
 

 

 

 

 

 

 

 

 

Xuan-An Cao 

HEADLESS CMS AND QWIK FRAMEWORK 

and their practicalities in the future of application development 

 

 

 

 

 

 

 

 

 

School of Technology 
2023 



ACKNOWLEDGEMENTS 

I would like to express my deepest gratitude to everybody who has helped me in 

the process of writing this thesis.  

First and foremost, I would like to thank my advisor, Mr. Kenneth Norrgård for 

his dedicated guidance as well as support and feedback throughout the entire 

research and development phase. This thesis could not have been completed 

without his crucial direction and invaluable expertise. 

I also want to extend my thanks to my leaders and colleagues at BraveBits 

Vietnam where I have spent nearly a year working as a Full Stack developer. 

Their insightful contribution and constructive criticism have broadened my 

knowledge and challenged me to be a more well-rounded software engineer. 

Last but not least, I cannot express how thankful I am to have my family and my 

high school friends to have always been there by my side, through all the ups and 

downs, all the trials and tribulations. Their unconditional love, encouragement 

and support have been the greatest motivation for me to overcome all the 

obstacles that occured. 

This thesis is the collective achievement of all these individuals and I am grateful 

for their contribution, intellectually or mentally. 

Xuan-An Cao, 

Hanoi, Vietnam, 2023 



VAASAN AMMATTIKORKEAKOULU 
UNIVERSITY OF APPLIED SCIENCES 
Information Technology 
 

ABSTRACT 

Author   Xuan-An Cao  
Title   Headless CMS and Qwik Framework 
Year   2023 
Language  English 
Pages   123     
Supervisor  Kenneth Norrgård 

 
Web development is an ever-changing field and the need for more flexible, 
scalable and future-proof methodologies is increasing rapidly. This thesis focuses 
on the two recently developed approaches on web development, Headless CMS 
and Qwik framework, and discusses how a shift towards these two technologies 
addresses the drawbacks and limitations of current traditional web building 
techniques, and the roles they will play in the future of this field. 
 
The thesis consists of two phases: research and development. The research 
phase aims to point out the flaws of current web architecture and determine the 
roles of Headless CMS and Qwik in solving the issue. It does that by means of 
reviewing and analyzing released documents, such as previous studies, official 
documentations and developer interviews, as well as studying real-world cases 
of applying the two emerging technologies. The development phase 
demonstrates an actual implementation of a web application utilizing both 
Headless CMS and Qwik, presenting all the vital steps of building an application, 
from the base architecture to deployment and performance testing, to 
practically prove the indication made in the research part.  
 
The findings manage to comprehensively highlight the advantages of Headless 
CMS and Qwik, as they provide the utmost flexibility by enabling faster web 
development and better content management, which is crucial to omnichannel 
strategies and user experiences. However, the study also identifies several 
drawbacks such as compatibility issues, limited community and documentation,  
as well as a difficult learning curve. The product implemented in the 
development phase achieves its aims by providing a well-functional web 
application with high performance score on the Lighthouse measurement tool. 
 
 
 
 

Keywords  Headless, Qwik, web applications, content and framework   



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS 

ABSTRACT 

TABLE OF CONTENTS ............................................................................................... 4 

LIST OF FIGURES ...................................................................................................... 7 

LIST OF TABLES ...................................................................................................... 10 

LIST OF CODE SNIPPETS ........................................................................................ 11 

LIST OF ABBREVIATIONS ....................................................................................... 13 

1. INTRODUCTION .............................................................................................. 15 

1.1. Background and Context ........................................................................ 15 

1.2. Research Questions and Objectives ....................................................... 15 

1.3. Methodologies ....................................................................................... 16 

1.4. Significance and Contribution ................................................................ 17 

2. THEORETICAL BACKGROUND ........................................................................ 19 

2.1. Headless CMS ......................................................................................... 19 

2.1.1. The Early Era of World Wide Web .................................................. 19 

2.1.2. The Rise and Fall of Monolithic CMS .............................................. 21 

2.1.3. The Emergence of Headless CMS.................................................... 25 

2.1.4. Case Study: Contentful .................................................................... 30 

2.2. Qwik Framework .................................................................................... 33 

2.2.1. The Early Jistory of JavaScript ......................................................... 34 

2.2.2. MV* Architecture and SPA Frameworks ......................................... 37 

2.2.3. Metaframeworks and the Problem of Hydrations.......................... 41 

2.2.4. The Qwik Framework ...................................................................... 43 



2.2.5. Case Study: Builder.io. .................................................................... 47 

3. FILMMASH APPLICATION OVERVIEW ............................................................ 49 

3.1. Background, Motivation, and Objectives ............................................... 49 

3.2. Requirement Analysis ............................................................................. 51 

3.3. Core Functionality and User Flows ......................................................... 52 

3.3.1. Elo’s Rating Algorithm ..................................................................... 52 

3.3.2. User Flow ........................................................................................ 54 

3.3.3. Adding and Retrieving Content from Contentful ............................ 56 

3.4. System Infrastructure and Relevant Technologies ................................ 61 

4. FILMMASH APPLICATION IMPLEMENTATION ............................................... 65 

4.1. Database Design ..................................................................................... 65 

4.2. Backend Implementation ....................................................................... 67 

4.2.1. Backend Code Structure ................................................................. 67 

4.2.2. Data Models .................................................................................... 70 

4.2.3. Routers and Controllers: Gallery Model ......................................... 73 

4.2.4. Routers and Controllers: Film Model .............................................. 78 

4.2.5. Routers and Controllers: User Model ............................................. 82 

4.2.6. Utilities ............................................................................................ 86 

4.2.7. Backend Conclusion ........................................................................ 88 

4.3. Frontend Implementation ...................................................................... 90 

4.3.1. Frontend Code Structure ................................................................ 90 

4.3.2. Root, Global styling, and Entry Giles ............................................... 92 

4.3.3. Routes ............................................................................................. 93 

4.3.4. Initialized Components: Homepage and Header ............................ 95 



4.3.5. Form Components: Login, Sign Up and Create Gallery .................. 97 

4.3.6. Gallery Components: Overview, Mash and Ranking .................... 100 

4.3.7. Styled Components ....................................................................... 104 

5. PERFORMANCE EVALUATION ...................................................................... 105 

5.1. Contentful-based Management System .............................................. 105 

5.2. Google Lighthouse Performance Metrics ............................................ 107 

6. CONCLUSION ............................................................................................... 111 

6.1. Thesis Summary ................................................................................... 111 

6.2. Key Findings .......................................................................................... 112 

6.3. Future Applicability .............................................................................. 113 

REFERENCES ........................................................................................................ 115 

Articles ............................................................................................................ 115 

Books and Research Papers ............................................................................ 122 

 

  



LIST OF FIGURES 

Figure 1. The share of the population and the total number of people using the 

internet (Roser, 2018) ........................................................................................... 21 

Figure 2. The functioning diagram of monolithic CMS as a coupled system 

(Yermolenko & Golchevskiy, 2021) ....................................................................... 23 

Figure 3. A comparison of desktop and mobile market share worldwide from 

January 2009 to January 2023 (StatCounter, 2023) ............................................. 24 

Figure 4. The evolution of omnichannel (Nguyen, 2018) ..................................... 25 

Figure 5. The architectures of Monolithic and Headless CMS (Butti, n.d.) .......... 26 

Figure 6. Examples of structured content (Ottervig, 2023) .................................. 29 

Figure 7. The evolution in CMS structural, from traditional CMS to Headless CMS 

and Content Platform (“Headless CMS Explained”, n.d.) ..................................... 30 

Figure 8. The infrastructure of Contentful (“Separate content”, n.d.) ................. 31 

Figure 9. Contentful’s domain model structure (“Domain model”, n.d.) ............. 32 

Figure 10. The traditional model for web applications compared to the AJAX 

model (Garrett, 2005) ........................................................................................... 36 

Figure 11. MVC architecture (Envall, 2022) .......................................................... 38 

Figure 12. MVP architecture (Envall, 2022) .......................................................... 38 

Figure 13. MVVM architecture (Envall, 2022) ...................................................... 38 

Figure 14. Survey on the most popular frameworks (“2022 Developer Survey”, 

2022) ..................................................................................................................... 39 

Figure 15. Hydration process and why it is overhead (Hevery, 2022b) ................ 43 

Figure 16. Comparing the application initial load of hydration and resumability 

(Hevery, 2022c) ..................................................................................................... 44 



Figure 17. Example of a QRL as an HTML attribute - it points to the location of the 

JavaScript event handler (Hevery, 2022c) ............................................................ 45 

Figure 18. Examples of how Qwik Optimizer works (“Optimizer”, n.d.) .............. 46 

Figure 19. Google Lighthouse's measurement for Builder.io homepage ............. 47 

Figure 20. Google Lighthouse’s measurement of performance metrics .............. 48 

Figure 21. User flow for ranking films in a gallery feature ................................... 55 

Figure 22. User flow for creating new gallery ....................................................... 56 

Figure 23. Creating a new content type on Contentful ........................................ 57 

Figure 24. The two content types required for a gallery’s data retrieving in 

Filmmash ............................................................................................................... 58 

Figure 25. The sample content type fields for gallery's information .................... 58 

Figure 26. The sample content type fields for a gallery's film entry .................... 59 

Figure 27. Retrieving the necessary API keys for connecting Contentful and 

Filmmash ............................................................................................................... 60 

Figure 28. Filmmash's system infrastructure ........................................................ 61 

Figure 29. Filmmash entity relationship diagram ................................................. 66 

Figure 30. Filmmash backend code structure ....................................................... 67 

Figure 31. Sequence diagram for creating new gallery ........................................ 73 

Figure 32. Sequence diagram for getting multiple galleries ................................. 75 

Figure 33. Sequence diagram for getting one gallery ........................................... 77 

Figure 34. Sequence diagram for getting all films in a gallery .............................. 78 

Figure 35. Sequence diagram for getting one specific film .................................. 80 

Figure 36. Sequence diagram for updating a film’s points ................................... 82 

Figure 37. Sequence diagram for getting a user ................................................... 83 

Figure 38. Sequence diagram for logging in and signing up ................................. 84 



Figure 39. Frontend code structure ...................................................................... 91 

Figure 40. Homepage and Header components ................................................... 95 

Figure 41. Login, Sign up and Create gallery form ................................................ 99 

Figure 42. Overview component......................................................................... 101 

Figure 43. Mashing functionality ........................................................................ 103 

Figure 44. Ranking component ........................................................................... 104 

Figure 45. Filmmash's overview section, viewed on laptop screen (1440px in 

width) .................................................................................................................. 106 

Figure 46. Filmmash's overview section, viewed on laptop screen (425px in 

width) .................................................................................................................. 106 

Figure 47. Google Lighthouse's measurement of Filmmash .............................. 108 

Figure 48. Filmmash's performance metric scores ............................................. 108 

Figure 49. Filmmash's passed audits according to Google Lighthouse .............. 109 

Figure 50. Google Lighthouse's measurement of Next.js documentation ......... 110 

Figure 51. Google Lighthouse's measurement of Nuxt documentation ............ 110 

 

  



LIST OF TABLES 

Table 1. The comparison between Monolithic CMS and Headless CMS (“Headless 

CMS Explained”, n.d.) ............................................................................................ 28 

Table 2. Requirement analysis of Filmmash ......................................................... 52 

 

  



LIST OF CODE SNIPPETS 

Code Snippet 1. Backend's package.json file ........................................................ 68 

Code Snippet 2. Backend's tsconfig.json file ........................................................ 69 

Code Snippet 3. Backend's example of an .env file .............................................. 69 

Code Snippet 4. Gallery data model ..................................................................... 71 

Code Snippet 5. Film data model .......................................................................... 71 

Code Snippet 6. User data model ......................................................................... 72 

Code Snippet 7. Backend code for creating new gallery ...................................... 74 

Code Snippet 8. Backend code for getting multiple galleries ............................... 76 

Code Snippet 9. Backend code for getting one gallery ......................................... 77 

Code Snippet 10. Backend code for getting all films in one gallery ..................... 79 

Code Snippet 11. Backend code for getting a specific film................................... 81 

Code Snippet 12. Backend code for updating a film’s points ............................... 82 

Code Snippet 13. Backend code for getting a user ............................................... 83 

Code Snippet 14. Backend code for sign up operation......................................... 85 

Code Snippet 15. Backend code for login operation ............................................ 86 

Code Snippet 16. Backend code for getting authorized user ............................... 87 

Code Snippet 17. Backend code for retrieving data from Contentful .................. 88 

Code Snippet 18. Backend Express application initialized .................................... 89 

Code Snippet 19. Backend `index.ts` file .............................................................. 90 

Code Snippet 20. Frontend `root.tsx` file ............................................................. 92 

Code Snippet 21. Frontend router’s root component .......................................... 93 

Code Snippet 22. Frontend’s routing layout ......................................................... 94 

Code Snippet 23. Homepage component code .................................................... 96 



Code Snippet 24. HomeGalleries component code .............................................. 96 

Code Snippet 25. Header component code .......................................................... 97 

Code Snippet 26. Login component code ............................................................. 98 

Code Snippet 27. Gallery component’s root file ................................................. 100 

Code Snippet 28. Gallery’s overview code ......................................................... 101 

Code Snippet 29. Gallery’s mashing state management .................................... 102 

Code Snippet 30. Gallery’s mashing `useResource` hooks ................................. 102 

Code Snippet 31. Elo’s algorithm in code ........................................................... 103 

 

 

  



LIST OF ABBREVIATIONS 

Abbreviation     Definition 

CMS      Content Management System 

HTML      HyperText Markup Language 

SPA      Single Page Application 

FTP      File Transfer Protocol 

CSS      Cascading Style Sheets 

SSI      Server Side Includes 

DOM      Document Object Model 

XML      Extensible Markup Language 

AJAX      Asynchronous JavaScript and XML 

CMA      Content Management Application 

CDA      Content Delivery Application 

API      Application Programming Interface 

REST      Representational State Transfer 

WYSIWYG     What You See is What You Get 

JSON      JavaScript Object Notation 

JVM      Java Virtual Machine 

HTTP      Hypertext Transfer Protocol 

XSLT Extensible Stylesheet Language 

Transformation 

MV*      Model – View – Whatever 

MVC      Model – View – Controller 

MVP      Model – View – Presenter 



MVVM      Model – View – ViewModel 

UI/UX      User Interface/User Experience 

JSX      JavaScript Syntax Extension 

CSR      Client-side Rendering 

SSR      Server-side Rendering 

SSG       Static Site Generation 

TTI      Time-to-interactive 

QRL      Qwik URL 

URL       Uniform Resource Locator 

MEN      MongoDB – Express – Node.js 

MERN MongoDB – Express – React – 

Node.js 

MEAN MongoDB – Express – Angular – 

Node.js 

CRUD Create – Read – Update – Delete 

JWT JSON Web Token 

CLI Command Line Interface 

 

 

 



15 

 

 

1. INTRODUCTION 

1.1. Background and Context 

Ever since Tim Berners Lee invented the World Wide Web in the early 1990s, the 

field of web development has seen radical changes throughout the years to 

match with the increasing needs for more versatile and adaptable websites and 

applications. From the first static HTML websites that were only for displaying 

hand-coded contents, to the emergence of scripting languages, libraries and 

frameworks and the introduction of SPA concepts, web application has always 

been evolving with a view to provide the utmost interactive and responsive 

users’ experience. 

However, the status of web development is currently reaching a deadlock. A 

more interactive and responsive website requires a much higher amount of 

JavaScript code to be downloaded and executed, which inadvertently slows 

down the web bootup process, resulting in negative users’ experience (Hevery, 

2022a). The rise of multi-device and Internet of Things as well as the mobile-first 

approach also poses threats to the traditional content management approach 

since it is a monolithic system and is not capable to maintain different platforms. 

(Holmes, 2022). 

Hence, the necessity for a drastic reformation in web application development 

and content management systems is increasing rapidly amidst the advancement 

of technologies and the rise of users’ expectations. 

1.2. Research Questions and Objectives 

To address the rising needs for an overhaul of web development, this thesis 

examines the two modern solutions: Headless CMS and Qwik framework. 



16 

 

Headless CMS is a relatively new approach in backend content management, 

created to adapt with the invention of smartphones in the late 2000s and the 

acceleration of technological innovations. It separates where the content and the 

presentation layer are stored, making it possible for a set of content to be 

displayed on multiple screen devices, such as mobile phone, smartwatches, or 

car infotainment system (Maelver, 2023).  

Qwik is a recently introduced frontend framework by developers at Builder.io, 

deemed to be the fastest loading framework with O(1) loading time (Fu, 2022). 

Although having only reached the beta version in September 2022, Qwik has 

gained an increasing interest in the developers’ community, with a weekly 

10,000 installations, according to 2023 statistics by Node Package Manager. 

Qwik focuses on reducing the loading time of the initialization process without 

affecting the interactivity or responsiveness of the web application.  

The thesis therefore centers around these two topics to answer the following 

questions: 

• What are the problems with current web frameworks and content 

management systems and how do Headless CMS and Qwik attempt to 

address these issues? 

• What are the real-world study cases of Headless CMS and Qwik 

• What are the possible limitations of Headless CMS and Qwik? 

• How to apply Headless CMS and Qwik into a full-stack application? 

The answers to these questions will provide valuable insights whether Headless 

CMS and Qwik framework are possible approaches towards a revolution of web 

application and the future of web development. 

1.3. Methodologies 

This thesis is a research and development study on Headless CMS and Qwik 

framework.  



17 

 

The first part of the thesis studies the released materials on the research topics, 

such as previous publications, official documentations, developers’ insights and 

interviews, to discuss the drawbacks of state-of-the-art technologies and the 

advantages of the use of Headless and Qwik. The part is also accompanied with 

the real-world study cases of Contentful, one of the first and leading Headless 

CMS platforms, and Builder.io, the landing page builder product where Qwik is 

first invented and put into production. 

The second part focuses on the implementation of Filmmash, a social media web 

application based on the idea of the infamous Facemash by Mark Zuckerberg in 

2004. This part presses on all the vital steps of building an application, from base 

architecture to deployment and performance testing, especially on the 

integration of Headless CMS and Qwik, to determine their effectiveness and 

practicality.  

1.4. Significance and Contribution 

The significance and contribution of this thesis are noteworthy in several ways. 

The study sheds light on the importance and benefits of Headless CMS and Qwik, 

the technologies which have the potential to be the future of web development. 

It provides in-depth analysis on how they can enhance the current state of web 

applications, which is crucial for businesses to stay competitive in today’s digital 

landscape. 

The thesis also demonstrates a practical implementation of Headless CMS and 

Qwik to showcase their utilities in real-word scenarios. The working prototype 

proves the feasibility and effectiveness of using the technologies in web 

development. 

The thesis contributes to an existing body of works dedicated to this topic. 

However, due to the novelty of the technologies, there are only a limited 

number of studies that have been published. This study not only delves into both 



18 

 

matters with detailed research, but also provides the connection between the 

two approaches and real-world study cases.  

Overall, the findings of this study can help web developers and businesses make 

informed decisions on the adoption of Headless CMS and Qwik frameworks in 

their projects and grasp the next wave of web application revolution. 

  



19 

 

2. THEORETICAL BACKGROUND 

This section presents a synthesis and analysis of the existing literature on 

Headless CMS and Qwik framework. It aims to extensively examine the evolution 

and historical landscape of web content management and framework 

development and determine a turning point where old approaches became 

legacy amidst the rising market demands, hence proving a practical need for 

modern technologies. Next, the chapter explores the underlying technologies of 

Headless and Qwik, conducting a comparative analysis with traditional systems 

to evaluate their benefits and advancement in performance, along with potential 

drawbacks and challenges. Overall, the section provides a comprehensive 

overview on the research topics and lays the foundations for subsequent 

chapters in the thesis. 

2.1. Headless CMS 

2.1.1. The Early Era of World Wide Web 

Berckmans (2022) proposes the definition of content management system as a 

platform which “provides the framework that content publishers will then only 

have to dress up with the help of texts, images, videos, contents”. The statement 

aligns with the first ideation of the World Wide Web, as in 1989, computer 

scientist Tim Berners-Lee submitted a memorandum regarding information 

management to derive a solution for the difficulties in finding data stored on 

different computers (May, 2019). The proposal discusses the idea of an 

information system for better content management in a large organisation and 

used the terms “web” and “hypertext” for the first time (Berners-Lee, 1990). 

Hence, it can be inferred that the history of content management systems 

started with the invention of the World Wide Web and the creation of the very 

first websites.  

In the early days of the web, websites were built using static HTML files, with all 

content being manually coded into. To make the files available on the web, they 



20 

 

had to be uploaded via an FTP program to a directory on a running web server. 

The advancement of technologies in the following years resulted in websites 

becoming more visually appealing and multifunctional: the supporting of images 

in a Mosaic browser, the creation of CSS for styling websites and the introduction 

of SSI for enhancing content management of a websites by dividing sections into 

smaller manageable portions (Ottervig, 2022). At that stage content 

management was limited to the building and maintenance of static information 

only; however, as the Internet expanded, there was an increasing demand for 

content being dynamically updated and regulated. The inception of dynamic 

content can be traced back to 1997 when the Document Object Model (DOM) 

was first introduced. It was a revolutionary system enabling website creators to 

manage parts of a document as well as to obtain full control over HTML 

elements, both in terms of style and content. Coupled with the invention of 

Asynchronous JavaScript and XML (AJAX) two years later, which allows 

developers to send and receive updated data without reloading the page, it laid 

the technical foundation for content management systems. 

This era also witnessed a rapid upsurge in the number of computer usages, as 

Roser (2018) pointed out that by the year of 2000 “almost almost half of the 

population in the US was accessing information through the internet”. The 

United States Department of Labour (1999) also measured a sharp increase in 

households owning computers by different levels of education from 1990 to 

1997, with “the amount spent by the average household on computers and 

associated hardware more than tripled”. Heslop (2022) argues that the rise 

started what is now known as Web 2.0, where websites were becoming more 

sociable and dynamic, and the need for fresh, relevant, and daily-updated 

content as a collaborative effort grew significantly. With the rapid technological 

advancement and the widespread accessibility to computers and the Internet, it 

is reasonable to presume that the need for an information management system 

that allows individuals to control and publish their data was on the rise, hence, 

the acceleration of content management systems.  



21 

 

 

Figure 1. The share of the population and the total number of people using the 

internet (Roser, 2018) 

2.1.2. The Rise and Fall of Monolithic CMS  

The traditional approach to CMS emerged during the Web 2.0 era to match with 

the public demands of a system for individuals and collaborators to manage and 



22 

 

publish content to the Internet. Its monolithic architecture is composed of three 

main components: 

• A database that stores the content tree, both programmatically and 

stylistically 

• A content management application (CMA) that allows users to create, 

manage, and edit content in a CMS. It typically provides a user-friendly 

interface that enables users to create and publish content without 

requiring technical knowledge. A CMA allows content creators to upload 

and manage digital assets such as images, videos, and documents, and 

organize them into folders or categories. 

• A content delivery application (CDA) is responsible for delivering the 

content to end-users. It retrieves and delivers the content stored in the 

database to the appropriate device or platform, using a template or 

layout to present the content to the end-user, with possible provided 

features such as caching, authentication, and security. 

This first movement of content management systems integrates both the 

backend administration and the frontend presentation layer into controlling a 

website, thus creating a coupled and all-in-one solution to content creators. The 

approach has its apparent advantages, as it brings down the technological 

barriers as the CMA provides people a non-coding solution for creating, 

uploading, presenting content.  The monolithic system also provides non-

developers with the ability to manage content at ease by tightly packing the 

client-side and server-side in one unit, hence remarkably reducing maintenance 

and deployment cost. With the then-revolutionary system, the monolithic CMS 

dominated the Web 2.0 era, with multiple enterprises revolving around content 

management began to emerge, including FileNet, Vignette, Interwoven or 

EpiServer (Ottervig, 2022). The early 2000s also witnessed a surge in website 

building platforms, with WordPress being the most popular, with its open-source 



23 

 

policy to let third-party developers contribute different customizations and 

extensions (Dineley, 2008). 

 

Figure 2. The functioning diagram of monolithic CMS as a coupled system 

(Yermolenko & Golchevskiy, 2021) 

Alongside with the positive impacts, however, the monolithic approach to 

content management also contains huge problems in its architecture. The 

conventional CMS makes it challenging to expand web applications because of its 

bundled, comprehensive structure, which may cause conflicts between the 

server and client sides once being scaled up. It also poses a problem for 

developers who maintain the site as they are constantly presented with new 

frontend frameworks and tools to apply for the application, however, monolithic 

CMS with its inflexible integration of templates can hinder developers from 

adopting a more suitable approach to improve the user experience. And the 

problems worsened as the world saw another technological revolution: the 



24 

 

invention of smartphones and the rise of omnichannel. The use of smartphones 

as a channel of content viewing rocketed after the introduction of the first 

iPhone in 2007 and the first Android smartphone in 2008. StatCounter (2023) 

estimated that in a span of only seven years from 2009 (the first year that data 

was collected) to 2016, a sharp rise in the usage of smartphones overtook 

personal computers as the main source of accessing the web and has continued 

to rise ever since. 

 

Figure 3. A comparison of desktop and mobile market share worldwide from 

January 2009 to January 2023 (StatCounter, 2023) 

This shift to mobile devices as the main web content provider posed detrimental 

effects for monolithic CMS, as it was “explicitly created for delivering Web 

content to desktops and laptops” (Heslop, 2022), therefore it was merely 

impossible to contribute content to both platform with respect to the style or 

the structure. Temporary solutions have been drawn to address these problems, 

the most notable being creating a subdomain with a “m dot” in the beginning to 

signify whether a website is made for mobile devices. However, it also meant 

that developers would have to maintain two unrelated sides in terms of address, 

with the similar content, and managing two sides as well as performing possible 

analytics measurements would be a burden (“What is a”, 2019).  



25 

 

Furthermore, with the proliferation of innovative technologies of which 

smartphone was a highlight, businesses faced with opportunities and challenges 

to adapt to in-store technological solutions across multiple devices, thus creating 

the term “omnichannel” to provide a smooth customer experience regardless of 

the channel (Piotrowicz & Cuthbertson, 2014). Omnichannel in its literal terms 

means “every channel”, and it was the focus of technological innovation in the 

2010s, with the introduction of many revolutionary devices, such as tablets, 

smartwatches, gaming consoles or even voice-activated devices.  

 

Figure 4. The evolution of omnichannel (Nguyen, 2019) 

Hence, the maintenance and management of content for every single existed 

channel was impossible, and the field demanded a shift in CMS paradigm, where 

content can be detached from the presentation layer thus being compatible 

across multiple devices. 

2.1.3. The Emergence of Headless CMS 

The switch to omnichannel delivered a new solution for content management 

called Headless CMS. A Headless CMS is a backend content management system 

where the content repository – the body – is detached from the presentation 

layer – the head and managed individually, hence the term “head-less”. This 

separation allows content creators to control content in a single location and 

distribute it to any desired device. In the age of omnichannel, this approach plays 



26 

 

a crucial role as users are given the capabilities to integrate content into any 

software, device, or content carrier system and without having to worry about 

conflicting layers.

 

 

Figure 5. The architectures of Monolithic and Headless CMS (Butti, n.d.) 

The center of a headless CMS revolves around the communication of data from 

the content provider to the multiple device endpoints, through an application 

programming interface (API). The concept of API was first introduced in the 

1960s as a data connector method for different computer systems (Cotton & 



27 

 

Greatorex, 1968), before being introduced to the field of databases by Date and 

Codd (1975). With the advance of the Internet in the 1990s and the introduction 

of the REST architecture (Fielding, 2000), the API has prevailed and has been 

used by a wider range of developers and businesses. In the omnichannel’s era 

API is an essential component of modern software development and in the 

discussed case, the Headless CMS, allowing developers to integrate various 

services and data sources into their applications. The headless system only 

manages the content input by creators and transmits the pieces of information 

through API to the platforms that present the content to application users.  

By detaching the process and let the individual system manage its own 

respective task, the headless CMS has shown enormous improvement from the 

monolithic version and has gradually become the defined content management 

system in recent years. While traditional CMS relies on a single system to work 

on all fields, including controlling content in the backend and rendering the view 

in the frontend, the Headless CMS provides a substantial impact by leaving the 

rendering for the browser and the client-side used framework. This is beneficial 

to not only content creators, but also application developers and users, as it 

enhances the editorial experiences, the flexibility and scalability in the choice of 

technology stack, and the improved rendering mechanism. Tighter security is 

also a result of this new approach, as the monolithic system poses a larger 

vulnerability to attacks for its all-in-one approach.  

 Monolithic CMS Headless CMS 

Hosting & delivery In-house In the cloud 

Development mindset Project-focused Product-focused 

Content model Built for a single page Built for many products 

Supported devices Limited Limitless 

Reach One-to-one One-to-many 

Workflow Waterfall Agile 

Updates Scheduled Continuous 

Backend system Monolithic, all-in-one Microservice, best-in-class 



28 

 

Investment Large up-front cost Quick proof of concept 

Table 1. The comparison between Monolithic CMS and Headless CMS (“Headless 

CMS Explained”, n.d.) 

However, being a relatively new approach, Headless CMS also contains many 

issues. Its complex nature demands knowledge in both frontend and backend 

development, and the steep learning curve to understand thoroughly its 

workflow may serve as an obstacle for content builders. While the detachment, 

as previously discussed, would provide freedom for developers in choosing their 

own technology stacks, the lack of built-in functionalities such as forms, 

navigations, and search bars that the monolithic approach provides also 

negatively contribute to the creation of web applications through Headless CMS.  

As the Contentful website (n.d.) suggests, the idea of Headless CMS still has not 

resolved the problems of unstructured content. Unstructured content cannot be 

broken down to individual component as it mixes the content of an application 

into a single entity of information, data, and code, thus providing immense 

difficult to update a small part of content as the whole entity also requires 

republishing. This is the approach that is mainly used with the WYSIWYG editor, 

and while it can create a functional website, the content is stuck to the format 

and “cannot be easily reused across different platforms and channels or 



29 

 

repurposed for new projects” (“Headless CMS Explained”, n.d.). 

 

Figure 6. Examples of structured content (Ottervig, 2023) 

Structured content, in contrast, is information divided into chunks of meaningful 

data in an organized and categorized way. These pieces of data are classified into 

the right structural content type, thus can be managed predictably regardless of 

representation layers. Hence, the goal of application developers in the modern 

era is to create a content management system that combines the adaptability of 

Headless CMS and the organized structured content model, or to define by a 

term, composable content platform.  



30 

 

 

Figure 7. The evolution in CMS structural, from traditional CMS to Headless CMS 

and Content Platform (“Headless CMS Explained”, n.d.) 

2.1.4. Case Study: Contentful 

Contentful is a composable content platform founded in Berlin in 2013 by Sascha 

Konietzke and Paolo Negri, with its customers are from a wide range of fields, 

from Spotify, Nike to Lyft (Lardinois, 2018). Although the company does not 

publicly advertise their content management system as headless, it should be 



31 

 

regarded as one due to its main mechanism of delivering content through API. 

 

Figure 8. The infrastructure of Contentful (“Separate content”, n.d.) 

Lying at the heart of Contentful are its three main concepts: domain model, 

content model and API. A domain model is a conceptual model where behavior 

and data are incorporated into objects and entities (Fowler, 2002). According to 

its documentation, Contentful’s domain model includes four entities:  

• User: refers to Contentful’s account holder and is provided with 

authentication method and a personal access token, which would be 

necessary to create content on Contentful. 

• Organization: is a group of users, taking care of account-related matters 

such as subscriptions or billings. 

• Space: is the container of content that allows separation of data to match 

with each project’s structure. 

• Environment: Environments refer to entities that exist within a particular 

space and enable the creation and management of contents and setup 

specific to that space, providing the ability to modify them independently 

from one another.  



32 

 

 

Figure 9. Contentful’s domain model structure (“Domain model”, n.d.) 

Content model is the core of a content composable platform such as Contentful. 

As previously mentioned, a Headless CMS with structured content type is the 

eventual goal of content management systems, and content model is 

Contentful’s approach to reach the target. Content model works the same way 

as entities in a database do, in terms of content structuring, breaking it down 

into individual elements, providing a comprehensive description of each 

element, and illustrating their interconnections as well as mapping out their 

relations (Pope, 2021). The content model comprises of content types, and their 

attributes, which in Contentful’s case includes fields, entries, references and 

media assets, and this approach enhances the digital content management 

experience as it enables user to categorize and classify their contents to 

distribute on many platforms. 



33 

 

Contentful provides different APIs for the creation, management, and 

distribution of contents (“Contentful contents API”, n.d.): 

• Content Delivery API is the read-only API used for delivering content, in 

the form JSON data or media and file assets, stored at Contentful to 

multiple application endpoints. The API can be described as the 

connector between the backend, which is Contentful, and the frontend of 

any chosen presentation layers. 

• Content Management API provides the ability to contribute content to 

Contentful as a plugin with other backend systems, and it is highly 

effective with applications that need custom editing experiences. 

• Content Preview API is relatively the same as Content Delivery API, 

however, it is to preview the content retrieved from Contentful before 

publishing to the desired application for public consumption. 

• Images API provides the ability for images editing without the loss of CDN 

caching. 

• GraphQL Content API provides an alternative method of retrieving data 

other than the REST service.  

With the wide range of functionalities provided, Contentful serves as a modern 

solution in creating, managing, and distributing content in respect to the 

composable content platform. The application built for this thesis uses 

Contentful for backend management as a practical demonstration. 

2.2. Qwik Framework 

Since its inception in the mid-1990s, JavaScript has been the driving force behind 

the development of web applications, with the developer community 

continuously pushing the boundaries of the language, introducing new concepts 

and frameworks for greater efficiency and versatility, thus contributing to its 

ever-changing ecosystem. However, as the solution of a problem may well be the 

creation of another, the growth of JavaScript also results in unintended 



34 

 

consequences. This part of the thesis analyzes the evolution of JavaScript and its 

frameworks, acknowledging the innovations as well as the problems of current 

web technologies and the attempts to solve them, and explores how the newly 

introduced Qwik framework is leading the next generation of Javascript-based 

applications. 

2.2.1. The Early History of JavaScript 

As mentioned in the previous section, in the early days of web development, 

popular web browsers like Mosaic and Netscape Navigator were static-only, and 

the desire for a dynamic web page where users can interact with, or input data 

into was higher than ever. In 1995, tasked with the dynamization of browsers, 

Netscape collaborated with Sun Microsystem to embed its Java language while 

also implementing Scheme language into its flagship browser, the Navigator, 

which raised questions and debates on whether it was necessary for web 

browsers to be implemented by two different languages. Netscape management 

eventually decided on inventing a new scripting language with syntax resembling 

Java’s, and the first prototype, called Mocha and then LiveScript, was created by 

software developer Brendan Eich in just ten days. By the end of the year, with 

the success proven by its beta release and an attempt to capitalize on the 

popularity of the Java language, its name was then changed to the famous 

JavaScript developers have come to know since (Rauschmayer, 2014). It should 

also be noted that despite having similar names, Java and JavaScript are 

fundamentally different programming languages. Java is an object-oriented 

language that is compiled to bytecode, which can run on any platform that has a 

Java Virtual Machine (JVM) installed, while though JavaScript shares the similar 

syntax and programming concepts, it is an interpreted language that runs on a 

browser's JavaScript engine and is used to create dynamic and interactive web 

pages, hence these similarities are superficial and do not imply that the two 

languages can be used interchangeably. 



35 

 

The invention of JavaScript was effectively the beginning of the dynamic web 

pages era, where web pages were equipped with the client-side scripting 

methods that could respond to users’ actions, interact with information and data 

input, and perform customizable events. However, the browser war between 

Netscape and Microsoft, who debuted the Internet Explorer browser in 1995 by 

reverse-engineering JavaScript into their own language called JScript, halted the 

evolution of the language as well as dynamic web applications (Rauschmayer, 

2014). While JScript was greatly influenced by JavaScript, its approach was 

noticeably different from that of the predecessor, consequently leading to the 

problem of incompatible platforms. Developers then faced a conundrum of 

polishing their code to ensure that they worked for both browsers (Champeon, 

2001). Only until the standardization of JavaScript by the ECMA International in 

1997 with the introduction of the term “ECMAScript” as a compromise between 

involved parties, and the domination of Microsoft’s Internet Explorer browser 

did the innovation of JavaScript begin (Envall, 2022). 

The turning point of JavaScript history was when developers discovered its 

utilities in handling the web pages reloading issue. As dynamic websites replaced 

the static ones, it was noticeable that each time users interacted with the web 

pages, such as searching for an address or submitting a form, the websites would 

need a full page reload, thus developers were often required to embed a waiting 

page for even the users’ simplest requests. This annoying characteristic of web 

browsers made websites inferior to the smoothly executed desktop applications. 

The task was to find a way to send HTTP requests with client-side scripts in the 

background, so that the update of data would not interfere with users’ browsing 

experience. In 2005, Jesse James Garrett introduced AJAX (Asynchronous 

JavaScript and XML) to deal with this problem. His attempt was influenced by 

non-reloading websites such as Google Maps and Google Suggest, utilizing “data 

interchange and manipulation using XML and XSLT” as well as “asynchronous 

data retrieval using XMLHttpRequest”, with JavaScript being the binding engine 



36 

 

(Garrett, 2005).

 

Figure 10. The traditional model for web applications compared to the AJAX 

model (Garrett, 2005) 

The introduction of AJAX was the backbone of dynamic web applications 

nowadays and it strengthened JavaScript’s importance on pushing the limitations  

of web development, as in a short span of time, frameworks based on the AJAX 

model were released daily (Mahemoff, 2005). However, it could be argued that 

the “AJAX-framework boom” also prompted programmers into developing more 

complex features without a standard structure, hence negatively affecting codes’ 

efficiency and maintainability. As JavaScript code’s size had been increasing 

rapidly and becoming an indispensable part of the browser, it can be concluded 



37 

 

that the new era of web development demanded a standardized and scalable set 

of JavaScript frameworks to regulate, maintain and improve web applications. 

2.2.2. MV* Architecture and SPA Frameworks 

The acronym MV*, or MVW, represents “Model – View – Whatever”, which is a 

set of architectural patterns designed as a standard approach for JavaScript 

frameworks. The concept incorporates the Separation of Concerns (SoC) 

principle and attempts to provides modularity and structure for projects by 

separating blocks of code by their specific purposes (Dewhirst, 2022). SoC was a 

tremendous improvement towards web development, as categorizing code in an 

organizing way provided developers the ability to modify parts of the application 

without altering unrelated sections. This made changes to the code faster and 

easier, reduced bugs while also made unit testing much more feasible. 

The three main design patterns of MV* concepts are Model-View-Controller 

(MVC), Model-View-Presenter (MVP) and Model-View-ViewModel (MVVM). 

Laying at the core of these patterns are Model and View: 

• Model is the data storage layer of MV*. It interacts with databases and 

networks while representing the application logic of how data should be 

managed and processed. 

• View is the user interface (UI) layer that visually presents the rendered 

Model’s data and provides interactions. 

The roles of Model and View are particularly similar in these patterns; however, 

their mechanisms differ on how to connect and transfer data from Model to 

View and vice versa. 

• The Controller in an MVC pattern functions as a connector between the 

Model and View, it handles user action from the view and updates the 

model accordingly. Designed in the 1970s, the MVC pattern is one of the 

oldest software architectures, and it sets the basis for future patterns. 



38 

 

However, the circular relationship between layers in MVC makes them 

tightly coupled to each other, and the view layer has no information 

about the Controller, thus making it harder to scale up the applications. 

 

Figure 11. MVC architecture (Envall, 2022) 

• The Presenter in an MVP pattern resolves the problems of MVC pattern, 

as not only does it update the model based on user action from the view 

but also acknowledges the model’s changes and updates the UI.  

 

Figure 12. MVP architecture (Envall, 2022) 

• The ViewModel in an MVVM pattern is the modern approach of MVP, as 

it uses a technique called data binding to connect the Model and the 

ViewModel, which reduces the data flow and enhances flexibility and 

testability. 

 

Figure 13. MVVM architecture (Envall, 2022) 

These MV* design patterns created a structural approach for software 

developers to build JavaScript frameworks and libraries based on, and they 



39 

 

fueled the desire of creating more interactive and native web applications, thus 

being the backbone of the introduction of single page applications (SPA). SPA can 

be understood as a web application that loads an initial HTML document and 

dynamically updates its contents based on users’ interaction. Its highlighted 

innovation is to ignore the default method of a full page reload whenever users 

interact with the application, but instead communicating with the server using 

APIs and AJAX to fetch data when needed. This approach means applications 

utilizing SPA greatly enhance user experience and result in a faster, more 

responsive, and more engaging interactivity, especially for the heavily 

interactable web application.  Maheshwari (2021) pointed out that many large 

technology corporations have been utilizing SPA in parts of their products, 

including Facebook (at the time this thesis written whose name has been 

changed to Meta), Google, LinkedIn, Twitter or Netflix, and he stated that 

“revolutionized the basic thinking in the industry to design modern web 

applications resulting in the invention of modern JavaScript-based frameworks 

with wide-open support from the community.” This thesis discusses the most 

widely used, React, while briefly introduces Vue and Angular which are also 

popular among developers, and all based on the MV* patterns. 

 

Figure 14. Survey on the most popular frameworks (FullStackOverflow, 2022) 



40 

 

React was created by Facebook (now Meta) in 2013 by Jordan Walke to counter 

their rapid expansion of user base and create a more responsive and interactive 

UI/UX. Because of this, React is often regarded as the V in a MVC pattern, as it 

only improves the view mechanism and leaves the rest for the developers’ 

desired backend implementation. It is also worth noting that React is not a 

framework but a library. While the framework lays out the structure and 

foundation that developers write their codes on, libraries provide programmers 

with predefined sets of functions and methods to integrate into their application 

at their own ease. React breaks down parts of the view into multiple 

components holding their own states and props, and they are written based on 

an extension of JavaScript called JSX, to embed JavaScript code inside HTML, 

providing great efficiency for component rendering. Whenever there is an event 

incoming from a user, the view signals to the component’s state with an action 

for an update, which then triggers a re-render of the view to reflect the state 

change. While this unidirectional data flow proves a significant improvement 

since it handles events individually, it can also be expensive due to its rendering 

of any small actions input by users. Therefore, to tackle this problem, React also 

introduced the concept of virtual DOM. The virtual DOM is a cached structure re-

created whenever an event is fired, computes the differences with its old 

snapshot, and determines to render only not the whole page but only the altered 

components in the real DOM. This algorithm is known as reconciliation, and it 

boosts React performance since no extra cost is spent for the non-altered 

components. 

Another SPA framework gaining popularity in recent years is Vue. Developed by 

Evan You in 2014, Vue is a MVVM frontend framework, and its core foundation 

lay on the ViewModel and the two-way binding mechanism. Vue components, 

like React, also use virtual DOM and a computed watcher (the alternative in 

React is the useEffect hook) to execute re-rendering based on user activities. Vue 

is largely influenced by the AngularJS framework that You worked on in his time 

as a Google software engineer, however, he felt that it was too heavy for its use 



41 

 

case and set out to build a lightweight framework that adapted all the strengths 

of AngularJS while introducing the-modern concept learnt from frameworks like 

React (Cromwell, 2017). The result is an open-source framework with an easy 

learning curve and provides high efficiency.  

In 2016, Google also released Angular. It was the successor of the AngularJS 

framework initially released by Misko Hevery in 2010, first introducing the 

groundbreaking concepts of directives and two-way binding. Angular 

revolutionized its predecessor by moving to ES6, incorporating TypeScript as 

default, and utilizing components instead of scope and controllers as a method 

to stay relevant as React and Vue’s stance was increasing rapidly. However, to 

deal with component updates, Angular used a concept called incremental DOM), 

which is a series of instructions that creates DOM trees and directly mutates 

them whenever changes happen.  

2.2.3. Metaframeworks and the Problem of Hydrations 

SPA frameworks, however, have their downsides. To match with its desire of 

fetching, loading, and rendering components natively, most single page 

applications utilize Client-side Rendering (CSR) as the default render system, 

which means that pages and their components are directly rendered to the view 

by JavaScript. One detrimental effect of CSR is for SEO, which is a critical factor 

for businesses to thrive in a digitalization era. SEO uses web crawlers which 

consume HTML and tends to ignore JavaScript, which is the engine of CSR. 

Because of this, frameworks which allow the use of SPA but implores techniques 

that are more SEO-friendly began to appear in the second half of 2010s. These 

are called metaframeworks as they were built on top of the open-source SPA 

frameworks, such as Next.js for React or Nuxt.js for Vue, and supports the use of 

Server-side Rendering (SSR) and Static-site Generation (SSG), which generates 

HTML on the server and only send it to the browser on request.  



42 

 

However, this shift in the rendering system only solves half of the big picture. As 

applications grow significantly in complexity, the codebase of JavaScript is also 

enlarged proportionally, hence, there must be a solution to connect the 

JavaScript with the HTML to send as a pack within SSR. Hydration was the initial 

solution for this problem. Hydration is a technique that aims to attach event 

listeners to the rendered HTML so that a web application receives full 

interactivity. To achieve this goal, the hydration process needs to go through the 

following steps: 

• Downloading every JavaScript file from the server. 

• Parsing and executing JavaScript files to determine the specific task of 

each event handler. 

• Looping through all the DOM nodes to find which exact DOM node that 

an event handler belongs to. 

Hydration does solve the connection problem between JavaScript and the DOM 

nodes as it neatly binds the script to its desired node. However, developers now 

have been raising an argument that hydration is expensive regarding executing 

time, and as Carniato (2022) claimed that it “increases JavaScript payload and 

may have even longer times until the application is interactive than client-

rendering only”. Hevery (2022b) broke down the pieces to further prove the 

statement, as he argued that for a large application, the technique of 

downloading and parsing JavaScript is very slow, and the fact that hydration 

needs to traverse through all the DOM nodes to attach those parsed event 

listeners is a re-execution of components that the SSR/SSG process has already 

finished. This duplication in the rendering system is the solid proof for the flaw in 

hydration’s mechanism. This eventually greatly affects the application’s time-to-

interactive, as users would need to wait for all the steps to be finished, including 

downloading, parsing, and binding JavaScript event listeners into every DOM 

node.  

 



43 

 

 

Figure 15. Hydration process and why it is overhead (Hevery, 2022b) 

Astro’s islands architecture is a possible workaround for hydration, as instead of 

starting the full hydration process at the initial page load, it only hydrates when 

users interact with a component, and only the interacted components are 

hydrated. This approach proves to be useful since frameworks nowadays tend to 

divide the applications into blocks of components, or “islands”, and the cost for 

the hydration process is greatly reduced for its distribution to components if and 

only when there is interaction. However, this method is only considered as a 

workaround, not a replacement of hydration, as the bigger the application gets, 

the larger the islands are, and there occurs the problem of inter-islands 

communication. For example, if there is a component that links to many 

components in the application, the hydrating that component triggers all the 

hydrations for the attached components, which reverts to the original problems 

of hydration.  

Hence, it is feasible to say that hydration is not a viable solution, and the next 

generation of framework needs to explore a set of new techniques to resolve 

these issues of current state-of-the-art. 

2.2.4. The Qwik Framework  

As the previous section concludes, the new generation of JavaScript frameworks 

needs to resolve the problems of slow time-to-interactive (TTI). And in 2021, the 



44 

 

Builder.io team, led by CTO Misko Hevery, attempted to solve this issue by 

releasing the Qwik framework. It is worth to noted that Misko Hevery was the 

person in charge of the original AngularJS project that helped shape the future of 

JavaScript MV* frameworks in the early 2010s, and therefore he could be 

regarded as one of the forefront revolutionists of modern web development. His 

latest introduction, Qwik, differs from the existing frameworks by introducing 

the concepts of resumability and progression. 

Resumability is a no-hydration approach, meaning that instead of eagerly 

downloading, executing, and attaching JavaScript event listeners to DOM nodes, 

it pauses the server execution and resumes it on the client side. By this method, 

Qwik web applications are loaded almost instantly as it only retrieves the HTML 

in its initial load, and since pure-HTML is fast, it greatly reduces the TTI. 

 

Figure 16. Comparing the application initial load of hydration and resumability 

(Hevery, 2022c) 

Hevery (2022c) argues that “a page may easily have hundreds of event listeners, 

but the vast majority of them will never execute”, thus concluding that the 

hydration process that binds listeners to DOM is a waste of resources. Hence, for 

the client-side interactivity, Qwik’s resumability concept delays the JavaScript 

load by utilizing a method called serialization. In the initial rendering, the SSR 

acknowledges the event listeners, however it neither binds nor ignores these 



45 

 

JavaScript codes, instead, it serializes them as HTML attributes, known as QRL. 

QRL can be viewed as an URL pointing to the specific JavaScript chunk location to 

load whenever users execute an event listener. All these QRLs 

 

Figure 17. Example of a QRL as an HTML attribute - it points to the location of 

the JavaScript event handler (Hevery, 2022c) 

are stored in a tiny 1KB JavaScript file called the Qwikloader that is loaded in the 

initialization, and compiles the event listeners into one global handler, thus, 

whenever users interact with a listener, the bubbling process distributes it until 

the global handler receives and executes it. This approach is revolutionary, as it 

solves the core problem of hydration, since there are no heavy codes, states, or 

templates to be downloaded prematurely, and it is not necessary to bind every 

event handler with its node before users interact with it (Hevery, 2022c). 

Moreover, the Qwikloader, which is the only JavaScript bundle downloaded from 

the server in the bootstrap process, is only 1KB in size, and it is independent 

from the application complexity, which strengthen Fu’s (2022) and Hevery’s 

(2022d) statements that Qwik is an O(1) – a linear, scalable, and high-efficient 

framework. 

If the resumability concept is powerful for reducing initial cost for event 

handlers, Qwik’s progression concept achieves similar efficiency for components. 

As hydration proves to be impractical for components, Qwik attempts to solve 

this issue with an optimizer that splits the components into chunks with 

indicators to be lazy loaded when necessary. It is argued that fine-grain lazy 

loading is the goal of next-generation frameworks (Hevery, 2022e), and Qwik’s 

optimizer attempts to fulfill this. It searches the code for an indicator, the $ 

symbol, to understand at which point it should break the components into 

smaller files. The documentation provides the following example. 



46 

 

 

 

 

 

Figure 18. Examples of how Qwik Optimizer works (“Optimizer”, n.d.) 

In this example, it can be understood that the optimizer locates the $ symbol on 

the components and the button’s click event and breaks them down to smaller 

pieces of code that can be lazy loaded whenever users request them. This 

approach builds on the technology of island architecture, however, coupling with 

Qwik’s own serialization discussed, it makes the code retrieving process much 

faster and efficient. 

While Qwik is a promising and innovative framework, it is still considered in beta 

mode as of March 15, 2023. Hence, there are still some technical limitations and 

challenges associated with its use. Firstly, since it is a new framework, there may 

be a lack of support and documentation compared to more established 



47 

 

frameworks. Additionally, its focus on speed and simplicity may mean that it is 

not as feature-rich or customizable as other frameworks. However, as Qwik 

continues to evolve and improve, these technical limitations may be addressed 

over time. It is also worth mentioning that the development of Qwik is still 

ongoing by the time this thesis is written, so changes may occur to the 

information stated in this thesis. 

2.2.5. Case Study: Builder.io. 

Builder.io, founded by Brent Locks and Steve Sidwell in 2019, is one of the 

leading businesses in the e-commerce industry, with its recent funding of $14 

million from Greylock and other investors (Hall, 2021). It develops a page builder 

application that utilizes multiple features, including drag-and-drop, integration 

with third-party applications like Shopify Storefront and especially Headless CMS. 

To enhance user experience and developers’ expectation, in 2021, Builder.io 

developed Qwik to become the application’s main framework, and has been 

using it for the homepage since 2022.  

This section analyzes the page load of the Builder.io homepage website to 

determine the practical effect of using Qwik. Google Lighthouse is being used to 

measure the performance of this application. It grades the web page on a scale 

of 100, on four criterias: performance, accessibility, best practices, and SEO. The 

results of Builder.io website, built by Qwik framework, is represented as 

followed:  

 

Figure 19. Google Lighthouse's measurement for Builder.io homepage 



48 

 

All four criterias of the Builder.io homepage achieve 90+ scores, which Google 

indicates as “good” (“Lighthouse performance”, 2019). Lighthouse also provides 

a detailed insight on smaller-scale performance metrics, including: 

• First Contentful Paint  

• Speed Index 

• Largest Contentful Paint  

• Time to Interactive  

• Total Blocking Time 

• Cumulative Layout Shift 

 

Figure 20. Google Lighthouse’s measurement of performance metrics 

It can be concluded from these results that Qwik greatly enhances the Builder.io  

initial loading page’s efficiency and speed, further proves this thesis statement in 

the previous section. 

  



49 

 

3. FILMMASH APPLICATION OVERVIEW 

The implementation of an application is a critical phase in the software 

development lifecycle, where ideas and theories are transformed into a 

functional product. The following chapters of this thesis document the 

implementation process of Filmmash - a social web application that allows users 

to vote on their favorite films, utilizing the previously attained knowledge of 

Headless CMS and Qwik framework. These sections present all the vital steps in a 

web application development phase, from pre-analysis,  and database and 

system architecture design to backend and frontend implementation. The 

sections focus especially on the two discussed topics of this thesis, Headless CMS 

and Qwik framework, to determine the practical advantages and limitations of 

these technologies and reinforce what has been studied in previous chapters, by 

means of performance testing and post-analysis. 

This chapter discusses the application overview description, including 

background and objectives, functionalities, and user flows as well as relevant 

architecture and technical stacks, and serves as the basis for further 

implementation. 

3.1. Background, Motivation, and Objectives 

This thesis has always been dealing with the matter of improving and 

transforming the current state of technology, therefore, it is only natural that the 

base idea of this project also came from a pioneer of social web application: 

Mark Zuckerberg’s infamous Facemash website. 

In late October 2003, Mark Zuckerberg, then a Computer Science sophomore at 

Harvard University came up with the idea and single-handedly created 

Facemash, a “hot-or-not” version of the university, with the compared 

individuals being the school’s female students. Zuckerberg hacked into the online 

facebooks of nine Harvard Houses, illegally retrieved images of students and 

displayed each two of them side by side, prompting users to decide who the 



50 

 

more attractive person is, and ranked all the students based on the input ratings. 

He documented his thoughts simultaneously while writing the codes, at one 

point declaring that he wanted to “put some of these faces next to pictures of 

farm animals and have people vote on which is more attractive”, before 

confirming his intention by saying he liked “the idea of comparing two people 

together”. The website was an immediate success, receiving an impressive 

22,000 page views within its first few hours and spreading rapidly across the 

Harvard campus. Despite the unethical approach, the notoriety of Facemash 

ultimately proved to be a positive turning point for Zuckerberg. It solidified his 

reputation as a noteworthy figure among the great minds of the university and 

paved the way for the future of social media. He utilized the simple yet ingenious 

concept behind Facemash to create a small social networking site which became 

a household name – Facebook (Hoffman, 2010).  

This thesis’s FIlmmash application, inspired by Facemash, aims to recreate, and 

improve upon the notorious website, with the compared subject being films due 

to the author’s personal preferences. There are several reasons for this ideation: 

• Technological feasibility: The idea is not complex and can be 

implemented with the available technology as well as time resources. 

More importantly, the idea is flexible to integrate the technology of 

Headless CMS and Qwik framework, which are the main focuses of this 

thesis. 

• Broad audience: Psychologically, it has been scientifically determined that 

people have a tendency to enjoy evaluating and ranking subjects (Dooley, 

2014), and decision makers are greatly affected by ranks of things (Chun 

& Larrick, 2022). Therefore, it can be concluded that the idea has a 

guaranteed group of customers. Film rankings, more specifically, has 

been always generating interest with the example being the decennial 

Sight and Sound poll (Ebert, 2012). 



51 

 

• Personal interest: The idea is of the author's preferences, and the passion 

about a particular topic can make it easier to stay motivated and 

committed to the project. 

The main objective of this project is to investigate the practical applications of 

two specific technologies: Headless CMS and Qwik framework. The purpose is to 

determine their viability in real-life settings, and to provide empirical evidence to 

support the theoretical benefits and drawbacks of these technologies. 

Additionally, the project aims to showcase the detailed process involved in 

building a web product using these technologies, by providing a step-by-step 

demonstration of the development process from start to finish. By accomplishing 

these objectives, this project aims to provide valuable insights into the 

application of Headless CMS and Qwik framework in web development, and to 

contribute to the existing knowledge in this area. 

3.2. Requirement Analysis 

The MoSCoW strategy is used to determine the requirement for Filmmash 

application. It is a prioritization technique used in project management to help 

teams determine which requirements or features are essential to a project's 

success. The term MoSCoW is an acronym for the four categories of 

prioritization: Must-haves, Should-haves, Could-haves, and Will-not-haves (yet). 

It is defined as followed (“MoSCoW analysis”, 2009): 

• Must-haves refers to  requirements that are crucial for the final solution 

to be deemed successful.  

• Should-haves refers to requirements that are considered high-priorities 

and should be incorporated into the solution if feasible. 

• Could-haves refers to requirements that are considered desirable but not 

essential to the success of the project. If time and resources permit, these 

requirements are usually included in the solution. 



52 

 

• Will-not-haves (yet) refers to requirements that have been collectively 

decided will not be included in a particular release but may be considered 

for future implementation. 

Must-have 

• Functional web application which 
calculates users input and ranks 
choices accordingly 

• Integration with Contentful and 
retrieving data using Contentful 
Content Delivery API 

• Implementation using Qwik as 
frontend framework 

Should-have 

• Responsive application to showcase 
Headless CMS’s integration into 
multiple devices 

• Login and logout implementation for 
users 

Could-have 

• Enhanced UX/UI design 

• Specific guidelines on retrieving 
and uploading content 

Will-not-have-yet 

• Integration with Contentful’s Content 
Management API (to post content 
directly through application) 

• Specific endpoint for each film 

• Delete operation 

Table 2. Requirement analysis of Filmmash 

3.3. Core Functionality and User Flows 

3.3.1. Elo’s Rating Algorithm 

The application revolves around the main concept of comparing two films and 

ranking them according to users’ inputs. Each turn, it randomly selects two films 

from a set of pre-made categories, lets users choose their preferred one and 

calculates the points for each film based on the Elo’s rating algorithm. 

The Elo rating system is a mathematical method used to calculate the relative 

skill levels of players in two-player games such as chess. It was invented by Arpad 

Elo, a Hungarian-born American physics professor and chess player, to replace 

the previously Harkness system used in chess (Elo, 1967), and has since been 

widely adopted by many sports governing bodies, board games and even dating 

applications such as Tinder. It works by calculating the winning probabilities 

based on players’ current ratings, and updating that rating based on the 



53 

 

outcomes of their head-to-head matches, or in simplified terms, one player’s loss 

of points reflects in another player’s gain. If a player wins a match against an 

opponent with a higher rating, the winner's rating will increase more than if they 

had won against a lower-rated opponent; similarly, if a player loses to a higher-

rated opponent, their rating will not decrease as much as if they had lost to a 

lower-rated opponent. Elo indicated that a player's performance in each game is 

a random variable that conforms to a probability distribution in the shape of a 

bell curve over time, meaning that a player's true skill is represented by the 

average of their random performance variable in the Elo ratings system (Veisdal, 

2019). 

The Elo’s rating algorithm can be divided into two formulas: calculating the 

expected score and updating the real rating based on performances. 

𝐸𝑎 =  
1

(1 + 10
𝑅𝑏−𝑅𝑎

400 )
 

𝐸𝑏 =  
1

(1 + 10
𝑅𝑎−𝑅𝑏

400 )
 

Ea and Eb denote the winning probabilities, or the expected change in rating 

outcome, for player A and player B in a head-to-head match, while Ra and Rb 

reflect the current ratings of A and B. Without loss of generality, it is assumable 

that player A wins over player B, in which case the new rating for A and B can be 

calculated as:  

{
𝑅′

𝑎 =  𝑅𝑎 + 𝐾 × (𝑆 −  𝐸𝑎)
𝑆 = 1

 

{
𝑅′

𝑏 =  𝑅𝑏 + 𝐾 × (𝑆 − 𝐸𝑏)
𝑆 = 0

 

R’a and R’b are the new ratings after calculation of the two players, and are 

calculated by S, denoting the match results in binary terms, 1 for the winner and 



54 

 

0 for the loser. Under normal circumstances, a draw is reflected in S being 0.5 for 

both players, however, this application refrains from dealing with that situation 

since the feature requires a decisive choice from the users. The K-factor is a 

numerical value used in the Elo rating system to determine the amount of rating 

points gained or lost by a player after a game. The K-factor represents the 

volatility of a player's rating and is used to adjust the rating change based on the 

perceived uncertainty of a player's true skill level. There are debates on which K 

factor is the most accurate. Sonas (2002) (4) indicates that K should be fixed at 

24, while the USCF (the original implementer of the Elo’s rating) and the FIDE 

base K on both a player’s points and his number of matches previously played. 

For the sake of simplicity, the application utilizes the original K factor that the 

USCF used prior to 2013, as followed: 

𝐾 = {

32 (𝑅 < 2100)
24 (2100 ≤ 𝑅 < 2400)

16 (𝑅 ≥ 2400)
 

3.3.2. User Flow 

Filmmash provides two main features: ranking the films in a premade category 

(will be referred to as ‘gallery’), by using the discussed Elo’s algorithm for public 

users, and creating galleries by connecting to Contentful content management 

system for authenticated users.  

When first accessing the homepage, users are provided with a list of galleries to 

choose from based on their personal interests. Users’ choice subsequently leads 

to the gallery’s specific page, where users can access three panels: 

• The gallery’s information panel consists of data regarding the chosen 

gallery, such as the creator, description, or links. 

• The gallery’s mash panel is where the core function takes place. Users are 

presented with two films to choose from, and each turn the users’ choice 



55 

 

are recorded, recalculated, and saved into the database, before the 

application re-randomizes for a new set of films. 

• The gallery’s rankings panel displays the accumulated ranking results 

according to users’ votes. 

  

 

Figure 21. User flow for ranking films in a gallery feature 



56 

 

If users want to create their own galleries of films, users must create a 

Contentful account and provide the gallery’s contents to Contentful’s content 

type for management. After making sure that users are authenticated and 

authorized for creating galleries, the application redirects to the “Create New 

Gallery” form. At this stage, users are required to provide various Contentful’s 

key and ID to retrieve contents saved in Contentful to populate the application’s 

own database with.  

 

Figure 22. User flow for creating new gallery 

3.3.3. Adding and Retrieving Content from Contentful 

As one main target of this thesis is to explore the integration of Headless CMS 

into a real-world case, the application utilizes Contentful, the previously 



57 

 

introduced content management system, as the main method of film data 

regulation provided by the users. This subsection details the steps to create, 

upload content to Contentful as well as to retrieve content from the system to 

plug into Filmmash.  

After creating the account, users can create their content types to determine the 

specific models to integrate into the system. There are two types of content 

model that Filmmash required from Contentful: 

• Gallery’s overview information: This content type determines the 

necessary attributes for a Filmmash’s gallery. 

• Gallery’s film entry: This content type denotes the necessary attributes 

for a film entry. 

 

Figure 23. Creating a new content type on Contentful 



58 

 

 

Figure 24. The two content types required for a gallery’s data retrieving in 

Filmmash 

Then, for each Contentful’s model, users can define the specific attributes and 

their data types, which would be thoroughly detailed in the next chapter. Users 

subsequently create the contents for each content model, which match the fields 

already denoted in the respective model. 

 

Figure 25. The sample content type fields for gallery's information 



59 

 

 

Figure 26. The sample content type fields for a gallery's film entry 

 

The content successfully created in the Contentful system can be plugged into 

use in Filmmash through the utilization of the following keys: 

• Space ID: The specific ID that denotes the users’ space where the content 

models are created  

• Environment ID: The specific ID that denotes the users’ environment of 

the space. If users have not specified it from the beginning, the default 

key “master” will be used. 

• Content Delivery API key: The key serves as the connection point for 

Filmmash to access the Content Delivery API, which is the main  

• Gallery’s information content type ID: The specific ID for the information 

model of the gallery. This ID is created by the users when first creating 

the content type 

• Gallery’s information content type ID: The specific ID for the film entry 

model. This ID is also initialized by users upon model creation. 



60 

 

 

 

 

Figure 27. Retrieving the necessary API keys for connecting Contentful and 

Filmmash 



61 

 

3.4. System Infrastructure and Relevant Technologies 

The system infrastructure of a web application is a crucial component that 

underpins its operation. It consists of all the hardware, software, and network 

components that are necessary for the web application to function effectively 

and efficiently. A well-designed system infrastructure ensures that the web 

application can handle heavy user traffic and data processing without 

compromising its performance and reliability. It also makes it easier to maintain 

and upgrade the web application over time, ensuring that it stays up to date with 

the latest technologies and features (Muzammil, 2021). Therefore, having a 

robust system infrastructure is essential for the successful operation of any web 

application. 

Filmmash applies a three-layer structure to support the application’s 

functionality. Its infrastructure is detailed as followed: 

 

Figure 28. Filmmash's system infrastructure 



62 

 

The data layer, which stores the user login information, as well as holds the basic 

information and the ratings for every film, uses MongoDB as the main database 

system. MongoDB is a popular open-source NoSQL document-oriented database 

that allows developers to store and manage data in a flexible and scalable way. 

MongoDB is different from traditional relational databases, as it stores data in 

JSON-like documents with dynamic schemas, which means that each document 

can have a unique set of fields and data types. Filmmash uses MongoDB for its 

ability to handle unstructured data, since the application is heavily-content 

based and supports a variety sets of data types which makes it difficult to utilize 

relational alternatives. MongoDB is also used with a view for future scaling since 

it supports sharding, a technique that allows data to be distributed across 

multiple servers for increased scalability and performance, which is of great 

benefits with a larger amount of input data (Papiernik, 2021). However, instead 

of self-deploying databases on MongoDB, Filmmash uses MongoDB Atlas as a 

multi-cloud database service that provides easier management and deployment, 

as well as security methods for MongoDB applications. Filmmash uses the free 

cluster tier of MongoDB Atlas, which is 500 megabytes in size, as its database 

only stores the most basic collections’ entries. There are several cloud platforms 

that MongoDB provides the integration to deploy data to, such as Google Cloud, 

Azure, or AWS, the latter of which is decided to be used by Filmmash. As 

mentioned, while the basic application’s information is saved to MongoDB, the 

contents created by users are regulated and managed by Contentful and plugged 

to the backend system through Contentful’s Content Delivery API. 

Filmmash’s server is built on Node and Express.js. Node.js is a powerful and 

popular open-source runtime environment for building server-side applications. 

Its most innovative aspect comes from the fact that it allows users to build the  

server using fully JavaScript, so that there is no conundrum of having to learn 

two languages to write an application. As Filmmash handles a considerable 

amount of traffic and requests while also aims for the highest performance, 

Node.js proves to be the most versatile with its minimal overhead cost, as well as 



63 

 

a rich ecosystem of modules, packages, and libraries to be integrated within, 

including Express. Express.js is a minimalist web framework for Node.js, 

commonly regarded as the standard Node.js framework (Serby, 2012), that 

provides a set of features for building web applications and APIs. It simplifies the 

process of building server-side applications by providing a robust set of HTTP 

utility methods and middleware functions that make it easy to handle requests 

and responses. MongoDB, Node.js and Express, together form the MEN backend 

stack, which plays a crucial role in nowadays web application, as it is an integral 

part of most popular tech stacks such as MERN or MEAN once connected to the 

frontend. As one of the main objectives of Filmmash is to investigate the 

practical use of Qwik, this framework is the utilized technology for the frontend. 

The application is deployed on Vercel for the server side, and Netlify for the 

client side. Vercel is a cloud-based platform that specializes in serverless 

deployment of web applications. Its features, including generated SSL 

certificates, edge caching, and a global CDN for fast and reliable performance 

makes it the perfect candidate for hosting the server of Filmmash, which 

requires an automatic process to simplify the procedure. Netlify, on the other 

hand, is a cloud-based platform that specializes in static website hosting and 

deployment. As Qwik is encouraged to connect to Netlify for the increasing 

productivity the platform provides (Postma, 2022), it is the chosen deploy 

companion for the client side.  

Instead of choosing pure JavaScript, Filmmash chooses TypeScript as the main 

language to be written on. Developed by Microsoft in 2012, it can be viewed as a 

superset of JavaScript, or “JavaScript with types”, and was created to resolve the 

problems of using JavaScript in a business scale, particularly dynamic typing. 

Dynamic typing, while allowing for more flexibility, can often result in bugs that 

impede the progress of programmers and can lead to increased costs for adding 

new code. The lack of features like types and compile-time error checks in 

JavaScript can be problematic for server-side code in larger companies and 



64 

 

codebases. Barr et al. (2017) indicate that TypeScript can detect up to 15% of 

JavaScript bugs, which can be considered a huge number regarding all the 

possibilities there are. 

  



65 

 

4. FILMMASH APPLICATION IMPLEMENTATION 

This chapter is dedicated to describing the comprehensive process of 

implementing Filmmash. It is divided into several subsections which walk 

through the various development stages, including database design, server-side 

and client-side implementation as well as deployment. The section aims to 

achieve its goals by examining architectural diagrams, written code snippets as 

well as user interface examples that help illustrate the development process, 

consequently providing an in-depth understanding of the technical aspects 

involved in the development of Filmmash and how each component was 

implemented to achieve the final product. 

4.1. Database Design 

The application consists of three main models: Gallery, Film and User. While all 

the information regarding users is stored in MongoDB, the metadata of galleries 

and films are stored by Contentful management system, whose specific keys are 

stored in the respective models in MongoDB for content retrieval purpose. This 

method, as discussed, helps Filmmash to explore the possible advantages of 

using Headless CMS in a real-life production. The following figure describes the 

entity relationship diagram of the Filmmash application. 



66 

 

 

Figure 29. Filmmash entity relationship diagram 

The Gallery model in Contentful consists of attributes that provide an 

informative overview about each gallery of films. This includes its name, 

summary, and description, as well as the avatar and banner images for styling 

purposes, and is linked with the Gallery model stored in MongoDB through its 

unique ID, hence making the relationship one-and-only-one. The Gallery model 

in MongoDB stores the discussed keys and configurations to retrieve content 

from the Contentful model.  

The Film models of Contentful and MongoDB function in a relatively similar way, 

with meta-content of a film (name, directors, images and such…) is saved in 

Contentful, while the points of each film, based on users’ votes, are saved in 

MongoDB for better server execution and adaption. Since every film input by 

users belongs to one gallery, and one gallery can contain many films, it is vital 

that this many-to-one relationship is reflected by a foreign key in the Film model 

that connects each film to its respective gallery.  

Filmmash also provides authentication for users, since only authenticated and 

authorized users are given the rights to submit new galleries. Its model in 



67 

 

MongoDB consists of basic user information such as name, username, avatar 

image and a hashed password. Each user can create many galleries, hence 

reflecting a one-to-many relationship, with the Gallery model holding a foreign 

key that directs to its creator. 

4.2. Backend Implementation 

Filmmash uses Node.js and Express as the underlying framework for server-side 

development. This subsection explores the structure of the backend code and 

dives deep into explaining the process of constructing it.  

4.2.1. Backend Code Structure 

The following figure describes the Filmmash backend code structure.  

 

Figure 30. Filmmash backend code structure 

The code can be divided into two parts: the configurations and the main 

functionalities. The backbone of  `package.json`, which is created whenever a 



68 

 

Node.js project is initialized. It is a metadata file used to describe various aspects 

of the project, including its name, version, dependencies, and other relevant 

information. As it is described in the following figure, Filmmash `package.json` 

file contains the information of libraries and packages that help build the 

foundation of its backend, notably Express, Mongoose and Contentful. The 

function of each package will be further elaborated on its use. 

 

Code Snippet 1. Backend's package.json file 

Since TypeScript is the main language used for the project, a `tsconfig.json` file is 

required to specify compiler options and settings to determine how to compile 

TypeScript to JavaScript. The configuration part also contains an `.env` file, which 

is of utmost importance since it stores configuration variables and sensitive 

information that should not be committed to version control. The file typically 

contains key-value pairs, with each pair representing a configuration variable and 

helps developers to keep sensitive information out of the codebase and prevent 



69 

 

it from being accidentally exposed or leaked. In Filmmash, `.env` is used to store 

information regarding MongoDB Atlas client‘s URI and used server port. 

 

Code Snippet 2. Backend's tsconfig.json file 

 

Code Snippet 3. Backend's example of an .env file 

As for the main functional part, as defined in the `package.json` file, the starting 

point for the backend is the `index.ts` file. When running a Node-based 

application, Node.js searches for a main file to run as configured in 

`package.json`, and in the case of Filmmash the default file is `index.ts`. This file 

typically contains the initialization code for the application, including setting up 

the server, defining routes, applying middlewares, and connecting to a database. 

However, for clarification, this file is divided into two, with `app.ts` being the 

definitive file for creating the Filmmash backend application, while `index.ts` 

imports the application created and connects it to the server.  

The code of `index.ts` and `app.ts` is based on several repositories which are 

constructed to represent a MVC structure: models, controllers, and routers. The 

`models` folder contains the data models, which define the structure and 

behavior of the application's data, which is previously discussed in the database 



70 

 

design subsection. The `controllers` folder consists of the application’s main 

logical behavior, which acts as an intermediary between the models and the 

application interface by handling requests from clients, processing data and 

returning responses which reflect users’ interactions. These handlers are 

regarded as the CRUD operations, which is an acronym of the four main 

operations for implementing a backend application: create, read, update, and 

delete. These controllers’ functionalities are then connected to their respective 

routes which are called in the `routers` directory, which defines the application's 

API endpoints and the HTTP methods that can be used to access those 

endpoints. The application also contains a `utils` directory for denoting the basic 

utilities that Filmmash needs which consists of reusable functions such as 

loggers, error handlers, middlewares or codes to represent separately specific 

tasks, including connecting to Contentful or JWT. 

These directories will be explained thoroughly and separately in the next 

subsections, before combining with the elaboration of the `app.ts` and `index.ts` 

files to portray a vivid representation of Filmmash backend application. 

4.2.2. Data Models 

Filmmash data models, as reflected from the entity relationship diagram, 

consists of Gallery, Film and User.  



71 

 

 

Code Snippet 4. Gallery data model 

 

Code Snippet 5. Film data model 



72 

 

 

Code Snippet 6. User data model 

The models are created using Mongoose, a library that connects MongoDB and 

Node.js to initilialize and configure data schemas. Each file consists of a defined 

TypeScript interface and uses the constructor function `Mongoose.schema()` to 

define the structure, behavior, and functionalities of MongoDB documents. The 

fields and their properties strictly follow the entity relationship diagram, with 

foreign keys represented by references to the connected models. It should be 

noted in the User model that the schema uses a plugin called `mongoose-unique-

validator` to determine the singularity of each entity, since clients’ usernames 

cannot match with each other’s. The users’ passwords stored in MongoDB 

database are the hashed versions of the originals, a concept which is further 

discussed in the later section and are removed from the JSON output. This is 

done since the inclusion of hashed credentials in JSON files can lead to a false 

authorization, meaning that if an untrusted client successfully retrieves the 

content of these files, this client is able to obtain fraudulent access to the 

account linked to the subsequent passwords. By configuring the JSON file with 



73 

 

the option `toJSON`, Filmmash ensures that the schema is always serialized to 

JSON in the desired format. 

4.2.3. Routers and Controllers: Gallery Model 

The Gallery model supports three functionalities: create a new gallery, read all 

the Contentful data of all galleries, and read the data of a single gallery. 

The following sequence diagram and code snippets describe the steps of creating 

a new gallery: 

 

Figure 31. Sequence diagram for creating new gallery 



74 

 

 

 

Code Snippet 7. Backend code for creating new gallery 



75 

 

When the browser receives a POST request to `/api/galleries/` endpoint, it 

understands that a user is trying to create a new gallery. As previously stated, 

only authenticated users are granted the permission to create one, therefore, 

the first step is to check whether the user is authorized for such actions. The 

router subsequently calls the `createGallery()` function to the controllers, using 

the credentials input by the users, which are in turn used to retrieve the 

necessary Contentful metadata before Mongoose finalizes the creation with its 

`create()` method.  

There are two endpoints for retrieving multiple gallery documents based on the 

purpose, with the methods being relatively similar to each other. To read all 

galleries’ metadata, users send a GET request to `/api/galleries/`, and if one 

requires all the galleries’ data of a specific user, a GET request to 

`/api/galleries/users/:userId` is sent. For both endpoints, the router fires a 

`getAllGalleries()` function to the controller, which searches the database for the 

requested galleries’ credentials. These credentials are returned and 

subsequently used to get all the galleries’ metadata from Contentful. 

 

Figure 32. Sequence diagram for getting multiple galleries 



76 

 

 

Code Snippet 8. Backend code for getting multiple galleries 

Lastly, the method for reading a specific gallery document also bears 

resemblance to the discussed process, with an endpoint directed towards the 

galleryID being used. It is noted that the function used to get one gallery in this 

case is still the `getAllEntriesFromContentful()`, since as explained, each Gallery 

content model in Contentful should contain one and only one entity of gallery, 

hence, the function can be reused with only the first index (index 0) returned. 



77 

 

 

Figure 33. Sequence diagram for getting one gallery 

 

Code Snippet 9. Backend code for getting one gallery 



78 

 

4.2.4. Routers and Controllers: Film Model 

The Film model also contains three functionalities, albeit with a few differences 

from the Gallery model: getting all the films of a gallery, getting a specific film, 

and updating the points of a film. Since all the film metadata are stored in 

Contentful, the create and update process are left for the content management 

system and only the reading and updating points process are managed in the 

backend. 

 

Figure 34. Sequence diagram for getting all films in a gallery 



79 

 

 

Code Snippet 10. Backend code for getting all films in one gallery 

For usage in the client side, films retrieved from a gallery must combine both 

data from Contentful and MongoDB. Therefore, after determining the specific 

gallery using the endpoint galleryID, the controllers get all the films from the 

respective Gallery model in Contentful as well as those from MongoDB. The 

returned results are bundled so that all film documents hold data from both 

databases.  



80 

 

Retrieving a specific film is also the same as retrieving a specific gallery, with the 

endpoint directed towards the filmID. 

 

Figure 35. Sequence diagram for getting one specific film 

Instead of calling directly to the gallery containing the searched film using its ID, 

Mongoose’s `populate()` method is used, which can expand reference fields in a 

document with actual objects from other collections. By using this method, the 

controllers get the necessary Contentful credentials to retrieve the film data. 



81 

 

 

Code Snippet 11. Backend code for getting a specific film 

The point updating process is straightforward, with the `findByIdAndUpdate()` 

method used. It is noted that there is a possibility of unsynchronization between 

the film data in Contentful and MongoDB, hence, there are films whose IDs may 

appear in the endpoints but have not been added to the MongoDB database. In 

this case, the upsert property of the `findByIdAndUpdate()` method is used, 

meaning that if the film has not yet been included in the database prior to its 

update, then the update process will also create a new document with the 

updated data. 



82 

 

 

Figure 36. Sequence diagram for updating a film’s points 

 

Code Snippet 12. Backend code for updating a film’s points 

4.2.5. Routers and Controllers: User Model 

The user model consists of three functionalities: getting a user, logging in and 

signing up, the latter two being closely related to each other. Reading a user’s 

data is a simple process with only the username of the user required in the 

endpoint, being passed down to the MongoDB database for retrieval. 



83 

 

 

Figure 37. Sequence diagram for getting a user 

 

Code Snippet 13. Backend code for getting a user 

Filmmash supports user authentication and authorization, which means routes 

for logging in and signing up are fully provided. Signing up process requires the 

user’s input data, whose password is subsequently hashed using the `bcrypt` 

library. It is based on the homonymous hashing function introduced by Provos 

and Mazières (1999), as an optimization of `crypt` hashing technique which was 

deemed not adaptable to the fast-paced evolution of computer hardware. It was 

thought to be unable to withstand a dictionary attack, in which hackers decipher 

a hashed key by brute-forcing through thousands or millions of possibilities. 

Bcrypt evolves on this technique by implementing the Blowfish cipher. It requires 

strenuous preprocessing for each time a key is changed, therefore increasing the 

workload and duration of hash calculations, which in turn be an impossible task 



84 

 

for brute force attacks (Arias, 2021a). Moreover, `bcrypt` also uses salting 

technique, where salt is a randomly generated value that is used in combination 

with a password or other data input to create a unique hash. The purpose of a 

salt is to add additional entropy to the input, making it more difficult for 

attackers to guess the original input or to use precomputed hash tables for 

attacks (Arias, 2021b). Based on this, the Filmmash’s sign-up operation also 

provided a random number of salt rounds to strengthen the security of the 

hashed password. 

 

Figure 38. Sequence diagram for logging in and signing up 



85 

 

 

Code Snippet 14. Backend code for sign up operation 

The sign-up operation links directly to a log in. A log-in attempt finds the account 

linked to the unique input username in MongoDB collections. The data found is 

subsequently used to verify the password input by the user, and if a match is 

recorded, a session token is then created using the JWT library, whose `sign` 

method receives information about user data, the token expiry date (after which 

time user must redo the authentication process), and the secret key provided in 

the `.env` file.  



86 

 

 

Code Snippet 15. Backend code for login operation 

4.2.6. Utilities 

The `utils` repository contains reusable segments of code required for the 

functionalities of routers and controllers and is divided into four categories 

based on their respective actions. The two most important files are `token.ts` 

and `contentful.ts` 

The `token.ts` file verifies the authorization of a user by retrieving a decoded 

token. This is done using the same JWT library previously mentioned, which also 

provides a `verify` method, which accepts two parameters, the token saved in 

the request’s header, and the secret key saved in the `.env` file. If the decoded 



87 

 

token matches a user in a database, that user is therefore returned, otherwise it 

signals an error.  

 

Code Snippet 16. Backend code for getting authorized user 

Since Contentful is being used as the bridge between controllers and MongoDB 

data objects, Filmmash utilizes its library to retrieve the application’s metadata 

stored. While the backend provides three functions for different data collecting 

methods, the code backbone is to use the `createClient()` function by Contentful, 

with all tokens and credentials be adequately input. The response’s data is 

cleaned accordingly based on the purpose of the retrieval. 



88 

 

 

Code Snippet 17. Backend code for retrieving data from Contentful 

4.2.7. Backend Conclusion 

All the code discussed in the previous subsections are combined in the two 

foundation files: `app.ts` and `index.ts`. This subsection elaborates on the 

functionalities of these two files and concludes Filmmash backend 

implementation. `app.ts` imports all the necessary libraries as well as the written 

code to maintain a well-functioned Express application. It initializes an Express 

app as well as connects to MongoDB using Mongoose, and then initializes the 

middleware functions using the use() method on the app instance. The cors() 

middleware is used to allow cross-origin resource sharing with credentials, while 

cookieParser() middleware is used to parse cookies sent from the client. The 

express.json() middleware is used to parse JSON requests from the client, while 

the requestLogger, as discussed, logs incoming requests. Lastly and most 

importantly, the Express application connects to the three defined routers: 

users, galleries and films, enabling handling of HTTP requests to the specific 

endpoints of these routers.  

 



89 

 

 

 

 

Code Snippet 18. Backend Express application initialized 

At this stage, the application backend is now fully formed and can be connected 

to the server for development and production. This step is finalized in the 



90 

 

`index.ts` file, which is the entry point of Filmmash backend application. 

 

Code Snippet 19. Backend `index.ts` file 

4.3. Frontend Implementation  

Filmmash frontend utilizes the Qwik framework for development. This 

subsection explores the structure and content of the code to further prove the 

practicability of Qwik in a real-life project. 

4.3.1. Frontend Code Structure 

The following figure describes the structure of Filmmash frontend code: 



91 

 

 

Figure 39. Frontend code structure 

The structure of the code is based on Qwik’s convention when initializing a 

project using Qwik CLI. It mirrors the structure of the backend with clear division 

between the application part (which is located under the `src` directory) and the 

configuration part. A noting point in the configuration part is the appearance of 

`vite.config.ts` file, which indicates the use of Vite, a developing environment 

that Qwik uses to build its application, which is a relatively new tool yet it has 

gained its stature in the developers’ community thanks to its fast performance as 

well as its use of hot module replacement. 



92 

 

This section focuses primarily on the application part by exploring the files as 

well as the crucial directories, especially `routes` and `components`, to vividly 

portray the core functionality of a Qwik-based frontend application. Since the 

codebase is large, the section aims to explain in detail the most crucial factors 

while providing examples for the remaining. 

4.3.2. Root, Global Styling, and Entry Files 

The files described in this section are the entry points for Filmmash, which are 

generated on creating a Qwik application. The `root.tsx` file contains the root of 

the application tree and is wrapped in a `QwikCityProvider` component, which 

works as a meta-framework that provides routing capabilities for a Qwik 

application. The root component is practically a HTML document structure with 

the head includes the necessary `meta` tags for enhancing web details and 

performance.  

 

Code Snippet 20. Frontend `root.tsx` file 

For this specific reason, Filmmash’s global styling `global.css` is also imported 

into this file. Unlike component-specific styles, which are defined within the 



93 

 

scope of a specific component and only apply to that component and its 

children, global styles apply to all components and elements on the page, which 

makes them useful for defining styles that need to be consistent across the 

entire application, such as basic typography or layout styles. It should be noted 

that `global.css` is the only native stylesheet file used in Filmmash, since the 

application uses a technique called CSS-in-JS which is later discussed. It is derived 

from the structure that Filmmash contains four entry files, each supporting 

HTML rendering in a specific environment. The two most crucial files are 

`entry.ssr.tsx` and `entry.preview.tsx`, with the former sets up SSR and renders 

the initial HTML for the page and the latter serves the application in production 

mode. 

4.3.3. Routes 

As mentioned, Qwik is supported by Qwik City, which provides a directory-based 

routing system for Qwik applications. This routing system is implemented 

through the routes folder, which contains an index.tsx file in the root directory as 

well as in each subdirectory. Essentially, the index.tsx file acts as the entry point 

for each directory in the routing system. When a user visits a particular route in 

the application, the index.tsx file associated with that route is responsible for 

handling the request and rendering the appropriate components. 

 

Code Snippet 21. The root component of the Frontend router 



94 

 

For example, the file `src/routes/login/index.tsx` which contains the Login 

component will be accordingly mapped to its correct URL path 

“https://example.com/login”. The directory-based routing system in Qwik City is 

significant since it offers a systematic and orderly approach to handling 

application routes, providing a high degree of flexibility in defining routes and 

handling requests, as well as facilitating the creation of intricate and versatile 

web applications, which is comparable to its counterparts such as Next.js or 

Remix.run. Another feature Qwik City supports is the use of dynamic route 

segments, which enables developers to create more customized and 

personalized user experiences. In Filmmash, parentheses and brackets are used 

to define the dynamic routes, as indicated in the `galleries` and `users` routes. 

While parentheses are used in cases where the routes’ names should be omitted 

from the URL, the brackets indicate the path can be dynamically changed based 

on IDs or inputs. 

Apart from the main structure, layout is also a vital concept in Qwik City’s 

routing. Layout is typically used to define a reusable component for multiple 

pages in the application, such as a header, footer, or navigation menu. Filmmash 

uses the `layout.tsx` file at the root of the `routes` directory, which reuses the 

Header component and renders the nested routes under the Slot component. 

 

Code Snippet 22. Frontend’s routing layout 



95 

 

4.3.4. Initialized Components: Homepage and Header 

The subsection onward discusses the implementation of core components based 

on the user flow described in Figure 21 and Figure 22, including Homepage, 

Header, Forms and Gallery components. 

Homepage and Header are the first two rendered components when a client 

requests Filmmash’s address, as displayed in the following figure.  

 

Figure 40. Homepage and Header components 

The Homepage component returns a basic title and subtitle, as well as renders a 

list of available galleries. This can be achieved the Qwik’s `useStore` hook, which 

initialize a state that holds the values of galleries, as well as the `useTask$` hook 

to retrieve the list of all galleries.  



96 

 

 

Code Snippet 23. Homepage component code 

The child component HomeGalleries, as described, receives the gallery’s data 

retrieved by the `getAllGalleries()` method defined in the `services` folder, before 

being mapped accordingly for the rendering mechanism. 

 

Code Snippet 24. HomeGalleries component code 

The Header component is relatively simple with the name of the web application 

displayed in the middle and a login link located in the right corner. It initially 

checks if the session is authenticated and accesses the login user information 

which is stored in the local storage of the browser upon signing in, replacing the 

“login” link with a profile image of the authenticated user. 



97 

 

 

Code Snippet 25. Header component code 

4.3.5. Form Components: Login, Sign Up and Create Gallery 

By the necessity of their features, there are three components required the use 

of form components: Login, Sign up and Gallery creation, the first two are in the 

`auth` subdirectory when the latter belongs to the `user` counterpart. Since the 

backbone of these components resemble each other, this subsection mainly 

discusses functionalities which compose each of them, with code snippets and 

results provided. In each component, a three-part code structure is presented 

which consists of state management, submit handler and form rendering. The 

use of `useNavigate()` hook is notable as it creates a redirection to the desired 



98 

 

location post-submission. 

 

Code Snippet 26. Login component code 

The rendered components are displayed as followed: 

 



99 

 

 

 

Figure 41. Login, Sign up and Create gallery form 



100 

 

4.3.6. Gallery Components: Overview, Mash and Ranking 

The Gallery components serve the main functionalities of the application, 

including letting users compare films one-to-one and ranking them accordingly. 

This subsection follows the user flow by first exploring the gallery overview, then 

explains in detail the mashing functions as well as the ranking system. The 

Gallery component includes a root `index.tsx` file that handles and manages 

gallery data retrieval using the `galleryService` in `services` directory, while also 

providing a header bar at the top of its child components for navigation 

purposes. 

 

Code Snippet 27. Gallery component’s root file 

The Overview child component involves only retrieving and displaying a gallery 

metadata stored in Contentful, which is straightforward given the data passed 

down as props from the Gallery’s root. 



101 

 

 

Code Snippet 28. Gallery’s overview code 

 

Figure 42. Overview component 

The implementation of the mashing function for Filmmash is quite complex. The 

functionality requires a state which includes the two indexes that point to two 



102 

 

films in an array respectively, as well as the films’ previous points. 

 

Code Snippet 29. Gallery’s mashing state management 

 When users first access the page, the `useResource$` hook provided by Qwik 

retrieves an array of all films in the specific gallery, before randomizing two 

integers that fall within the range of the array’s length. With each round of 

randomization, Qwik’s `track` attribute detects a behavioral change and updates 

the according states of the two films, hence resulting in a display of two films 

each in different rounds. 

 

Code Snippet 30. Gallery’s mashing `useResource` hooks 

The next step is to update the points of each film based on the user’s decision, 

with a `calcEloRating()` function written to represent the Elo’s Algorithm. The 

points returned from the function are used to update the films’ points 

accordingly. 



103 

 

 

Code Snippet 31. Elo’s algorithm in code 

The result of the mashing functionality is displayed as followed:  

 

Figure 43. Mashing functionality 

Lastly, the development of the ranking system is also fulfilled with sorting 

feature, and each row can be expanded if users choose to view the film’s full 

metadata as input in Contentful. 



104 

 

 

Figure 44. Ranking component 

4.3.7. Styled Components 

As mentioned, Filmmash uses a technique called CSS-in-JS, which means styling 

components directly in a JavaScript/TypeScript file. This approach has several 

benefits, the first of which is that it allows for more efficient rendering of CSS 

styles, since it enables dynamic generation of CSS styles at runtime. Styled 

components also make it easier to create reusable components by defining styles 

and functionalities in a single place and recalling them across the application. All 

in all, CSS-in-JS enables more flexible and dynamic styling options, such as 

conditionally applying styles based on user interactions or data input, which 

results in a more interactive and responsive user experience. Since it aligns with 

Filmmash’s intention, CSS-in-JS is achieved by using the Styled Vanilla library, 

which Qwik internally supports. The components are bundled with their 

respective styling under the `components/styled` subdirectory. 

  



105 

 

5. PERFORMANCE EVALUATION 

The primary focus of this chapter is to assess how well the Filmmash application 

performs, specifically by analyzing the adaptability of its utilized technologies, 

Headless CMS and Qwik framework. The chapter aims to examine the practical 

usage of these technologies in Filmmash and to determine whether they perform 

as well as claimed in the theoretical part of the work, therefore providing 

evidence to support the claims made about these technologies and their 

effectiveness in this specific application. By examining the practical usage of 

these technologies, the chapter aims to provide a more complete understanding 

of how well they work in real-world situations. 

5.1. Contentful-based Management System 

As stated in the theoretical part, a crucial benefit of a Headless system is its 

ability to provide content across devices with utmost responsiveness and 

flexibility, as it detaches the content with its design and transfers information 

using API. In the case of Filmmash, which uses Contentful as the Headless-based 

content management, the content is rightfully delivered through Contentful’s 

Content Delivery API to then coupled with the styling defined separately in the 

client side. This results in a responsive and scalable web application, where 

users’ contents are distributed with respect to the omnichannel approach. The 

following figures describe an example of responsiveness of Filmmash, regardless 

of the content populated from Contentful. 



106 

 

 

Figure 45. Filmmash's overview section, viewed on laptop screen (1440px in 

width) 

 

Figure 46. Filmmash's overview section, viewed on laptop screen (425px in 

width) 

One problem raised in the theoretical section, unstructured content, is also 

addressed with the use of Contentful. While unstructured content prevents the 



107 

 

classification of individual components, Contentful separates its content into 

distinct content models with labeled fields of specific types. Users therefore can 

freely modify the one component’s content or length without affecting the view 

layer of others, thus turning Filmmash into a composable content platform. 

As mentioned, the Filmmash application presents a challenge of complexity and 

a steep learning curve. To create a new gallery and add content, users are 

required to have a fundamental understanding of the Headless CMS, as they 

need to create distinct data models in Contentful. However, this process is not 

simple and straightforward. One possible solution is to implement a customized 

form in Filmmash that mimics the behavior of Contentful and utilizes its Content 

Management API to input users’ answers into Contentful’s system. Such tasks 

are deemed as not applicable given the short time and small application’s scope, 

as discussed in the requirement analysis section. 

5.2. Google Lighthouse Performance Metrics 

The theoretical section of the thesis makes claims about the innovative features 

of the Qwik framework. To support these claims, the performance of the 

Filmmash application, which uses Qwik for its frontend, is evaluated to gather 

empirical evidence and to demonstrate the effectiveness of the Qwik framework 

as a modern, innovative technology for developing frontend applications. This 

analysis is likely to involve testing and benchmarking Filmmash against other 

applications built using different frontend technologies to draw comparisons and 

conclusions about Qwik's performance. Google Lighthouse is the measurement 

tool used in this part, with the scores calculated as indicated in the following 

figure. 



108 

 

 

Figure 47. Google Lighthouse's measurement of Filmmash 

It is noticeable that the four measured metrics of Filmmash exceed the 90-point 

threshold, which can be deemed as “good” in Google Lighthouse’s term. This 

score can be further analysed by looking into the Performance metrics, in which 

the total blocking time, or the sum of all time periods between the first 

contentful paint and the TTI, is an incredible 0 milliseconds, meaning that once 

loaded, the whole content of Filmmash displays in the viewport immediately 

without any delay for loading script. 

 

Figure 48. Filmmash's performance metric scores 



109 

 

This is also demonstrated in the “Passed audits” section, where Lighthouse 

acknowledges Filmmash for having minified the amount of JavaScript used. 

 

Figure 49. Filmmash's passed audits according to Google Lighthouse 

The “Network” tab shows a deeper view of Filmmash’s initialization process, with 

the main document tree being loaded instantly, followed by images and 

stylesheet files, whereas the scripts are only loaded afterwards based on users’ 

behavior. This evidence proves the main innovation of Qwik in theory, which 

loads JavaScript if and only if users begin to interact with the application. 

To further assess the practicality of Qwik, this part compares its performance 

with two web applications written in state-of-the-art metaframeworks, Next.js 

(meta-framework of React) and Nuxt (of Vue). 



110 

 

 

Figure 50. Google Lighthouse's measurement of Next.js documentation 

 

Figure 51. Google Lighthouse's measurement of Nuxt documentation 

 As it is suggested by the Google Lighthouse results, the two frameworks, which 

undoubtedly have its own advantages, do not resolve the JavaScript premature 

load issues, which affects the TTI and the initializing performance. The previously 

claimed features of Qwik are therefore proven.  



111 

 

6. CONCLUSIONS 

6.1. Thesis Summary 

The primary focus of this thesis is to investigate the capabilities of Headless CMS 

and Qwik framework in addressing the current issues with web frameworks and 

content management systems. To achieve this, several research questions have 

been formulated, including identifying the problems associated with current 

content management systems and web frameworks and analyzing how a shift 

towards Headless CMS and Qwik helps address these issues. The thesis studies 

real-world cases of Headless CMS and Qwik and identifies the potential benefits 

and limitations of the technologies, as well as understanding how Headless CMS 

and Qwik can be applied to a full-stack application. Throughout the research, a 

detailed exploration of the functionalities of Headless CMS and Qwik was 

conducted by means of reviewing existing research materials, analyzing real-

world cases of Contentful and Builder.io to provide a practical understanding of 

the technologies' applications in various industries.  

The thesis also demonstrates the implementation of Filmmash, an application 

utilizing the researched technology. It places emphasis on the essential stages of 

web application development, covering everything from the initial architectural 

design performance testing. A key focus of this section is on the integration of 

Headless CMS and Qwik, with the aim of evaluating the practicality and 

effectiveness of these technologies in the context of web application 

development. 

In summary, this thesis contributes to the body of knowledge surrounding 

Headless CMS and Qwik, providing valuable insights into the capabilities of these 

technologies. By addressing the limitations and exploring the practical 

applications of these technologies, this research offers a comprehensive analysis 

of their potential impact on web application development.  



112 

 

6.2. Key Findings 

The thesis examines the history of content management systems and determines 

that the introduction of omnichannel applications marks the turning point for 

the CMS industry, with Headless CMS emerging as a popular alternative to 

traditional CMS solutions. The primary advantage of Headless CMS is its ability to 

separate the content management functionality from the presentation layer of a 

website or application. This decoupling of the frontend and backend allows 

developers to build more flexible and scalable applications, as the content can be 

easily consumed by multiple channels such as mobile apps, websites, or IoT 

devices, regardless of their styling, formatting, or presentation. Additionally, 

Headless CMS solutions are often API-driven and cloud-based, which means that 

developers can access content programmatically, enabling more customization 

and automation of the content creation and delivery process in comparison to 

the traditional bundled and in-house content. 

Despite the potential benefits of Headless CMS, there are several challenges and 

limitations associated with this relatively new approach. One of the main issues 

is its complexity, which demands expertise in both frontend and backend 

development, a steep learning curve that may pose a barrier to content builders 

who lack technical expertise. While the decoupling of content and presentation 

can provide more freedom for developers in choosing technology stacks, the lack 

of built-in functionalities that are typically provided by monolithic CMS solutions 

can make it more difficult to create web applications using Headless CMS. 

Headless CMS is also not regarded as the ultimate solution to the content 

management industry, as it has not fully resolved the problem of unstructured 

content. It can be concluded that the aim of contemporary application 

developers is to develop a content management system that merges the 

flexibility of Headless CMS with an organized and structured content model, with 

Contentful composable content platform being a study case. The Filmmash 



113 

 

application, which utilizing Contentful as the main content management 

provider, further proves its effectiveness in a real-world application. 

The thesis also explores the evolution of web frameworks from its early days to 

the introduction of metaframeworks and figures out the problems of CSR and 

increased JavaScript initialized size which greatly affects users’ experience and 

web application’s SEO. While solutions such as hydration and island architectures 

are concluded as workarounds only, the thesis discusses the relatively new Qwik 

framework which aims to fully tackle the root of this issue. Qwik introduces the 

concept of resumability and progression, which involve pausing the server 

execution and resuming it in the client side. This approach enables Qwik web 

applications to load almost instantly and avoids the impracticality of hydration, 

as it only retrieves the HTML during its initial load, leading to a seamless user 

experience. The use of Qwik as a frontend framework is demonstrated in the 

implementation of Filmmash, which produces significant results based on 

evaluated metrics. 

6.3. Future Applicability 

Headless CMS and Qwik framework are innovative technologies equipped with 

advanced features that can be implemented in a wide range of web products, 

indicating their potential significance in the future. One likely use case for the 

applicability of these technologies is to develop customizable page builders. As 

the demand for easy-to-use page builders increases, Headless CMS can provide 

the backend infrastructure for creating a more flexible and customizable 

solution. The separation of content and presentation offered by Headless CMS 

allows for more streamlined, scalable, and efficient content management, saving 

up more time for developers to focus on building front-end interfaces. 

Incorporating Qwik framework into page builder development can also bring 

significant benefits. The framework's resumability and progression concepts can 

enhance page builder performance, allowing for faster load times and more 

efficient component loading.  



114 

 

Builder.io is the first to implement its page builder integrating both technologies, 

with other businesses likely to follow. The company at which the writer of this 

thesis is currently working, whose flagship product being the PageFly Landing 

Page Builder, is also actively researching and conducting tests on the applicability 

of Headless CMS and Qwik framework, with a view to integrate these 

technologies into the application. It is hoped that the findings of this research 

will serve as a useful reference for future studies and applications of Headless 

CMS and Qwik in web development. 

  



115 

 

REFERENCES 

Articles 

Arias, D. (2021a). Hashing in Action: Understanding bcrypt. Auth0. Accessed April 

14, 2023. Retrieved from https://auth0.com/blog/hashing-in-action-

understanding-bcrypt. 

Arias, D. (2021b). Adding Salt to Hashing: A Better Way to Store Passwords. 

Auth0. Accessed April 14, 2023. Retrieved from https://auth0.com/blog/adding-

salt-to-hashing-a-better-way-to-store-passwords. 

Berners-Lee, T. (1989). Information Management: A Proposal. World Wide Web 

Consortium. Accessed February 27, 2023. Retrieved from 

https://www.w3.org/History/1989/proposal-msw.html. 

Butti (n.d.) Headless CMS explained in 5 minutes. Storyblok. Accessed February 

28, 2023. Retrieved from https://www.storyblok.com/tp/headless-cms-

explained. 

Carniato, R. (2022). Why Efficient Hydration in JavaScript Frameworks is so 

Challenging. Dev.to. Accessed March 12, 2023. Retrieved from 

https://dev.to/this-is-learning/why-efficient-hydration-in-javascript-frameworks-

is-so-challenging-1ca3. 

Champeon, S. (2001). JavaScript, How Did We Get Here?. O’Reilly Media, Inc. 

Archived July 19, 2016. Accessed March 10, 2023. Retrieved from 

https://web.archive.org/web/20160719020828/https://archive.oreilly.com/pub/

a/javascript/2001/04/06/js_history.html. 

Chrome Developers (2019). Lighthouse performance scoring. Accessed March 13, 

2023. Retrieved from 

https://developer.chrome.com/en/docs/lighthouse/performance/performance-

scoring. 

https://auth0.com/blog/adding-salt-to-hashing-a-better-way-to-store-passwords
https://auth0.com/blog/adding-salt-to-hashing-a-better-way-to-store-passwords
https://www.w3.org/History/1989/proposal-msw.html
https://www.storyblok.com/tp/headless-cms-explained
https://www.storyblok.com/tp/headless-cms-explained
https://dev.to/this-is-learning/why-efficient-hydration-in-javascript-frameworks-is-so-challenging-1ca3
https://dev.to/this-is-learning/why-efficient-hydration-in-javascript-frameworks-is-so-challenging-1ca3
https://web.archive.org/web/20160719020828/https:/archive.oreilly.com/pub/a/javascript/2001/04/06/js_history.html
https://web.archive.org/web/20160719020828/https:/archive.oreilly.com/pub/a/javascript/2001/04/06/js_history.html
https://developer.chrome.com/en/docs/lighthouse/performance/performance-scoring
https://developer.chrome.com/en/docs/lighthouse/performance/performance-scoring


116 

 

Contentful (n.d. a). Contentful content APIs. Accessed March 1, 2023. Retrieved 

from https://www.contentful.com/developers/docs/concepts/apis. 

Contentful (n.d. b). Domain model. Accessed March 1, 2023. Retrieved from 

https://www.contentful.com/developers/docs/concepts/domain-model. 

Contentful (n.d. c). Headless CMS explained in 1 minute. Accessed February 28, 

2023. Retrieved from https://www.contentful.com/r/knowledgebase/what-is-

headless-cms. 

Contentful (n.d. d). Separate content from code: Build faster using our Free plan. 

Accessed February 28, 2023. Retrieved from https://www.contentful.com/free-

plan. 

Cromwell, V. (2017). Between the Wires: An interview with Vue.js creator Evan 

You. Medium. Accessed March 12, 2023. Retrieved from 

https://medium.com/free-code-camp/between-the-wires-an-interview-with-

vue-js-creator-evan-you-e383cbf57cc4. 

Dewhirst, A. (2022). Model View Controller: How to Use the MVC Architecture to 

Achieve Separation of Concerns. Medium. Accessed March 11, 2023. Retrieved 

from https://medium.com/@andrew.dewhirst8/model-view-controller-how-to-

use-the-mvc-architecture-to-achieve-separation-of-concerns-1042c093f51d. 

Dineley, D. (2008). Best of open source software awards: Collaboration. 

InfoWorld. Accessed February 27, 2023. Retrieved from 

https://www.infoworld.com/article/2638571/best-of-open-source-software-

awards--collaboration.html. 

Dooley, R. (2014). Power of Ten: The Weird Psychology of Rankings. Straylight. 

Accessed March 20, 2023. Retrieved from https://www.straylight.se/power-of-

ten-the-weird-psychology-of-rankings. 

https://www.contentful.com/developers/docs/concepts/apis
https://www.contentful.com/developers/docs/concepts/domain-model
https://www.contentful.com/r/knowledgebase/what-is-headless-cms
https://www.contentful.com/r/knowledgebase/what-is-headless-cms
https://www.contentful.com/free-plan
https://www.contentful.com/free-plan
https://medium.com/free-code-camp/between-the-wires-an-interview-with-vue-js-creator-evan-you-e383cbf57cc4
https://medium.com/free-code-camp/between-the-wires-an-interview-with-vue-js-creator-evan-you-e383cbf57cc4
https://medium.com/@andrew.dewhirst8/model-view-controller-how-to-use-the-mvc-architecture-to-achieve-separation-of-concerns-1042c093f51d
https://medium.com/@andrew.dewhirst8/model-view-controller-how-to-use-the-mvc-architecture-to-achieve-separation-of-concerns-1042c093f51d
https://www.infoworld.com/article/2638571/best-of-open-source-software-awards--collaboration.html
https://www.infoworld.com/article/2638571/best-of-open-source-software-awards--collaboration.html
https://www.straylight.se/power-of-ten-the-weird-psychology-of-rankings
https://www.straylight.se/power-of-ten-the-weird-psychology-of-rankings


117 

 

Ebert, R. (2012). The best damned film list of them all. RogerEbert.com. Accessed 

March 20, 2023. Retrieved from https://www.rogerebert.com/roger-ebert/the-

best-damned-film-list-of-them-all. 

Elo, A. E. (1967). The Proposed USCF Rating System: Its Development, Theory, and 

Applications. United States Chess Federation. Accessed March 20, 2023. 

Retrieved from http://uscf1-nyc1.aodhosting.com/CL-AND-CR-ALL/CL-

ALL/1967/1967_08.pdf#page=26. 

Envall, N. (2022). History of JavaScript Framework. Programming Soup. Accessed 

March 10, 2023. Retrieved from https://programmingsoup.com/history-of-

javascript-frameworks#birth-of-javascript-frameworks. 

Fu, J. (2022). Introducing Qwik — The JavaScript Framework With O(1) Load 

Time. Better Programming. Accessed February 25, 2023. Retrieved from 

https://betterprogramming.pub/qwik-the-javascript-framework-with-o-1-load-

time-222f30613361. 

FullStackOverflow (2022). 2022 Developer Survey.  Accessed March 11, 2023. 

Retrieved from https://survey.stackoverflow.co/2022/#most-popular-

technologies-webframe. 

Garrett, J. J. (2005). Ajax: A New Approach to Web Applications. Adaptive Path. 

Accessed March 11, 2023. Retrieved from 

https://designftw.mit.edu/lectures/apis/ajax_adaptive_path.pdf. 

Hall, C. (2021). Builder.io aims to make developers happy with its no-code 

approach to digital storefronts.  TechCrunch. Accessed March 13, 2023. 

Retrieved from https://techcrunch.com/2021/10/18/builder-io-aims-to-make-

developers-happy-with-its-no-code-approach-to-digital-storefronts. 

Hevery, M. (2022a). Interview with Misko Hevery, Chief Technology Officer at 

Builder.io. Devmio. Accessed February 25, 2023. Retrieved from 

https://devm.io/javascript/qwik-javascript-hevery. 

http://uscf1-nyc1.aodhosting.com/CL-AND-CR-ALL/CL-ALL/1967/1967_08.pdf#page=26
http://uscf1-nyc1.aodhosting.com/CL-AND-CR-ALL/CL-ALL/1967/1967_08.pdf#page=26
https://programmingsoup.com/history-of-javascript-frameworks#birth-of-javascript-frameworks
https://programmingsoup.com/history-of-javascript-frameworks#birth-of-javascript-frameworks
https://betterprogramming.pub/qwik-the-javascript-framework-with-o-1-load-time-222f30613361
https://betterprogramming.pub/qwik-the-javascript-framework-with-o-1-load-time-222f30613361
https://survey.stackoverflow.co/2022/#most-popular-technologies-webframe
https://survey.stackoverflow.co/2022/#most-popular-technologies-webframe
https://designftw.mit.edu/lectures/apis/ajax_adaptive_path.pdf
https://techcrunch.com/2021/10/18/builder-io-aims-to-make-developers-happy-with-its-no-code-approach-to-digital-storefronts
https://techcrunch.com/2021/10/18/builder-io-aims-to-make-developers-happy-with-its-no-code-approach-to-digital-storefronts
https://devm.io/javascript/qwik-javascript-hevery


118 

 

Hevery, M. (2022b). Hydration is Pure Overhead. Builder.io. Accessed March 12, 

2023. Retrieved from https://www.builder.io/blog/hydration-is-pure-overhead. 

Hevery, M. (2022c). Death by Closure (and how Qwik solves it). Dev.to. Accessed 

March 13, 2023. Retrieved from https://dev.to/builderio/death-by-closure-and-

how-qwik-solves-it-44jj. 

Hevery, M. (2022d). Our Current Frameworks are O(n); We Need O(1). Builder.io. 

Accessed March 13, 2023. Retrieved from https://www.builder.io/blog/our-

current-frameworks-are-on-we-need-o1. 

Hevery, M. (2022e). Qwik: the answer to optimal fine-grained lazy loading. 

Dev.to. Accessed March 13, 2023. Retrieved from https://dev.to/builderio/qwik-

the-answer-to-optimal-fine-grained-lazy-loading-2hdp. 

Heslop, B. (2022). History of Content Management Systems and Rise of Headless 

CMS. Contentstack. Accessed February 27, 2023. Retrieved from 

https://www.contentstack.com/blog/all-about-headless/content-management-

systems-history-and-headless-cms. 

Hoffman, C. (2010). The Battle For Facebook. Rolling Stone. Accessed March 20, 

2023. Retrieved from https://www.rollingstone.com/culture/culture-news/the-

battle-for-facebook-242989. 

Holmes, J. (2022). Headless CMS vs. Traditional CMS. Sanity.io. Accessed 

February 25, 2023. Retrieved from https://www.sanity.io/headless-

cms/headless-vs-traditional-cms. 

Lardinois F. (2018). Contentful raises $33.5M for its headless CMS platform. 

TechCrunch. Accessed February 28, 2023. Retrieved from 

https://techcrunch.com/2018/12/06/contentful-raises-33-5m-for-its-headless-

cms-platform. 

https://www.builder.io/blog/hydration-is-pure-overhead
https://dev.to/builderio/death-by-closure-and-how-qwik-solves-it-44jj
https://dev.to/builderio/death-by-closure-and-how-qwik-solves-it-44jj
https://www.builder.io/blog/our-current-frameworks-are-on-we-need-o1
https://www.builder.io/blog/our-current-frameworks-are-on-we-need-o1
https://dev.to/builderio/qwik-the-answer-to-optimal-fine-grained-lazy-loading-2hdp
https://dev.to/builderio/qwik-the-answer-to-optimal-fine-grained-lazy-loading-2hdp
https://www.contentstack.com/blog/all-about-headless/content-management-systems-history-and-headless-cms
https://www.contentstack.com/blog/all-about-headless/content-management-systems-history-and-headless-cms
https://www.sanity.io/headless-cms/headless-vs-traditional-cms
https://www.sanity.io/headless-cms/headless-vs-traditional-cms
https://techcrunch.com/2018/12/06/contentful-raises-33-5m-for-its-headless-cms-platform
https://techcrunch.com/2018/12/06/contentful-raises-33-5m-for-its-headless-cms-platform


119 

 

Mahemoff, M. (2005). Ajax Frameworks. AjaxPatterns.org. Archived January 12, 

2006. Accessed March 11, 2023. Retrieved from 

https://web.archive.org/web/20060112050544/http://ajaxpatterns.org/Ajax_Fra

meworks. 

Maheshwari, D. (2021). Why Single Page Application (SPA) architecture is so 

popular? Medium. Accessed March 11, 2023. Retrieved from 

https://medium.com/nerd-for-tech/why-single-page-application-spa-

architecture-is-so-popular-141b85400204. 

May, A. (2019). Happy 30th birthday, World Wide Web. Inventor outlines plan to 

combat hacking, hate speech. USA Today. Accessed February 27, 2023. Retrieved 

from https://www.usatoday.com/story/tech/news/2019/03/12/world-wide-

web-turns-30-berners-lee-contract-thoughts-internet/3137726002. 

Melvaer, K. (2023). Headless CMS explained in 1 minute. Sanity.io. Accessed 

February 25, 2023. Retrieved from https://www.sanity.io/headless-cms. 

Muzammil, K. (2021). Importance of Web Application Architecture. Aalpha. 

Accessed March 24, 2023. Retrieved from 

https://www.aalpha.net/articles/importance-of-web-application-architecture. 

Nguyen, K. (2018). How to Manage the Business Better in the Omnichannel 

World. Magestore. Accessed April 26, 2023. Retrieved from 

https://blog.magestore.com/omnichannel-management. 

Node Package Manager (2023). @builder.io/qwik. Accessed February 25, 2023. 

Retrieved from https://www.npmjs.com/package/@builder.io/qwik. 

Ottervig, V. (2022). The Essential History of CMS. Enonic. Accessed February 27, 

2023. Retrieved from https://enonic.com/blog/the-history-of-cms--what-has-

happened. 

https://web.archive.org/web/20060112050544/http:/ajaxpatterns.org/Ajax_Frameworks
https://web.archive.org/web/20060112050544/http:/ajaxpatterns.org/Ajax_Frameworks
https://medium.com/nerd-for-tech/why-single-page-application-spa-architecture-is-so-popular-141b85400204
https://medium.com/nerd-for-tech/why-single-page-application-spa-architecture-is-so-popular-141b85400204
https://www.usatoday.com/story/tech/news/2019/03/12/world-wide-web-turns-30-berners-lee-contract-thoughts-internet/3137726002.
https://www.usatoday.com/story/tech/news/2019/03/12/world-wide-web-turns-30-berners-lee-contract-thoughts-internet/3137726002.
https://www.sanity.io/headless-cms
https://www.aalpha.net/articles/importance-of-web-application-architecture
https://blog.magestore.com/omnichannel-management
https://www.npmjs.com/package/@builder.io/qwik
https://enonic.com/blog/the-history-of-cms--what-has-happened
https://enonic.com/blog/the-history-of-cms--what-has-happened


120 

 

Ottervig, V. (2023). What is structured content?. Enonic. Accessed February 28, 

2023. Retrieved from https://enonic.com/blog/what-is-structured-content. 

Papiernik, M. (2021). How To Use Sharding in MongoDB. DigitalOcean. Accessed 

March 24, 2023. Retrieved from 

https://www.digitalocean.com/community/tutorials/how-to-use-sharding-in-

mongodb. 

Pope. L. (2021). Content model: Why you need one and how to make your 

colleagues take notice. GatherContent. Accessed March 1, 2023. 

https://gathercontent.com/blog/why-you-need-a-content-model-how-to-make-

colleagues-take-notice. 

Postma, B. (2022). How to Deploy the Qwik JavaScript Framework. Netlify. 

Accessed March 24, 2023. Retrieved from https://www.netlify.com/blog/how-

to-deploy-the-qwik-javascript-framework. 

Qwik (n.d.). Optimizer. Accessed March 13, 2023. Retrieved from 

https://qwik.builder.io/docs/advanced/optimizer. 

Roser, M. (2018). The Internet’s history has just begun. Our World in Data. 

Accessed February 27, 2023. Retrieved from 

https://ourworldindata.org/internet-history-just-begun. 

Serby, P. (2012). Case study: How & why to build a consumer app with Node.js. 

VentureBeat. Accessed March 24, 2023. Retrieved from 

https://venturebeat.com/dev/building-consumer-apps-with-node. 

Singh, S. (2022). React and Next.js is DEAD — Something New is (Finally) 

Replacing It (For Good). PlainEnglish.io. Accessed March 13, 2023. Retrieved 

from https://plainenglish.io/blog/react-and-next-js-is-dead-something-new-is-

finally-replacing-it-for-good-c792c48806f6. 

https://enonic.com/blog/what-is-structured-content
https://www.digitalocean.com/community/tutorials/how-to-use-sharding-in-mongodb
https://www.digitalocean.com/community/tutorials/how-to-use-sharding-in-mongodb
https://gathercontent.com/blog/why-you-need-a-content-model-how-to-make-colleagues-take-notice
https://gathercontent.com/blog/why-you-need-a-content-model-how-to-make-colleagues-take-notice
https://www.netlify.com/blog/how-to-deploy-the-qwik-javascript-framework
https://www.netlify.com/blog/how-to-deploy-the-qwik-javascript-framework
https://qwik.builder.io/docs/advanced/optimizer
https://ourworldindata.org/internet-history-just-begun
https://venturebeat.com/dev/building-consumer-apps-with-node
https://plainenglish.io/blog/react-and-next-js-is-dead-something-new-is-finally-replacing-it-for-good-c792c48806f6
https://plainenglish.io/blog/react-and-next-js-is-dead-something-new-is-finally-replacing-it-for-good-c792c48806f6


121 

 

Sonas, J. (2002). The Sonas Rating Formula – Better than Elo?. ChessBased. 

Accessed March 20, 2023. Retrieved from https://en.chessbase.com/post/the-

sonas-rating-formula-better-than-elo. 

StatCounter (2023). Desktop vs Mobile Market Share Worldwide - February 2023 

Accessed February 28, 2023. Retrieved from 

https://gs.statcounter.com/platform-market-share/desktop-

mobile/worldwide/#monthly-200901-202301. 

Team of Horses Website Management (2019). What is a m-dot site. Accessed 

February 28, 2023. Retrieved from https://www.tohwebmasters.com/mobile-

website-design-what-is-an-m-dot-site.  

United States Chess Federation (2013). K-Factor Change - May 2013.  Accessed 

March 20, 2023. Retrieved from 

https://www.uschess.org/index.php/Announcements/K-Factor-Change-May-

2013.html. 

U.S. Department of Labor (1999). Issues in Labor Statistics. Accessed February 27, 

2023. Retrieved from https://www.bls.gov/opub/btn/archive/computer-

ownership-up-sharply-in-the-1990s.pdf. 

Veisdal, J. (2019). The Mathematics of Elo Ratings. Cantor’s Paradise. Accessed 

March 20, 2023. Retrieved from https://www.cantorsparadise.com/the-

mathematics-of-elo-ratings-b6bfc9ca1dba. 

Wemanity (2022). A Brief History of Content Management Systems. Accessed 

February 27, 2023. Retrieved from https://weblog.wemanity.com/en/a-brief-

history-of-content-management-systems. 

https://en.chessbase.com/post/the-sonas-rating-formula-better-than-elo
https://en.chessbase.com/post/the-sonas-rating-formula-better-than-elo
https://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/#monthly-200901-202301
https://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/#monthly-200901-202301
https://www.tohwebmasters.com/mobile-website-design-what-is-an-m-dot-site
https://www.tohwebmasters.com/mobile-website-design-what-is-an-m-dot-site
https://www.uschess.org/index.php/Announcements/K-Factor-Change-May-2013.html
https://www.uschess.org/index.php/Announcements/K-Factor-Change-May-2013.html
https://www.bls.gov/opub/btn/archive/computer-ownership-up-sharply-in-the-1990s.pdf
https://www.bls.gov/opub/btn/archive/computer-ownership-up-sharply-in-the-1990s.pdf
https://www.cantorsparadise.com/the-mathematics-of-elo-ratings-b6bfc9ca1dba
https://www.cantorsparadise.com/the-mathematics-of-elo-ratings-b6bfc9ca1dba
https://weblog.wemanity.com/en/a-brief-history-of-content-management-systems
https://weblog.wemanity.com/en/a-brief-history-of-content-management-systems


122 

 

Books and Research Papers 

Chun, J. S., & Larrick, R. P. (2022). The power of rank information. Journal of 

Personality and Social Psychology, (pp. 983–1003). 

https://doi.org/10.1037/pspa0000289. 

Cotton, I. W. & Greatorex, F. S. (1968). Data structures and techniques for 

remote computer graphics. In AFIPS (Ed.), AFIPS '68 (Fall, part I): Proceedings of 

the December 9-11, 1968, fall joint computer conference, part I (pp. 533-544). 

New York, NY: Association for Computing Machinery. 

https://dl.acm.org/doi/10.1145/1476589.1476661. 

Date, C. J. & Codd, E. F. (1975). The relational and network approaches: 

comparison of the application programming interfaces. In SIGFIDET (Ed.), 

Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop on Data 

description, access and control: Data models: Data-structure-set versus relational 

(pp. 83-113). New York, NY: Association for Computing Machinery.  

https://doi.org/10.1145/800297.811532. 

Fielding, R. T. (2000), Architectural styles and the design of network-based 

software architectures (pp. 76-147). University of California, Irvine. 

https://dl.acm.org/doi/10.5555/932295. 

Fowler, M. (2002). Patterns of Enterprise Application Architecture (pp. 116). 

Addison-Wesley Professional. 

Gao, Z.,  Bird, C. & Barr, E. T. (2017). "To Type or Not to Type: Quantifying 

Detectable Bugs in JavaScript". 2017 IEEE/ACM 39th International Conference on 

Software Engineering (ICSE), (pp. 758-769). 

http://dx.doi.org/10.1109/ICSE.2017.75. 

MoSCoW Analysis (6.1.5.2) (2009). A Guide to the Business Analysis Body of 

Knowledge (2 ed.). International Institute of Business Analysis. ISBN 978-0- 

9811292-1-1. 

https://doi.org/10.1037/pspa0000289
https://dl.acm.org/doi/10.1145/1476589.1476661
https://doi.org/10.1145/800297.811532
https://dl.acm.org/doi/10.5555/932295
http://dx.doi.org/10.1109/ICSE.2017.75


123 

 

Piotrowicz W. & Cuthbertson R. W. (2014). Introduction to the Special Issue 

Information Technology in Retail: Toward Omnichannel Retailing (pp. 5-16). 

International Journal of Electronic Commerce. 

https://www.tandfonline.com/doi/abs/10.2753/JEC1086-4415180400. 

Provos, N. & Mazieres, D. (1999). A Future-Adaptable Password Scheme. In 

USENIX (ed.). Proceedings of 1999 USENIX Annual Technical Conference (pp. 81-

92). https://dl.acm.org/doi/proceedings/10.5555/1268708. 

Rauschmayer, A. (2014). Speaking Javascript. O’Reilly Media, Inc. 

https://dl.acm.org/doi/book/10.5555/2614440. 

Yermolenko A. & Golchevskiy Y. (2021). Developing Web Content Management 

Systems – from the Past to the Future (pp. 5). SHS Web of Conferences. 

http://dx.doi.org/10.1051/shsconf/202111005007. 

https://www.tandfonline.com/doi/abs/10.2753/JEC1086-4415180400
https://dl.acm.org/doi/book/10.5555/2614440
http://dx.doi.org/10.1051/shsconf/202111005007

