve the robustness, confidence, and stability of the model (Rojat et al.

2021). There are several goals for reaching and improving explainability, such as trust-

worthiness, causality, transferability, informativeness, confidence, fairness, accessibility,

interactivity, and privacy awareness (Arrieta et al. 2020).

2.3.2 Terminology

Various terms have been used together explainable AI. Consequently, in addition to be-

coming familiar with the various tools available for investigating explainability, it is useful

to know the related terminology. Some common terms related to explainability are inter-

pretability, comprehensibility, understandability, and transparency. These are covered

briefly next.

Explainability as a concept is used to clarify and detail model actions and procedures so

that the explanation acts as an interface between code and a human. Interpretability is,

in turn, used to characterize a model at a certain level so that it is possible to explain the

model or provide meanings that can be understood by a human. Thus, interpretability is

also linked to model transparency. (Arrieta et al. 2020)

Understandability is used to describe whether a human can understand how the model

works without the need for clarifying the model structure and how the model handles

data. The level of understandability can also be used for evaluating the transparency of

the model. (Arrieta et al. 2020)

Comprehensibility can be used to describe the ability of a model to show the learned

knowledge in such a way that a human understands it. In practice, the learned knowl-

edge could be shown in a similar way as humans would show it. This could mean, for

example, dividing data into smaller chunks of information that are directly interpretable
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in natural language as well as analyzable both quantitatively and qualitatively. (Arrieta

et al. 2020)

Transparency can be used used to describe a model that can be understood as it is. Because

there are various models available, the transparency of a model can be further categorized

into three different groups: decomposable models, simulatable models, and algorithmi-

cally transparent models. (Arrieta et al. 2020)

2.3.3 Challenges, benefits, and opportunities

Explainable artificial intelligence is nowadays considered an important feature for the

practical deployment of AI models (Arrieta et al. 2020). Although explainability and

interpretability differ from each other slightly, the terms are often mixed. Consequently,

as stated by Arrieta et al. (2020), it has been challenging to establish the concept of XAI

in the literature. However, as observed in the article, the number of articles related to XAI

has increased roughly from 2017 onwards. Thus, it could be expected that more and more

people will become familiar with the concept in the near years.

Findings of explainability analysis provide useful information about the model for people

working in different positions (Rojat et al. 2021, Arrieta et al. 2020). By better explaining

how the model works in a way that humans understand, XAI is also expected to help in

reaching more stakeholders. For example, according to Arrieta et al. (2020), the find-

ings of explainability analysis can provide developers better insight into the performance,

functionalities, and improvement needs of the model. For product users and domain ex-

perts, these findings can provide a better understanding of how the model works from

input to output and how reliable the model is. For managers and other company repre-

sentatives, the findings can provide useful information about the maturity of the product

being developed, the operation principles of the product, and how to assess regulatory

compliance. Lastly, the findings could also help regulatory representatives in certifying

model compliance with the country-specific legislation.

By utilizing the findings of explainability analysis, XAI is also expected to help engineers

in reducing the malfunctions of a model (Arrieta et al. 2020). The information collected

can also contribute to building more confidence in the models developed (Rojat et al.
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2021, Arrieta et al. 2020). Furthermore, XAI could be used to create new metrics and

training approaches to ensure that the confidence and robustness of even complex models

have been reached (Rojat et al. 2021). XAI has also the opportunity to contribute to a

bigger concept called responsible AI, which is based on fairness, ethics, privacy, trans-

parency, security, safety, and accountability (Arrieta et al. 2020).

Explainable AI might not be, at the moment, so intuitive nor beneficial for a wider au-

dience because of the abstract and various metrics that the existing evaluation methods

output (Freeborough & van Zyl 2022). It could also be said that there is still a lack of

established tools that objectively show the robustness of AI systems (Rojat et al. 2021).

Consequently, it would be useful to establish some explainability-related requirements for

ML development and improve the existing explainability tools to provide more intuitive

results. The requirements could relate to 1) what is the minimum level of explainability

analysis needed, 2) what specified methods should be at least used to analyze the model,

and 3) what should be reported at least and how. Additional methods could also be used

to better understand the model behavior – if needed and if possible.

2.4 Explainability methods

2.4.1 Taxonomy of explainability methods

Explainability methods can be divided into two groups, methods for transparent models

and methods for trained models. The latter is also known as post-hoc methods, which can

be further divided into model-specific and model-agnostic methods. Model-specific meth-

ods stand for methods that are only available to a specific model type, whereas model-

agnostic methods mean general methods that can be applied to all models. (Arrieta et al.

2020)

In addition to transparent and post-hoc methods, explainability methods can also be di-

vided into local and global methods. Local methods clarify how the model behaves at a

specific instance, whereas global methods clarify how the model works in general (Rojat

et al. 2021).
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The groups of explainability methods are summarized in Table 1. The first column in the

table defines the group and the second column defines the methods available for it. Meth-

ods for transparent models include running simulations, decomposing model structures

into smaller parts, and inspecting the model at the algorithmic level. Post-hoc methods in-

clude text, visual and local explanations, feature relevance, explanations by example, and

explanations by simplification. These methods are explained in more detail later.

Table 1. Explainability methods.

Group Explainability method

Transparent
simulation
decomposition
algorithmic transparency

Post-hoc

text explanation
visual explanation
local explanation
explanations by example
explanations by simplification
feature relevance

The differences between model-specific and model-agnostic methods are shown in Fig-

ure 3. The majority of the post-hoc methods are available for all models. Explanation

by simplification, feature relevance, local explanation, and visual explanation are both

model-specific and -agnostic explainability methods, whereas text explanation and expla-

nation by example are model-specific explainability methods.

Figure 3. Taxonomy of post-hoc explainability methods. The content has been adapted from Arrieta et al.
(2020) and Angelov et al. (2021).
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2.4.2 Explainability of common machine learning models

Typical explainability methods used with common machine learning models are sum-

marized in Table 2. The first column defines the model in question and the remaining

columns define the typical explainability methods used. The usage of the methods is

marked as yes, no, or partially. Yes means that the specific method can be at least be used,

whereas partially means that the specific method can be applied for smaller or simplified

model parts only. No has two meanings, either it is not needed (because other methods

are sufficient) or it cannot be used (due to model complexity). Examples of applicable

post-hoc methods are listed in the rightmost column.

As it is possible to see, the number of commonly used explainability methods depends

heavily on the level of model complexity. The model is transparent if it is either simulat-

able, decomposable, or algorithmically transparent. The model is not transparent if, for

example, its structure is complex. The behavior of opaque models can be investigated by

using different post-hoc methods. (Arrieta et al. 2020)

Table 2. Commonly used explainability methods per model. Content adapted from Arrieta et al. (2020).

Transparent models Trained models

Model Simulation Decomposition Algorithmic
transparency

Post-hoc
analysis Examples

Linear/Logistic
Regression

yes yes no no

Decision Trees yes yes yes no
K-Nearest Neigh-
bors

yes partially no no

Rule Based
Learners

yes partially no no

General Additive
Models

partially yes no no

Bayesian Models yes yes no no

Tree Ensembles no no no yes
Model simplifica-
tion/Feature rele-
vance

Support Vector
Machines

no no no yes
Model simplifica-
tion/Local expla-
nations

Multi–layer Neu-
ral Network

no no no yes

Model simplifica-
tion/Feature
relevance/
Visualization

Convolutional
Neural Network

no no no yes
Feature rel-
evance/
Visualization

Recurrent Neural
Network

no no no yes Feature relevance
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2.4.3 Explainability methods in general

In general, methods for transparent models include running simulations, decomposing

model structures into smaller parts, and inspecting the model at the algorithmic level.

Post-hoc methods include text, visual and local explanations as well as explanations by

example and simplification. Indirect feature relevance analysis can also be used to explain

how the model behaves. The meaning of each method is briefly explained next.

Simulatability can be understood as the possibility of explaining the model behavior step-

by-step. Decomposability of a model means the possibility to easily explain what each

model part does and what inputs are used. By being able to explain the roles of each

model part, it can also be possible to better understand, interpret, and explain the model

behavior. Algorithmic transparency can be understood as the possibility of explaining

the process from model input to output by using mathematical analysis and methods.

For example, a linear model is considered algorithmically transparent because its error

surface is understandable and explainable and thus, it is possible to understand model

actions. (Arrieta et al. 2020)

Text explanations can be used to clarify the structure and functioning of the model and

explain results. Visual explanation techniques are commonly used for visualizing the

model behavior in a simplified way, whereas local explanations can be used to explain

model behavior by dividing the model into smaller parts and explaining these parts one

by one. Explanation by example means extracting data examples that affect model output

and using those to explain certain relationships and correlations within the model behav-

ior. Furthermore, explanation by simplification means simplifying the trained model and

explaining what happens in the simplified version of the model. Although the complexity

is reduced, the behavior and performance are expected to be the same. Feature relevance

explanations can be used to compute the relevance score of model variables. In practice,

the score quantifies the sensitivity between a selected feature and model output. The most

relevant features for the model output have the highest scores. (Arrieta et al. 2020)
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To summarize, several explainability methods exist and the simpler the model, the easier

it is to analyze the model. For example, model complexity affects simulatability greatly

and thus, simulations are typically easier with simpler models. Similarly, the algorithmic

visibility tends to decrease with respect to model complexity. Poor algorithmic visibil-

ity is, for example, common in deep architectures, where the model typically contains

different layers and is fitted with data using optimization algorithms such as stochastic

gradient descent. An efficient way to analyze a model is to calculate feature relevance,

which can be used to measure how the data affects model predictions as well as rank and

select features.

Practical examples of explainability methods are covered next. The main focus is on

global and local model-agnostic methods because these are used in this thesis. Meth-

ods for transparent models and examples of model-specific methods are also briefly cov-

ered.

2.4.4 Methods for transparent models

Transparent models can be analyzed by running simulations and decomposing the model

structure into smaller parts. In addition, if the structure of the model allows, the behavior

of the model can be inspected at the algorithmic level. To gain a better understanding

of how features affect predictions, other methods can be used. Examples of these are

introduced next.

2.4.5 Examples of global model-agnostic methods

Global explainability methods are useful inspection techniques for every model, espe-

cially for those that are not transparent. These describe the model behavior in general

and hence, these can help in understanding the model behavior and how data affects its

performance. Several global model-agnostic methods exist, such as permutation feature

importance (PI), partial dependence plot (PDP), accumulated local effect (ALE) plot,

functional decomposition, feature interaction (H-statistic), and global surrogate models

(Molnar 2022). These are covered in more detail next.
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Permutation feature importance

Permutation importance (Breiman 2001) measures how much the changes in features af-

fect model predictions, that is, how relevant each feature is for the model. The method is

based on feature-specific scores that describe how much a feature replaced with noise af-

fects the model predictions (Carta et al. 2022). The more the feature change increases the

prediction error, the more important the particular feature is for the model. To calculate

permutation feature importance, each feature is randomly shuffled one by one and at each

update, prediction accuracy is calculated again and feature-specific importance is calcu-

lated using original and new prediction accuracy according to Equation 5 (Scikit-learn

2022d)

i j = s− 1
K

K

∑
k=1

sk j, (5)

where j means feature index, k means repetition index, K means the number of features

and thus repetitions, s means the reference prediction accuracy, and s jk the feature change

-specific prediction accuracy. Both training and testing data can be used, but using testing

data has been recommended because the results can be too optimistic with data that the

model has seen before and this can lead to misunderstanding on what features are the

most important for the model (Molnar 2022).

Partial dependence plot

Partial dependence plot (Friedman 2001) shows how features affect the predictions on

average and what the relationship between the feature and predictions is. By visualizing

predictions versus a specific feature, PDPs are intuitive and easily interpretable. The

partial dependence function for regression f̂s is shown in Equation 6 (Molnar 2022)

f̂S(xs) = Exc

[
f̂ (xs,xc)

]
=

∫
f̂ (xs,xc)dP(xc), (6)

where xs contains features under investigation, xc contains the remaining features, and f̂

represents the model. PDP function can be estimated using Equation 7 (Molnar 2022)
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f̂S(xs) =
1
N

N

∑
i=1

f̂ (xs,x
(i)
c ), (7)

where N is the number of samples and x(i)c represents the ith value in features from the

set c. In practice, f̂S(xs) shows the average marginal effect of features from the set s on

predictions. The calculation of PDP assumes that the features between sets s and c are not

correlated (Molnar 2022). Consequently, in case the features between different sets are

correlated, the averages can be irrational.

Accumulated local effect plot

Accumulated local effect plot (Apley & Zhu 2020), similar to PDP, can be used to vi-

sualize how features affect predictions on average. ALE is an alternative to PDP and it

is claimed to work better with correlated features than PDP and be less computationally

expensive than PDP (Apley & Zhu 2020). Molnar (2022) has gathered a comprehensive

overview of the differences between PDP and ALE and related pros and cons. Also, in

this work, using ALE instead of PDP is recommended because features are typically one

way or another correlated.

Functional decomposition

Functional decomposition means simplifying something complex to ease interpretation.

In practice, functional decomposition could mean simplifying a complex model by di-

viding it into smaller and more interpretable parts that produce the model output. An

example of decomposing function y = f̂ (x1,x2) = 2+ ex1 − x2 + x1 · x2 is shown in Equa-

tion 8 (Molnar 2022)

f̂ (x1,x2) = f̂0 + f̂1(x1)+ f̂2(x2)+ f̂1,2(x1,x2), (8)

where f̂1 and f̂2 represent the main effect of features x1 and x2, respectively, f̂1,2 is the

interaction between two features and f̂0 is the interception of the two features. Function

decomposition is based on ALE (Molnar 2022).
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Feature interaction

Feature interaction, or H-statistic, (Friedman & Popescu 2008) can be used to measure

how much the interaction of the features affects the variation of the prediction. Interaction

can be investigated from two perspectives: 1) are two features of the model interacting

and if yes, how much; 2) is a feature interacting with the model and if yes, how much

(Molnar 2022).

Interaction strength can be understood as the amount of variance explained by the inter-

action. Value 0 means that there is no interaction between the selected parts, whereas 1

means that all of the feature- or model-specific variance can be explained by the sum of

partial dependence functions. Values greater than 1 can also exist if the 2-way interaction

variance is high enough. Partial dependence plots can be then used to visualize what the

selected interactions look like. (Molnar 2022)

For more details about the calculation of H-statistic, please for example see Friedman &

Popescu (2008) and (Molnar 2022).

Global surrogate models

Global surrogate models are used to explain predictions of a complex, opaque model. In

practice, predictions of the complex model are used to train an explainable model, and the

resulting trained model can then be further investigated. The structure of the surrogate

model, such as the decision tree, can be then visualized to show how the predictions are

made. R2 value, or the coefficient of determination (Equation 18), can be used to measure

how well the surrogate model replicates the original model (Molnar 2022)

R2 = 1− ∑
N
i=1(yi − ŷi)

2

∑
N
i=1(yi − y)2

, (9)

where N is the number of samples, yi is the prediction of the original model at index i, ŷi

is the prediction of the surrogate model at index i, and y is the mean of the original model

predictions. The closer R2 value is to 1, the better the surrogate model approximates the

behavior of the original model (Molnar 2022).
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2.4.6 Examples of local model-agnostic methods

Local explainability methods can be used to explain selected predictions. By utilizing

both global and local explainability methods, it is possible to get more a comprehensive

overview of how the model behaves. Several local model-agnostic methods exist, such

as individual conditional expectation (ICE) plot, local surrogate models, scoped rules

(anchors), counterfactual explanations, Shapley values, and Shapley additive explanations

(SHAP) (Molnar 2022).

Individual conditional expectation plot

Individual conditional expectation plot (Goldstein et al. 2015) visualizes how the feature

changes affect predictions. ICE plot contains one line for each prediction, whereas PDP

contains one line that shows how features affect predictions on average. Lines in ICE plot

can be calculated by modifying only the values of the feature under investigation and tak-

ing predictions with the updated feature values (Molnar 2022). By visualizing the change

in predictions, ICE can help in identifying interactions in the model and extrapolating in

the predictor space (Goldstein et al. 2015). According to Molnar (2022), ICE plots are

more intuitive than PDPs. However, the correlation between features can similarly distort

visualizations as PDPs.

Local surrogate models

One approach for local surrogate models is a method called local interpretable model-

agnostic explanation (LIME) (Ribeiro et al. 2016). LIME trains local interpretable mod-

els, such as linear regression, for a specific prediction by using features and responses

from the region of interest (Molnar 2022).

In practice, creating a local surrogate model is about minimizing the loss L( f ,g,πx) so

that the level of surrogate model complexity Ω(g) is sufficiently low to ensure both local

fidelity and interpretability (Ribeiro et al. 2016). Equation 10 shows the mathematical

form of local surrogate models (Ribeiro et al. 2016, Molnar 2022)

explanation(x) = argmin
g∈G

L( f ,g,πx)+Ω(g), (10)
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where x is the prediction to be explained, L is the training loss between the prediction

of the original model f and the prediction of the surrogate model g, Ω(g) is the model

complexity (such as for linear models, the number of non-zero weights and for decision

trees, the depth of the tree), πx is the proximity measure to define locality around x, and

G is the number of possible surrogate models (such as linear regression and decision

trees).

LIME is as a useful tool for both expert and non-expert users to get a better understanding

of and build more trust in the model predictions (Ribeiro et al. 2016). However, according

to Molnar (2022), LIME has many disadvantages relating to the trustworthiness of the

explanations and consequently, it should be carefully used and explanations should be

critically analyzed.

Scoped rules

Scoped rules, or anchors, (Ribeiro et al. 2018) can be used to clarify how specific predic-

tion is made. The researchers behind LIME developed anchors and consequently, these

methods are somewhat similar. With LIME, predictions are explained using a local surro-

gate model, whereas with anchors, the predictions are explained with rules (Molnar 2022).

In practice, the aim of the anchor method is to find specific if-then rules that sufficiently

anchor the prediction locally (Ribeiro et al. 2018). More details about the equations used

to generate anchors for specific instances are available in Ribeiro et al. (2018) and Molnar

(2022).

The anchors are easy to interpret and they work even if model predictions are not linear.

However, the method is highly configurable and thus, there are several parameters to be

adjusted to get useful explanations. Sometimes, the explanations can be too specific and

hence, it can be challenging to understand the model behavior without refining the results.

(Molnar 2022)

Counterfactual explanations

Counterfactual explanations (Wachter et al. 2017, Dandl et al. 2020) are example-based

explanations for individual predictions.
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Counterfactual explanations summarize what factors and changes result in the specific

prediction. Explanations can be generated via manual search or by utilizing a loss function

that takes a specific feature as input, a counterfactual, and a feature-specific response. The

counterfactual explanation is the one that minimizes the loss. Several benefits exist, such

as ease of implementation and interpretation. However, usually, multiple explanations are

found and thus, it can be challenging to select what explanations are the most suitable

ones. (Molnar 2022)

Shapley values

Shapley values (Shapley 1953) were initially used in coalitional game theory to define

player-specific payouts depending on the player’s contribution to the payout.

In explainability analysis, the aim is to define how much each feature affects the prediction

compared to the average prediction. Therefore, the prediction task is the game, features

are players, the gain is the true prediction of a specific instance reduced by the average

predictions, and Shapley value is the average effect of a feature on the prediction. The

average effect is calculated from the differences between predictions with and without the

feature under investigation. The number of comparisons is equivalent to the number of

feature subsets (coalitions). To get model predictions, features not included in the subsets

are replaced with random feature values. (Molnar 2022)

Shapley value calculation of a specific feature is shown in Equation 11 (Molnar 2022)

φ j(x) =
1
M

M

∑
m=1

φ
m
j , (11)

where φ j(x) is the feature-specific Shapley value at instance x, M is the number of itera-

tions, and m is the specific iteration (or a subset of features).

In comparison to LIME, Shapley values is an explainability method with solid theory.

Also, the prediction is fairly distributed among the features with Shapely value, whereas

with LIME it is not guaranteed. However, Shapley value calculation can be heavy - espe-

cially if there are several features. (Molnar 2022)
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Shapley additive explanations

Shapley additive explanations (Lundberg & Lee 2017), based on Shapley values, can also

be used to define a prediction-specific importance value for each feature. According to the

developers, SHAP was developed by unifying existing methods to get desired properties

and bringing clarity to the existing explainability methods.

SHAP provides tools for both global and local explanations. For example, KernelSHAP

is a kernel-based model-agnostic approach inspired by LIME for estimating Shapley val-

ues. Model-specific explainability method for tree-based models, treeSHAP, exists, too.

Global feature importances, similar to permutation feature importances, can also be calcu-

lated with SHAP. However, PI and SHAP are calculated differently and hence, the feature

importances cannot be compared. (Molnar 2022)

SHAP explanation is defined in Equation 12 (Molnar 2022)

g(z′) = φ0 +
M

∑
j=1

φ jz′j, (12)

where g is the explanation model, z is the coalition vector (binary vector that defines what

features are in use in the particular subset or coalition and what features are absent that

should be resampled with random data samples), M is the maximum coalition size, and

φ j is the feature-specific Shapley value.

SHAP feature importance can be calculated by using Equation 13 (Molnar 2022)

I j =
1
N

N

∑
i=1

|φ(i)j |, (13)

where N is the number of features and φ
(i)
j is the feature-specific Shapley value.
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Different visualizations can be created by using SHAP. For example, feature importances

can be normally visualized in a bar plot. The positive and negative effects of features

can also be shown in a force plot with arrows. Other visualizations, such as summary

and dependence plots can also be used. These visualize feature values and corresponding

SHAP values so that the summary plot contains many features, whereas the dependence

plot visualizes data only from a selected feature.

According to Molnar (2022), several benefits and drawbacks are related to SHAP. For

example, the computation of global explanations is fast. Also, SHAP relates to LIME

and Shapley values making it easier to understand its basic principles and how to use it.

In addition, most likely due to the similarity with other explainability methods, SHAP

has become popular in the field of XAI. However, as mentioned by Molnar, it is possible

to create misleading interpretations from SHAP results. Also, kernelSHAP calculation

can be slow if many instances are included in Shapley value calculation. Similarly, in

case several Shapley values are calculated, the calculation of SHAP feature importances

can also be slow. Furthermore, because SHAP is based on Shapley values, it has the same

benefits and drawbacks as Shapley values. Despite some drawbacks, SHAP and LIME are

currently the primary model-agnostic tools used (Freeborough & van Zyl 2022).

2.4.7 Examples of model-specific methods

To analyze and compare models developed systematically, this thesis focuses on model-

agnostic methods available. Hence, model-specific methods are covered only briefly.

Model-specific explainability methods are typically used to provide more details about the

model behavior and to improve the level of explainability of the model. Model-specific

explanations can also be used to support the findings from other explainability meth-

ods. Several model-specific explainability methods exist. For example, methods for tree

ensembles such as mean decrease accuracy (MDA) can be used to describe feature rele-

vance, whereas simplified tree ensemble learner (STEL) can be used to explain models

by simplification (Arrieta et al. 2020). Derivatives of model-agnostic methods also exist,

such as model-specific counterfactual explanations and treeSHAP for tree-based models

(Molnar 2022).
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Summaries of model-specific explainability methods are, for example, available in the

articles by Arrieta et al. (2020) and Rojat et al. (2021). Methods specific to deep learn-

ing models are for example covered in the works by Rojat et al. (2021) and Molnar

(2022).

2.5 Index investing
In this thesis, financial data from S&P 500 index is used for developing time series models

and investigating different explainability methods. General information about the index

is covered next, whereas the data content used for developing models is covered in more

detail in Section 3.

2.5.1 Pros and cons

The idea of index investing is well summarized by Chen (2022). It is a passive investing

method that aims to replicate the performance of a benchmark index. Index investing is

based on the expectation that the market will outperform any stock picker in the long run.

Depending on the investment strategy, index investing is carried out by purchasing com-

ponents according to the index. To invest according to the selected index cost-efficiently,

it is also possible to, for example, purchase only the most weighted components or a

specific ratio of components included in the index.

Index investing contains several benefits. For example, because index investing is based

on an example index, it does not require active management of investment strategies.

Consequently, it commonly requires less frequent trades reducing costs. In addition,

typically index investing utilizes several components from a broad region and thus, the

investments are more diversified and protected against risks than single stocks. Hence,

index investing is a cost-efficient approach for gaining rather stable returns. Collect-

ing all index-specific components at specific weights can be, however, time-consuming

and costly. Also, the index can be greatly affected by changes in stock prices of highly

weighted components.
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2.5.2 S&P 500 index

S&P 500 index stands for standard and poor’s. It was created in 1957 and it monitors

the performance of 500 publicly-traded large companies that are listed on the stock in the

United States. The index was the first market-capitalization-weighted stock market index

and it has become a well-known financial benchmark worldwide. (Indices 2022b)

The equation used for calculating S&P 500 index is shown in Equation 14

S&P500 =
∑

N
i=1 Pi ∗Qi

Divisor
, (14)

where Pi stands for the price of a company-specific stock, Qi stands for the number of

publicly available shares, and divisor is a normalization factor.

In practice, the index value is calculated by dividing the sum of the market capitalization

of companies included in the index by the index divisor. The divisor is an arbitrary number

and by adjusting the divisor value, it is possible to maintain the continuity of the index

despite changes in index components. The divisor is updated after the close of trading.

More details about the divisor adjustment can be found on S&P 500 homepage. (Indices

2022a)

Market capitalization is calculated by multiplying the current stock price by the outstand-

ing shares of a company. The index weight per company is, in turn, done by dividing

the market capitalization of a company by the total market capitalization of the index.

(Kenton 2022)

Due to the different share classes of certain companies, such as Alphabet’s Class A

(GOOGL) and Class C (GOOG), the index consists of more than 500 stocks. In Novem-

ber 2022, the top three companies, according to the index weight, were Apple, Microsoft,

and Amazon.com. Also, the top three represented sectors were information technology,

health care, and financials. (Indices 2022b)
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Unlike stocks, it is not possible to invest directly in the S&P 500 index. Instead, it is, for

example, possible to invest in a fund that uses the index as a benchmark and that tracks

its performance and content (Kenton 2022). At the end of the year 2020, more than $5.4

trillion was invested in the performance of this index (Indices 2022b). Furthermore, the

performance of S&P 500 index is commonly used to indicate the health of current and

future U.S. markets (Chen 2022).

2.6 Earlier work
In this thesis, the aim is to develop models for forecasting time series data and to investi-

gate selected methods for analyzing model explainability. Consequently, a brief literature

search was done to find earlier studies that combine financial data forecasting and model

explainability analysis. Summaries of forecasting financial data using machine learning

were easily found, but the number of studies reporting the usage of XAI alongside finan-

cial prediction model development was rather limited and they were typically published

in recent years. Findings are briefly covered next.

2.6.1 Financial time series forecasting models

Krollner et al. (2010) did a literature search to summarize what approaches have been used

to develop machine learning models to predict stock index. The reason for the study was

two-sided. Firstly, stock index prediction is a challenge in financial time series forecast-

ing, thanks to the large price volatility in the stock market. Secondly, the aim of the study

was to help other researchers to better know what has been done before in the field and

what potential future studies could be. The following information was collected: machine

learning method used, forecasting time-frame, what features were used, and how the mod-

els were evaluated. Based on the results, a trend of using artificial neural networks (ANN)

with new training algorithms or combining those with new machine learning methods was

seen. Also, the most common timeframe was one day ahead. However, it was expected

that one-day ahead predictions would not bring much value for an investor. Most com-

monly, features contained lagging and the values were derived from established technical

indicators. As an improvement opportunity, in addition to developing accurate time se-

ries models, future studies could examine how the models developed could improve the

risk-return tradeoff of an investor in a real-life scenario.
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A newer literature search was done by Sezer et al. (2020). In this study, the extensive

search focused on studies that used deep learning for financial time series forecasting and

that were published in the years 2005–2019. Based on the findings, the introduction of

deep learning for financial time series forecasting gave a new boost to the field studied

for more than 40 years. According to Sezer et al. (2020), RNN-based models, especially

LSTM, are the most commonly used models for financial time series forecasting. How-

ever, although DL models were commonly reported as better than traditional machine

learning models, many studies also noted similar performances. Improved development

environments, computing power, data availability, better performance, and feature learn-

ing possibilities have contributed to DL models becoming more common.

Fischer & Krauss (2018) focused on developing LSTM networks to a S&P 500-related

prediction task. In addition to developing a highly accurate model, the study aimed to

provide an in-depth guide to the model development, feature preparation, and utilization

of the model predictions in the form of a trading strategy. LSTM was found to be supe-

rior to random forest and logistic regression both from the prediction accuracy and daily

returns after transaction costs point-of-view.

2.6.2 Explainability of financial time series forecasting models

In work by Carta et al. (2022), permutation-based feature relevance analysis was utilized

in automatic feature selection to gather data for models that predict next-day returns of

selected stocks. This approach was found useful both in selecting important features

as well as improving both prediction accuracy and model interpretability. The usage of

random forest model was explained by its explainability and because it has been found

to work well with financial prediction tasks. The capability of finding irrelevant fea-

tures of the method developed in the study was also compared to the state-of-the-art ap-

proaches, including random forest feature importance and local interpretable models. The

new method introduced was found to be superior to the state-of-the-art approaches. As

stated by the authors, explainability is generally speaking challenging and it is especially

challenging with financial data due to the typical low signal-to-noise ratio and hard inter-

pretability of trends. Utilizing the method for automatic feature selection could help in

reaching more robust and reliable explainable models.
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Freeborough & van Zyl (2022) investigated the transferability of existing XAI methods to

financial time series prediction. According to the authors, although explainable systems

are becoming more desired, only a little development has been seen in the utilization

of XAI with financial data. This was claimed to be apparent due to the limited number

of XAI methods published for regression problems. In the study, deep learning models

RNN, LSTM, and GRU were trained to investigate explainability with S&P 500 stocks

data. The explainability analysis focused on investigating the importance of features,

single data points, and different model parts. Four XAI methods were used: ablation, per-

mutation, added noise, and integrated gradients. Based on the results of the explainability

analysis, GRU was seen to retain long-term information the best and RNN the worst. In

addition, although XAI methods used were found usable for financial time series models

and robust in clarifying how each model ends up to the prediction, the need for less ab-

stract, more accurate, and more context-specific XAI methods to describe model behavior

in a practical way would be needed.

Ilic et al. (2021) developed an explainable boosted linear regression (EBLR) and investi-

gated its usage for time series forecasting in comparison to other established models such

as random forest and gradient boosting regression. EBLR is based on iterative model

updates that utilize the error between the true and predicted value, decision tree, and

baseline linear model. Explainability analysis focused on feature importance. Three dif-

ferent datasets were used in the study: synthetic dataset that mimics the sales of a store,

true sales dataset of stores, and electricity consumption dataset. Based on the results,

EBLR was found to perform similarly in comparison to other approaches. Due to the

interpretability of the model predictions and prediction accuracy, EBLR was claimed as a

promising alternative method for time series forecasting.
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3 MATERIALS

3.1 Raw data
S&P 500 stocks data with Creative Commons License 1.0 (no copyrights) from Kaggle

(Larxel 2022) was used in this thesis. This data is updated every day, and at the time of

writing this thesis, the data contained daily stock data from 2010 to 2022 and index data

from 2012 to 2022. The raw data contained daily S&P 500 index value and company-

specific stock data.

The company data included trading day-specific close, adjusted close, high, low, open,

and volume information for each company included in the index. Close means the price

of the last stock traded at the end of a trading period, whereas open means the price of

the stock at the beginning of a trading period. Adjusted close is similar to close, but

it takes into account company actions such as splits and dividends (Balasubramaniam

2022). High and low mean a stock’s maximum and minimum prices during a trading

period, respectively. Lastly, volume defines the number of shares traded.

Company details, such as sector and industry classification, market capitalization, rev-

enue, and the number of full-time employees, were also available in a separate file. Be-

cause the index includes multiple classes of stock of some constituent companies, such

as class A (GOOGL) and class C (GOOG), the current index consists of data from 503

stocks in total.

The closing prices from 2010 to 2022 of S&P 500 companies with the index from 2012

to 2022 are shown in Figure 4. Closing prices are shown as gray lines, whereas the index

is shown as a black line. Although the trends contain occasional drops from time to time,

both closing prices and index have increased from 2012 to 2022. The fall of 2020 occurred

around the same time coronavirus became a pandemic. Luckily, as it is possible to see

from the trends, the companies have recovered from the pandemic well. Now in 2022, the

trends have started to decrease again, though.
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Figure 4. Closing prices and S&P 500 index.

3.2 Data content
Data from companies included in the S&P 500 index is summarized in Figures 5–8. These

summarize sectors, continents, number of full-time employees, and market capitalization

of the companies.

As shown in Figure 5, there are altogether 11 different sectors represented, and the top

three sectors are technology (14.2%), industrials (14.6%), and financial services (13.8%).

Based on Figure 6, the majority of the companies included in the index come from North

America (96.4%), and others come from Europe (3.4%) and Asia (0.2%). Most com-

monly, there are ≥25 thousand full-time employees (Figure 7). From Figure 8 (market

capitalization versus the number of full-time employees), it is possible to see that compa-

nies included in the index are similar from this perspective. Only a few companies have

more employees and/or higher market capitalization than the majority. Variation of mar-

ket capitalization value between the companies could be utilized, though, by, for example,

grouping companies per market capitalization value and using this group info as part of

the data fed to the model.
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Figure 5. Sectors represented in S&P 500 companies.

Figure 6. Continents represented in S&P 500 companies.
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Figure 7. Number of full-time employees in S&P 500 companies.

Figure 8. Market capitalization with the number of full-time employees.
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3.3 Data sets
Raw index data was limited up to the end of October 2022. The data was divided into

separate data sets for training and testing purposes with a 70:30 ratio. Data preparation

for model training is described in more detail in Section 4.

The division between training and testing data is shown in Figure 9. Note that although

this visualization contains both closing prices and S&P 500 index, the development data is

based on S&P index only. To separate trends more efficiently, percentual change in price

or logarithmic scaling in the y-axis could have been used instead. However, the purpose of

this visualization is to show how the stocks in general have affected the index value, how

the index has evolved through the years, and what the raw index trend in training and test

set looks like. As it is possible to see, few stocks have affected the index greatly.

Figure 9. Closing prices and S&P 500 index with training and test sets.
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4 METHODS

4.1 Prediction models
Different time series models were developed with Python for predicting S&P 500 index

at each timestep. To find out what the baseline prediction accuracy is for S&P 500 in-

dex forecasting, models were kept simple. The following five relatively simple models

were trained using sklearn library: linear regression, decision tree, K-nearest neighbors,

random forest, and gradient boost. Deep learning models, such as LSTM, were also con-

sidered, but these were left out of the scope because five models are already sufficient for

comparing models and testing explainability methods.

4.2 Feature and response selection

4.2.1 Feature-response pairs

Different feature-response pairs were investigated and the most suitable feature-response

pair was selected for final model development. Feature-response pairs that were under

consideration are listed in Table 3. For simplicity, feature IDs are used later in this thesis

to refer to the corresponding features.

To find out what the baseline prediction accuracy is for S&P 500 index forecasting and

to minimize data preparation work, features and responses were derived from S&P index

data. The first feature-response pair consisted of S&P 500 index data only and the second

pair included also additional derivatives of S&P 500 index. Features included moving

S&P 500 index mean of the previous 5, 30, and 365 days; moving S&P 500 index standard

deviation of the previous 5, 30, and 365 days; ratios between moving 5- and 365-day

means; and ratios between moving 5- and 365-day standard deviations. S&P 500 index

was used as response. The third pair was similar to the second one, but all values were

ratios. Features included ratios between S&500 index and moving S&P 500 index mean of

the previous 5, 30, and 365 days; ratios between S&500 index and moving S&P 500 index

standard deviation of the previous 5, 30, and 365 days; ratios between moving 5- and 365-

day means; and ratios between moving 5- and 365-day standard deviations. The response

was in the format of S&P 500 index(t)/S&P 500 index(t-1), where t is time.
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Table 3. Feature-response pairs.

Pair Feature ID Features Responses

1 NA S&P 500 index(t-1) S&P 500 index(t)

2

F1 5-day average of S&P 500 index

S&P 500 index(t)

F2 30-day average of S&P 500 index

F3 365-day average of S&P 500 index

F4
5-day average of S&P 500 index

365-day average of S&P 500 index

F5 5-day standard deviation of S&P 500 index

F6 30-day standard deviation of S&P 500 index

F7 365-day standard deviation of S&P 500 index

F8
5-day standard deviation of S&P 500 index

365-day standard deviation of S&P 500 index

3

F1
S&P 500 index

5-day average of S&P 500 index

S&P 500 index(t)
S&P 500 index(t-1)

F2
S&P 500 index

30-day average of S&P 500 index

F3
S&P 500 index

365-day average of S&P 500 index

F4
5-day average of S&P 500 index

365-day average of S&P 500 index

F5
S&P 500 index

5-day standard deviation of S&P 500 index

F6
S&P 500 index

30-day standard deviation of S&P 500 index

F7
S&P 500 index

365-day standard deviation of S&P 500 index

F8
5-day standard deviation of S&P 500 index

365-day standard deviation of S&P 500 index
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4.2.2 Best feature-response pair

When the first feature-response pair was used to train and test models, the models were

overfitted with training data and performed poorly with test data. With the second feature-

response pair, the models performed slightly better than with the first pair. However, as

expected, models performed well only roughly up to the maximum value of index value

in training data. The results with the third feature-response pair were the best, and no

maximum value limitations were seen. Clearly, using features and responses with a more

controlled value range improved the model performance.

Features and responses of the third pair were selected for model development and explain-

ability analysis. The correlation between features and responses was also analyzed to get

more insight into how features affect predictions and how features affect each other.

4.3 Data processing
Because of the moving window up to 365-days, the first 365 days of training and test

data were excluded from features and responses. This way, it was possible to mitigate

including missing values in training and testing data. The excluded parts are shown in

Figure 10.

Figure 10. S&P 500 index with training and test sets and regions excluded due to moving window.
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In addition to excluding missing values, data was normalized to value region 0–1 by using

minMaxScaler from sklearn library. The scaler was included in the model pipeline, and

thus both the scaler and model were trained using training data only. Normalization to

value region 0–1 is shown Equation 15

X ′ =
X −Xmin

Xmax −Xmin
, (15)

where X is the value in the dataset, Xmin is the smallest value in the dataset, Xmax is the

highest value in the dataset, and X’ is the normalized value in the dataset.

To predict index values at time t, the ratios predicted by the model at time t were multiplied

by the earlier value of the S&P 500 index(t-1).

4.3.1 Model parameter optimization

Selected model parameters were optimized by using randomizedGridSearchCV with 5-

fold cross-validation (CV) from sklearn library. randomizedGridSearchCV was used in-

stead of exhaustive gridSearchCV in order to expedite the optimization process. In CV

5-fold, training data is split into five subsets so that one subset is used for testing the

model and the rest is used for training the model. Then, the sets are updated to train and

test the model again. This process is repeated five times so that every subset has been used

once for testing. Cross-validation is a useful and robust approach for testing the model

performance. The optimized models were tested with separate test data.

4.4 Prediction accuracy
Common metrics were used to evaluate the prediction accuracy of models developed, both

from the training and testing performance point-of-view. Prediction results with training

and test data were also compared to see how well the model has learned from the training

data. The functions used to calculate metrics for comparing models were mean absolute

error (MAE, Equation 16)
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MAE =
1
N

N

∑
i=1

|yi − ŷi|, (16)

root mean square error (RMSE, Equation 17)

RMSE =

√
1
N

N

∑
i=1

(yi − ŷi)2, (17)

and coefficient of determination (R2, Equation 18)

R2 = 1− ∑
N
i=1(yi − ŷi)

2

∑
N
i=1(yi − y)2

, (18)

where N is the number of samples, yi is the true value at index i, ŷi is the predicted value

at index i, and y is the mean of values.

MAE and RMSE describe the overall prediction accuracy from two perspectives. MAE

describes the general error level, whereas RMSE highlights the model performance at

individual predictions by weighting high errors more than small ones. R2 represents the

goodness of the fit of the model. In practice, it describes how well previously unseen data

will be predicted by the model based on the proportion of explained variance. The perfect

fit between the true and predicted values is indicated by a value of 1.

4.5 Explainability methods
To systematically investigate and compare models developed and explainability methods

used, selected model-agnostic methods were preferred. Methods to be used and analyzed

are presented next.

In the study of Carta et al. (2022), permutation feature importance and LIME were used as

standard explainability methods for a random forest time series model. Because financial

data was used in the study, these methods were also used in this thesis. SHAP was also

used to analyze models because of its popularity.
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As introduced in Section 2, model behavior can be investigated both globally and locally.

Permutation feature importance can be used to calculate global, whereas LIME can be

used to calculate local feature importance values. SHAP can be used to investigate both

global and local behavior. Hence, in addition to defining feature importance both at a

global and local level, SHAP can be used to investigate the global and local behavior of

the best model. Permutation importance function can be loaded from the sklearn library,

LIME from LIME library, and SHAP from SHAP library.

To better understand how the model works and be able to investigate the logic behind the

model, structure visualizations can also be used to explain the model behavior. Accord-

ing to Table 2, all three methods for transparent models; simulations, decompositions,

and inspection at the algorithmic level; are available for decision trees. However, tree en-

sembles are not transparent and thus, simulatability and decomposability apply for linear

regression and K-nearest neighbors only.
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5 RESULTS

5.1 Correlation between selected features and responses
Correlation analysis was run with training data to better understand how features affect

model responses. The correlation values are shown in Figure 11. As it is possible to see,

small positive and negative correlations between S&P 500 index ratio and features exist,

whereas the correlation is stronger between the features. The highest positive correlations

relate to feature pairs F4-F3, F2-F1, and F3-F2, and the highest negative correlations

relate to feature pairs F7-F4, F7-F3, and F8-F3.

Figure 11. Correlation between features and responses of pair 3, training data.

5.2 Optimized parameters
The selected parameters and optimization results are shown in Table 4.
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Table 4. Model parameter optimization results.

Model Parameters to optimize Best value
1 Linear regression normalize: False, True False

2 Decision tree

max_depth: 10, 20, 50, 100 50
max_leaf_nodes: 10, 20, 50, 100 50

min_samples_leaf: 10, 20, 50, 100 100
min_samples_split: 10, 20, 50, 100 50

3 KNN
n_neighbors: 5, 10, 20, 50 50
weights: uniform, distance uniform

algorithm: auto, ball_tree, kd_tree, brute kd_tree

4 Random forest

n_estimators: 10, 20, 50, 100, 150 50
max_depth: 10, 20, 50, 100 100

max_leaf_nodes: 10, 20, 50, 100 20
min_samples_leaf: 10, 20, 50, 100 100
min_samples_split: 10, 20, 50, 100 10

5 Gradient boost

n_estimators: 10, 20, 50, 100, 150 20
learning_rate: 0.1, 0.01, 0.001, 0.0001 0.0001

criterion: friedman_mse, squared_error, mse friedman_mse
max_depth: 10, 20, 50, 100 100

max_leaf_nodes: 10, 20, 50, 100 50
min_samples_leaf: 10, 20, 50, 100 100
min_samples_split: 10, 20, 50, 100 50

5.3 Prediction accuracy
Training and test results of optimized models are summarized in Table 5. Model-specific

results are also visualized in Figures 12–16. Prediction accuracy metrics include MAE,

RMSE, and R2 score. Clearly, training MAE and RMSE are smaller than test MAE and

RMSE indicating that models overfit with training data. R2 score varies only slightly,

and it is above 0.9 with all models. The best performance was obtained with model 5,

gradient boost. Next explainability of all models is investigated. The best model is used

to visualize model-specific explanations as an example.

Table 5. Training and test results.

Train Test
Model MAE RMSE R2 MAE RMSE R2

1 Linear regression 13.528 19.815 0.997 40.996 53.479 0.967
2 Decision tree 13.423 19.564 0.997 39.486 52.407 0.968
3 KNN 13.478 19.758 0.997 39.518 51.799 0.969
4 Random forest 13.325 19.594 0.997 39.306 52.027 0.968
5 Gradient boost 13.579 19.917 0.997 39.059 51.722 0.969
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Figure 12. Predictions with model 1.

Figure 13. Predictions with model 2.

Figure 14. Predictions with model 3.
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Figure 15. Predictions with model 4.

Figure 16. Predictions with model 5.
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5.4 Global explainability

5.4.1 Permutation feature importance

Global model-agnostic explainability was investigated by calculating permutation feature

importance values from test data. The results without and with normalization of absolute

values are shown in Table 6. Note that the results are rounded, and for example values of

gradient boost are small but still other than 0. To ease the comparison between features

and models, the normalized absolute values are visualized in a heatmap in Figure 17.

Also, an example of the model-specific results is shown in Figure 18. Features are listed

on the y-axis, and related importance is shown on the x-axis. Based on normalized values

in Table 6, the top three most important features on average are F2, F3, and F4. Note that

the heatmap contains the normalized absolute values, and thus, the negative and positive

effects are no longer visible. Hence, the table should only be used for identifying which

features have a negative and which positive effect on the predictions.

Table 6. Permutation feature importances.

Model Values
F1 F2 F3 F4 F5 F6 F7 F8

1 Linear regression 1.277 0.002 116.252 114.151 0.001 -0.003 0.020 0.006
2 Decision tree 0.002 0.018 0.000 0.007 0.002 0.000 0.000 0.002
3 KNN 0.006 0.007 0.006 0.000 0.000 0.001 0.005 0.002
4 Random forest 0.000 0.007 -0.001 -0.003 0.000 0.000 0.000 -0.002
5 Gradient boost 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

AVG 0.257 0.007 23.251 22.831 0.001 0.000 0.005 0.002
Normalized absolute values

1 Linear regression 0.011 0.000 1.000 0.982 0.000 0.000 0.000 0.000
2 Decision tree 0.122 1.000 0.000 0.397 0.128 0.000 0.000 0.132
3 KNN 0.825 1.000 0.913 0.000 0.018 0.132 0.743 0.337
4 Random forest 0.005 1.000 0.218 0.375 0.000 0.051 0.021 0.230
5 Gradient boost 0.356 1.000 0.000 0.073 0.203 0.000 0.000 0.278

AVG 0.264 0.800 0.426 0.365 0.070 0.037 0.153 0.195
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Figure 17. Heatmap of normalized absolute permutation feature importances.

Figure 18. Permutation feature importances of model 5.
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5.4.2 SHAP feature importance

Feature importances from test data were also calculated by using SHAP. The results with-

out and with normalization of absolute values are shown in Table 7 and the normalized

absolute SHAP feature importance values are visualized in a heatmap in Figure 19. An

example of the model-specific results, visualized the same way as before, is shown in

Figure 20. Based on normalized values in Table 7, the top three most important features

on average are F4, F2, and F8.

Table 7. SHAP feature importances.

Model Values
F1 F2 F3 F4 F5 F6 F7 F8

1 Linear regression 0.008 0.000 0.086 0.088 0.000 0.000 0.002 0.000
2 Decision tree 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.001
3 KNN 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
4 Random forest 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
5 Gradient boost 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

AVG 0.002 0.000 0.017 0.018 0.000 0.000 0.000 0.000
Normalized absolute values

1 Linear regression 0.089 0.000 0.978 1.000 0.000 0.001 0.019 0.001
2 Decision tree 0.344 1.000 0.000 0.750 0.301 0.000 0.257 0.881
3 KNN 0.191 0.324 0.732 1.000 0.000 0.193 0.577 0.175
4 Random forest 0.000 1.000 0.172 0.487 0.025 0.068 0.224 0.267
5 Gradient boost 0.344 1.000 0.000 0.750 0.301 0.000 0.257 0.881

AVG 0.193 0.665 0.376 0.797 0.125 0.052 0.267 0.441
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Figure 19. Heatmap of normalized absolute SHAP feature importances.

Figure 20. SHAP feature importances of model 5.
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5.5 Local explainability
Local model-agnostic explainability was investigated by utilizing LIME. The effects of

features on model-specific predictions at timesteps 1 and 100 are presented next.

5.5.1 LIME feature importance

Prediction at timestep 1

The results of LIME feature importances at timestep 1 without and with normalization

of absolute values are summarized in Table 8 and the normalized absolute LIME feature

importance values are visualized in a heatmap in Figure 21. An example of the model-

specific results is shown in Figure 22. These results are visualized almost the same way

as before, features are shown on the y-axis and the feature effects on prediction are shown

on the x-axis. In addition, the red bars indicate negative and the green ones positive effect

on the prediction. Note that the order of features on the y-axis is based on the feature

effect value. According to Table 8, the top three most important features on average are

F4, F8, and F7.

Table 8. LIME feature importances at timestep 1.

Model Values
F1 F2 F3 F4 F5 F6 F7 F8

1 Linear regression -0.001 0.000 0.057 -0.059 0.000 0.001 0.002 0.000
2 Decision tree 0.000 -0.001 0.000 -0.001 0.000 0.000 0.000 0.001
3 KNN 0.000 0.000 0.000 -0.001 0.000 0.000 0.001 0.000
4 Random forest 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 Gradient boost 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

AVG 0.000 0.000 0.011 -0.012 0.000 0.000 0.001 0.000
Normalized absolute values

1 Linear regression 0.016 0.000 0.968 1.000 0.002 0.011 0.032 0.002
2 Decision tree 0.305 0.388 0.036 0.361 0.017 0.000 0.176 1.000
3 KNN 0.028 0.234 0.592 1.000 0.000 0.105 0.954 0.180
4 Random forest 0.000 0.726 0.245 0.597 0.208 0.130 0.784 1.000
5 Gradient boost 0.357 0.447 0.000 0.387 0.010 0.017 0.117 1.000

AVG 0.141 0.359 0.368 0.669 0.047 0.053 0.413 0.636
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Figure 21. Heatmap of normalized absolute LIME feature importances at timestep 1.

Figure 22. LIME feature importances of model 5 at timestep 1.
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Prediction at timestep 100

The results of LIME feature importances at timestep 100 without and with normalization

of absolute values are summarized in Table 9 and the normalized absolute LIME feature

importance values are visualized in a heatmap shown in Figure 23. An example of the

model-specific results is shown in Figure 24. According to Table 9, the top three most

important features on average are F4, F8, and F2.

Table 9. LIME feature importances at timestep 100.

Model Values
F1 F2 F3 F4 F5 F6 F7 F8

1 Linear regression 0.013 0.000 0.057 -0.057 -0.001 0.001 0.003 0.002
2 Decision tree 0.000 -0.001 0.000 -0.001 0.000 0.000 0.000 0.001
3 KNN 0.000 0.000 0.000 -0.001 0.000 0.000 0.001 0.000
4 Random forest 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
5 Gradient boost 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

AVG 0.002 0.000 0.011 -0.012 0.000 0.000 0.001 0.001
Normalized absolute values

1 Linear regression 0.218 0.000 1.000 0.997 0.005 0.007 0.037 0.020
2 Decision tree 0.264 0.457 0.009 0.440 0.117 0.000 0.197 1.000
3 KNN 0.173 0.113 0.831 0.970 0.000 0.436 1.000 0.175
4 Random forest 0.048 1.000 0.204 0.420 0.032 0.000 0.454 0.535
5 Gradient boost 0.310 0.416 0.010 0.434 0.143 0.000 0.144 1.000

AVG 0.203 0.397 0.411 0.652 0.059 0.089 0.366 0.546
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Figure 23. Heatmap of normalized absolute LIME feature importances at timestep 100.

Figure 24. LIME feature importances of model 5 at timestep 100.
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5.5.2 SHAP feature importance

Prediction at timestep 1

The results of SHAP feature importances at timestep 1 without and with normalization of

absolute values are shown in Table 10 and the normalized absolute SHAP feature impor-

tance values are visualized in a heatmap in Figure 25. An example of the model-specific

results is shown in Figure 26. Based on normalized values in Table 10, the top three most

important features on average are F4, F8, and F3.

Table 10. SHAP feature importances at timestep 1.

Model Values
F1 F2 F3 F4 F5 F6 F7 F8

1 Linear regression 0.001 0.000 0.120 0.123 0.000 0.000 0.002 0.000
2 Decision tree 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
3 KNN 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
4 Random forest 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 Gradient boost 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

AVG 0.000 0.000 0.024 0.025 0.000 0.000 0.000 0.000
Normalized absolute values

1 Linear regression 0.009 0.001 0.977 1.000 0.000 0.001 0.015 0.001
2 Decision tree 0.073 0.202 0.000 0.110 0.084 0.000 0.065 1.000
3 KNN 0.000 0.009 0.314 1.000 0.021 0.486 0.099 0.167
4 Random forest 0.571 0.548 0.539 0.814 0.588 0.000 1.000 0.773
5 Gradient boost 0.073 0.202 0.000 0.110 0.084 0.000 0.065 1.000

AVG 0.145 0.192 0.366 0.607 0.155 0.097 0.249 0.588
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Figure 25. Heatmap of normalized absolute SHAP feature importances at timestep 1.

Figure 26. SHAP feature importances of model 5 at timestep 1.
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Prediction at timestep 100

The results of SHAP feature importances at timestep 100 without and with normaliza-

tion of absolute values are shown in Table 11 and the normalized absolute SHAP feature

importance values are visualized in a heatmap in Figure 27. An example of the model-

specific results is shown in Figure 28. Based on normalized values in Table 11, the top

three most important features on average are F8, F4, and F3.

Table 11. SHAP feature importances at timestep 100.

Model Values
F1 F2 F3 F4 F5 F6 F7 F8

1 Linear regression 0.008 0.000 0.096 0.109 0.000 0.000 0.002 0.000
2 Decision tree 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002
3 KNN 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
4 Random forest 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 Gradient boost 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

AVG 0.002 0.000 0.019 0.022 0.000 0.000 0.001 0.000
Normalized absolute values

1 Linear regression 0.074 0.000 0.883 1.000 0.000 0.000 0.020 0.001
2 Decision tree 0.236 0.173 0.000 0.096 0.142 0.000 0.049 1.000
3 KNN 0.083 0.105 0.360 1.000 0.000 0.155 0.217 0.099
4 Random forest 0.343 1.000 0.307 0.577 0.070 0.000 0.982 0.861
5 Gradient boost 0.236 0.173 0.000 0.096 0.142 0.000 0.049 1.000

AVG 0.194 0.290 0.310 0.554 0.071 0.031 0.263 0.592
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Figure 27. Heatmap of normalized absolute SHAP feature importances at timestep 100.

Figure 28. SHAP feature importances of model 5 at timestep 100.
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5.6 Additional SHAP analysis with best model
The best model, gradient boost, was investigated further by using SHAP. Visualizations

of SHAP summary plot, heatmap, and force plots at timesteps 1 and 100 are shown in

Figures 29–32.

In Figure 29, SHAP values are shown on the x-axis, features are shown on the y-axis on

the left, and feature values are shown on the y-axis on the right. Values are color-coded,

red indicates high and blue low feature value. Values on the left side of the horizontal

line have a negative effect, whereas values on the right side of the horizontal line have

a positive effect on the prediction. For example, high and low values of F2 seem to

have a great effect on predictions, whereas F3 and F6 seem to have the lowest effect on

predictions in general.

Figure 29. SHAP summary plot of best model.

In Figure 30, features are shown on the left and SHAP values are shown on the right. Pre-

dictions are visualized with respect to instances on top of all feature-specific information.

In addition, global feature importance of each feature is visualized in a bar plot on the

right. As interpreted from Figure 29, high F2 values affect prediction greatly. The same is

observable from the heatmap, but now the effect of features on predictions is more clearly

visualized.
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Figure 30. SHAP heatmap of best model.

The effect of the most important features on predictions at timesteps 1 and 100 are shown

in Figures 31 and 32. Again, color-coding is used; blue indicates a negative and red posi-

tive effect on prediction. The bold number stands for the timestep-specific prediction. The

base value represents the average of predictions in the dataset. For example, at timestep

1, F2 has a negative effect on the prediction, whereas at timestep 100, both features F1

and F2 have a negative effect on the prediction. Other features have a positive effect on

the predicted value. In comparison to earlier permutation, LIME, and SHAP feature im-

portance visualizations, the force plot is a more compact visualization because the effect

of each feature on prediction is shown on the same line.
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Figure 31. SHAP force plot of best model at timestep 1.

Figure 32. SHAP force plot of best model at timestep 100.
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5.7 Model-specific explainability

5.7.1 Structure of decision tree

Model 2, a decision tree, contains six layers. It is transparent in all three categories of

model transparency. Consequently, it is possible to visualize its structure, and by fol-

lowing the if-else logic from the top to the bottom of the decision tree, it is possible to

understand how the model works. The structure is partially visualized in Figures 33–35.

The visualizations contain the first three layers of the decision tree. As seen from these

visualizations, the first layer is based on F2, the second on F7 and F4, and the third one

on F8.

Figure 33. Model 2 structure with the first layer.
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Figure 34. Model 2 structure with first two layers.

Figure 35. Model 2 structure with first three layers.
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5.7.2 Structure of best model

Model 5, based on gradient boost, is an ensemble of 20 decision trees. Because its struc-

ture cannot be directly visualized, it can be indirectly visualized by training a decision tree

with the same features and original predictions as responses and visualizing the structure

of the trained model. By following the if-else logic of the decision tree trained, it is

possible to better understand how the original model works.

The decision tree contains 39 layers. The structure is partially visualized in Figures 36–

38. The visualizations contain the first three layers of the decision tree the same way as

before. As seen from Figure 36, the first layer is based on F2, the second one on F4 and

F7, and the third one on F7, F4, F2, and F8.

Figure 36. Model 5 structure with the first layer.
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Figure 37. Model 5 structure with first two layers.

Figure 38. Model 5 structure with first three layers.
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6 DISCUSSION

6.1 Results

6.1.1 Prediction accuracy

Five different models were trained. Training and test set prediction accuracy was evalu-

ated by using MAE, RMSE, and R2 score. With training data, MAEs were all roughly

13, but with test data MAEs were close to 40. The models may overfit with training data

because prediction accuracies with training data were better than with test data. The best

prediction accuracy with test data was obtained with model 5, gradient boost.

6.1.2 Explainability methods

Both global and local model-agnostic explainability of five different models were investi-

gated. In practice, permutation feature importance values were calculated for each feature

to globally explain how features affect predictions. In addition, LIME was used to explain

how features affect predictions at specific timesteps. Permutation importance and LIME

were selected according to the study of Carta et al. (2022). In addition to permutation im-

portance and LIME, SHAP was also used to investigate model behavior both at a global

and local level. SHAP was also used to investigate the best model in more detail.

In general, the level of explainability of the five models included in this thesis was good.

The level of explainability results mainly from the simplicity of the model structures. Per-

mutation importance, LIME, and SHAP are useful tools to get explanations efficiently and

to find out whether other methods or deeper explainability analysis are needed. An easy

way to investigate models more would be to simply continue using SHAP - as illustrated

in this thesis.

The results between the models can also be easily compared for example by using nor-

malized absolute values and a heatmap. This way it is easy to see what the most important

features are and how these differ between 1) the models, 2) instances, and 3) between ex-

plainability methods. Thus, by comparing global and local explainability results between

the models, it can also be possible to identify what features are generally useful with se-

lected models and what features may help in fine-tuning the predictions. In the majority
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of the feature importance analyses, F4 was on average the most important feature. The

second and third most important features varied commonly between F2 and F8.

In addition to using permutation importance, LIME, and SHAP, decision tree and best

model were investigated further by visualizing the model structures. Because the best

model consists of several decision trees, its structure is more complex than a single de-

cision tree. Consequently, its structure was indirectly visualized by using a surrogate

model. In practice, a decision tree was first trained with the features and predictions of

the original model, and then the structure of the decision tree was visualized to explain

how the best model makes predictions.

By using these explainability methods, it was possible to better understand how the mod-

els could be analyzed, how features affect model-specific predictions, what information

the selected methods provide, and how this information can be utilized. In addition to the

methods used in this thesis, several other post-hoc explainability methods were covered

in Section 2. Based on the literature search, there are several relatively easy-to-use and in-

terpretable explainability methods available. Of course, each method has its benefits and

drawbacks, and thus, it is important to get started with selected methods, analyze results

critically, and deepen the explainability analysis as per need.

6.1.3 Prediction accuracy versus level of explainability

Model interpretability and prediction accuracy indirectly proportional (Arrieta et al. 2020):

the better the prediction accuracy, the poorer the model interpretability. A similar phe-

nomenon was found in this thesis: model 1, linear regression, had the highest MAE with

test data, whereas model 5, gradient boost, had the smallest MAE with test data.

6.2 Improvement opportunities

6.2.1 Prediction accuracy

This thesis work could be continued by testing how alternative features, model hyper-

parameter optimization, data windowing, and deep learning affect prediction accuracy.

Especially the effect of other seasonal features, such as public holidays and weekdays,

on S&P 500 index predictions could be investigated. In addition, because according to
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the literature search, LSTM has been found a useful model in time series forecasting and

efficient to learn long-term dependencies in data, the usability of LSTM could also be

investigated.

Some lag between true and predicted index values was observed. The lag in test data was

investigated in more detail by calculating the absolute delay between the time of true and

the time of the next closest predicted index value. The median and mode of delays were

both one day. Hence, the typical lag was one day and longer delays were temporary. Most

likely, the earlier index value (t-1) and lack of features describing day-level changes in the

index contribute to the lag. Smoothing features before taking predictions as well as using

alternative features and deep learning could help in reducing the small lag in the forecast.

These could reduce the number of outliers in features and help the model and predictions

to adapt to the true trend better.

Prediction accuracies could also be compared to results reported in similar studies. Based

on the brief literature search, the work by Freeborough & van Zyl (2022) was found to

be close to this thesis. However, some differences exist. For example, in this study, deep

learning models LSTM, GRU, and RNN were used to predict S&P 500 index by using

features derived from S&P 500 stock data. Also, symmetric mean absolute percentage

error (SMAPE, Equation 19) was used by Freeborough & van Zyl (2022) to evaluate

prediction accuracy instead of MAE, RMSE, and R2 score

SMAPE =
2
N

N

∑
i=1

|Yi − Ŷi|
|Yi|+ |Ŷi|

, (19)

where N is the number of instances, Yi are true, and Ŷi are predicted values. Hence,

if this thesis topic is investigated further, SMAPE could also be calculated. Because

SMAPE limits the effect of individual high errors on prediction accuracy, it could ease

the comparison between selected studies and provide a more robust view of the model

performance.
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6.2.2 Explainability methods

Permutation importance, LIME, and SHAP provided sufficient information about how

the features affect predictions and what features are the most important ones. If wanted,

models could be further investigated by using selected model-specific methods to get

more insight into how features interact with a specific model. Additional analysis was

not, however, included in this thesis because the research questions narrowed the work to

a more generic level of explainable AI concept.

To keep both model development and explainability analysis as simple as possible, the

level of explainability analysis should be adjusted according to the development phase,

needed level of explainability, and expected audience. In other words, several explain-

ability methods are available, and there is no point in using all methods to both improve

the model and explain how it works. This type of approach would easily leave the devel-

oper(s) and other audience overwhelmed by various colorful graphs. Instead, it would be

better to first narrow the number of methods to be used to the minimum, and then widen

the scope of explainability analysis as per need.

For example, if the model development has just started, first it could be most useful to

investigate how features affect the predictions in general. This analysis could be then

used to improve features and exclude irrelevant ones if there are any. Correlation analysis

between features and responses can also provide useful information for data preparation.

Eventually, the model development reaches a point in which the model works well with

specific instances. Hence, to generalize the model more, it could be useful to deepen the

explainability analysis. This could mean investigating how features affect predictions at

specific instances, as well as identifying how and why the effect of each feature at specific

instances varies. Again, this information could be then utilized to improve the model.

Model-specific explainability methods could also be used if needed. Lastly, once the

model has been developed, the most appropriate explainability methods, such as SHAP,

could be used to provide a comprehensive but compact and interpretable summary from

XYZ perspectives to explain how the model developed works.
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7 CONCLUSIONS
This thesis consisted of two parts, model development and model explainability analysis.

To find out what the baseline prediction accuracy is for S&P 500 index forecasting and to

keep data preparation works as simple as possible, models were kept simple and features

and responses were derived from S&P index data only. Selected time series regression

models; linear regression, decision tree, k-nearest neighbors, random forest, and gradi-

ent boost; were developed to predict S&P 500 index. Prediction accuracy was evaluated

by mean absolute error, root mean square error, and R2 score. Selected explainability

methods found in the literature were used to investigate models. The main focus was

on model-agnostic post-hoc methods that can be applied to any trained model. Explain-

ability of all five models was also investigated both at a global and local level by using

permutation importance from sklearn library, LIME from LIME library, and SHAP from

SHAP library. Also, the explainability of the best model was further investigated by using

SHAP.

The best model was model 5, gradient boost. The prediction accuracy of the best model

was considered sufficient both for a baseline version and explainability analysis. As ex-

pected, the level of explainability of each model was good, mainly due to the relatively

simple structures of the models analyzed. The structures of decision tree and best model

(indirectly) were also visualized. Permutation, LIME, and SHAP feature importances

were also compared to find out what the most important features are. The explainability

methods used in this thesis were found sufficient for these types of models.

Three research questions were answered in this thesis. The first research question, what is

meant by the explainability of AI, is about a new concept that has become popular in re-

cent years. Explainable AI, or XAI, is about methods that can be used to explain reliably

and understandably how machine learning models work. Also, it aims to improve other

aspects of model development, such as the trustworthiness, confidence, and informative-

ness of models. Findings from explainability analysis can also be utilized to improve

models even more. The second research question, how the explainability of AI can be

evaluated in practice, was answered by summarizing existing methods available. Tax-

onomy of different explainability methods and summaries of methods at a more general
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level were also covered to help in understanding how all the terms relate to each other.

The third research question, what evaluation methods can be used for investigating the

explainability of time series forecasting models, was answered by showing how selected

global and local model-agnostic methods can be used in practice with the models trained

and what kind of results each method outputs.

The potential next steps of this thesis could focus on using deep learning and additional

explainability methods. For example, LSTM could be trained with similar features, and

the prediction accuracy could be compared to those reported in this thesis. By comparing

the results, it could be possible to see whether a complex model brings additional value

to the prediction problem. Additional explainability methods, such as those specific to

certain models, could also be used to investigate model behavior in more detail. The

necessity of additional explainability methods could also be investigated.

To conclude, this thesis clarified what is meant by explainable AI, what existing explain-

ability methods are available, and how the explainability of common time series models

could be investigated in practice. The concept of XAI is relatively new. Because of its

benefits in improving models and clarifying model behavior to a wide audience, in near

future, XAI can be expected to 1) become a more popular concept and 2) an important

part of model development. Several model-agnostic and -specific explainability meth-

ods for investigating model behavior both at a global and local level exist. Some of the

most desired characteristics of explainability methods include interpretability, intuitive-

ness, robustness, easy-to-use, and comprehensiveness. The last one, comprehensiveness,

a characteristic of a method that can be used to investigate any model at different levels,

still seems to be underway.
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able boosted linear regression for time series forecasting, Pattern Recognition, vol. 120,

, pp. 108–144.

Indices, S&P 500 Dow Jones. 2022a, S&P Dow Jones Indices: index methodology index

mathematics methodology. Available: https://www.spglobal.com/spdji/en/documents/

methodologies/methodology-index-math.pdf.

Indices, S&P Dow Jones. 2022b, S&P 500 factsheet. Available: http://www.spglobal.

com/spdji/en.

77

https://www.spglobal.com/spdji/en/documents/methodologies/methodology-index-math.pdf
https://www.spglobal.com/spdji/en/documents/methodologies/methodology-index-math.pdf
http://www.spglobal.com/spdji/en
http://www.spglobal.com/spdji/en


Kenton, Will. 2022, The S&P 500 Index: Standard & Poor’s 500 Index.

Krollner, Bjoern; Vanstone, Bruce J & Finnie, Gavin R. 2010, Financial time series fore-

casting with machine learning techniques: a survey, pp. 25–30.

Larxel. 2022, S&P 500 stocks (daily updated). Available: https://www.kaggle.com/

andrewmvd/sp-500-stocks?select=sp500_stocks.csv.

Lundberg, Scott M & Lee, Su-In. 2017, A unified approach to interpreting model predic-

tions, Curran Associates, Inc., pp. 4768–4777.

Mehrotra, Dheeraj. 2019, Basics of artificial intelligence & machine learning, Notion

Press.

Molnar, Christoph. 2022, Interpretable machine learning: a guide for making

black box models explainable, 2 edn.. Available: https://christophm.github.io/

interpretable-ml-book/.

Raschka, Sebastian & Mirjalili, Vahid. 2019, Python machine learning, 3 edn., Packt

Publishing.

Ribeiro, Marco Tulio; Singh, Sameer & Guestrin, Carlos. 2016, "Why should I trust you?"

Explaining the predictions of any classifier, vol. 13-17-August-2016, Association for

Computing Machinery, pp. 1135–1144.

Ribeiro, Marco Tulio; Singh, Sameer & Guestrin, Carlos. 2018, Anchors: high-precision

model-agnostic explanations, Proceedings of the AAAI Conference on Artificial Intelli-

gence, vol. 32, no. 1.

Rojat, Thomas; Puget, Raphaël; Filliat, David; Ser, Javier Del; Gelin, Rodolphe & Díaz-

Rodríguez, Natalia. 2021, Explainable artificial intelligence (XAI) on timeseries data:

a survey, arXiv:2104.00950.

Rothman, Denis. 2020, Hands-on explainable AI (XAI) with Python: interpret, visual-

ize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps, Packt

Publishing Ltd.

Schapire, Robert E. 1990, The strength of weak learnability, Machine Learning, vol. 5,

no. 2, pp. 197–227.

78

https://www.kaggle.com/andrewmvd/sp-500-stocks?select=sp500_stocks.csv
https://www.kaggle.com/andrewmvd/sp-500-stocks?select=sp500_stocks.csv
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/


Scikit-learn. 2022a, Decision tree regressor. Available: https://scikit-learn.org/stable/

modules/tree.html.

Scikit-learn. 2022b, K-nearest neighbors regressor. Available: https://scikit-learn.org/

stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.

Scikit-learn. 2022c, Linear regression. Available: https://scikit-learn.org/stable/modules/

generated/sklearn.linear_model.LinearRegression.html.

Scikit-learn. 2022d, Permutation feature importance. Available: https://scikit-learn.org/

stable/modules/permutation_importance.html.

Scikit-learn. 2022e, Random forest regressor. Available: https://scikit-learn.org/stable/

modules/generated/sklearn.ensemble.RandomForestRegressor.html.

Sezer, Omer Berat; Gudelek, Mehmet Ugur & Ozbayoglu, Ahmet Murat. 2020, Financial

time series forecasting with deep learning: a systematic literature review: 2005–2019,

Applied Soft Computing, vol. 90, , p. 106181.

Shapley, Lloyd S. 1953, A value for n-person games, Contributions to the Theory of

Games 2.28, pp. 307–317.

Sutton, Richard S. & Barto, Andrew G. 2018, Reinforcement learning: an introduction,

MIT Press.

Wachter, Sandra; Mittelstadt, Brent & Russell, Chris. 2017, Counterfactual explanations

without opening the black box: automated decisions and the GDPR, Harvard Journal

of Law & Technology, vol. 31, no. 2.

79

https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/modules/permutation_importance.html
https://scikit-learn.org/stable/modules/permutation_importance.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

	Introduction
	Background
	Artificial intelligence
	Time series forecasting
	Usage of time series data
	Examples of forecasting methods

	Explainable artificial intelligence
	Purpose and goals
	Terminology
	Challenges, benefits, and opportunities

	Explainability methods
	Taxonomy of explainability methods
	Explainability of common machine learning models
	Explainability methods in general
	Methods for transparent models
	Examples of global model-agnostic methods
	Examples of local model-agnostic methods
	Examples of model-specific methods

	Index investing
	Pros and cons
	S&P 500 index

	Earlier work
	Financial time series forecasting models
	Explainability of financial time series forecasting models


	Materials
	Raw data
	Data content
	Data sets

	Methods
	Prediction models
	Feature and response selection
	Feature-response pairs
	Best feature-response pair

	Data processing
	Model parameter optimization

	Prediction accuracy
	Explainability methods

	Results
	Correlation between selected features and responses
	Optimized parameters
	Prediction accuracy
	Global explainability
	Permutation feature importance
	SHAP feature importance

	Local explainability
	LIME feature importance
	SHAP feature importance

	Additional SHAP analysis with best model
	Model-specific explainability
	Structure of decision tree
	Structure of best model


	Discussion
	Results
	Prediction accuracy
	Explainability methods
	Prediction accuracy versus level of explainability

	Improvement opportunities
	Prediction accuracy
	Explainability methods


	Conclusions
	References

