

Amal Kayed

Improving Quality Assurance by
Providing Robust Tools

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communication Technology

Bachelor’s Thesis

8 May 2023

Abstract

Author: Amal Kayed

Title: Improving Quality Assurance by Providing Robust Tools

Number of Pages: 55 pages

Date: 8 May 2023

Degree: Bachelor of Engineering

Degree Programme: Information and Communication Technology

Professional Major: Software Engineering

Supervisors: Ilpo Kuivanen, Senior Lecturer

In today's software industry, the success of any product is inextricably linked to its
quality. Consequently, quality assurance has become a fundamental process in the
development of high-quality software that meets customer requirements and
expectations. The primary objective of the present study thesis was to leverage the
powerful features and characteristics of robust tools to detect and manage defects that
may arise during software development. The ultimate objective is to minimize risks and
vulnerabilities as early as possible in the development cycle, thereby ensuring that a
top-quality product is delivered to the client while avoiding any waste of valuable
resources, such as time, money, and effort.

The study concentrated on Keikkakaveri, a web application that faced significant
issues due to the lack of quality assurance in its early development. To enhance the
application's robustness and mitigate potential security flaws, the research was carried
out in three methodically planned phases, each focusing on addressing a specific issue
that affected the product. The precise selection of suitable tools, aligned with the
objectives of the study, project requirements, and technology stack employed in the
development process, played a pivotal role in successfully resolving each problem.

To ensure successful software development, quality assurance plays a crucial role in
delivering high-quality and secure software that meets customer requirements. By
prioritizing quality assurance in development schedules and conducting meticulous
monitoring and analysis throughout the development cycle, optimal product
performance and quality can be achieved.

Keywords: Quality assurance, static analysis, static code analysis,

typescript, unit test, integration test

Tiivistelmä

Tekijä: Amal Kayed

Otsikko: Tehokkaat työkalut koodin laadun parantamiseksi

Sivumäärä: 55 sivua

Aika: 08.05.2023

Tutkinto: Insinööri (AMK)

Tutkinto-ohjelma: Tieto ja viestintätekniikka

Ammatillinen pääaine: Ohjelmistotuotanto

Ohjaajat: Lehtori Ilpo Kuivanen

Nykyään ohjelmistoalan menestys on kiinteästi sidoksissa tuotteen laatuun.
Laadunvarmistus on näin ollen keskeinen prosessi korkealaatuisen ohjelmiston
kehityksessä, joka vastaa asiakkaan tarpeita ja odotuksia. Tämän insinöörityön
keskeinen tavoite on hyödyntää vahvoja ominaisuuksia ja piirteitä vahvojen
työkalujen avulla, jotta voidaan havaita ja hallita ohjelmistokehityksen aikana
mahdollisesti ilmeneviä virheitä. Päämääränä on minimoida riskejä ja
haavoittuvuuksia jo kehityssyklin alkuvaiheessa, jotta voidaan toimittaa
korkealaatuinen tuote asiakkaalle välttäen arvokkaiden resurssien, kuten ajan,
rahan ja vaivan, tuhlausta.

Tutkimus keskittyi Keikkakaveriin, verkkosovellukseen, joka kohtasi merkittäviä
ongelmia riittämättömän laadunvarmistuksen vuoksi sen varhaisessa
kehitysvaiheessa. Sovelluksen vahvistamiseksi ja mahdollisten
tietoturvaongelmien lieventämiseksi tutkimus suoritettiin kolmessa
systemaattisesti suunnitellussa vaiheessa, joista jokainen keskittyi tiettyyn
tuotetta koskevaan ongelmaan. Oikeiden työkalujen tarkka valinta, jotka olivat
yhteneväisiä tutkimuksen tavoitteiden, projektivaatimusten ja kehitysprosessissa
käytetyn teknologiapinon kanssa, oli ratkaisevan tärkeää ongelmien
onnistuneessa ratkaisemisessa.

Varmistaaksesi onnistuneen ohjelmistokehityksen, laadunvarmistus on
ratkaisevan tärkeä tekijä, joka takaa korkealaatuisen ja turvallisen ohjelmiston,
joka vastaa asiakkaan tarpeita. Laadunvarmistuksen priorisoiminen
kehitysaikataulussa sekä tarkkaavainen seuranta ja analyysi koko
kehitysvaiheen ajan varmistavat optimaalisen tuotteen suorituskyvyn ja laadun.

Avainsanat: Laadunvarmistus, staattinen analyysi, staattinen

koodianalyysi, typescript, yksikkötesti, integrointitesti

Contents

1 Introduction 1

1.1 Problem Description 1

1.2 Purpose 2

1.3 Study Structure 2

2 Static Analysis 4

2.1 Risks of Neglecting Static Code Analysis in Software Development 7

2.2 Utilized Methods for Static Code Analysis 7

2.2.1 Selection Criteria for Best Tools 8

2.2.2 ESlint 9

2.2.3 Prettier 10

2.2.4 Custom Rules Configuration for Optimal Code Standards 11

2.3 Results 12

2.4 Discussion 14

2.5 Conclusion 14

3 TypeScript 15

3.1 Impact of Ignoring Typing Layer on Software Quality 16

3.2 Utilized Methods for TypeScript 18

3.2.1 TypeScript Compilation 18

3.2.2 Structure of tsconfig.json 19

3.3 Results 26

3.4 Discussion 31

3.5 Conclusion 33

4 Unit Testing and Integration Testing 35

4.1 Consequences of Untested Code in Software Development 36

4.2 Utilized Methods for Testing Process 40

4.3 Results 42

4.4 Discussion 45

4.5 Conclusion 48

5 Summary 50

References 52

Abbreviations

AST: Abstract Syntax Tree. The converted TypeScript source code by

TypeScript ESLint Parser.

API Application Programming Interface. APIs are mechanisms that

enable two software components to communicate with each other

using a set of definitions and protocols.

DAST Dynamic application security testing. Dynamic code analysis tool.

VS Code Visual Studio Code. A streamlined code editor with support for

development operations like debugging, task running, and version

control.

OAT Operational Acceptance Testing. Evaluates whether a system or

application is ready for real-world use by testing its performance,

reliability, and functionality in typical usage conditions before

release.

UAT User Acceptance Testing. Assesses whether a system or application

meets end-users' needs by testing its functionality, usability, and

compatibility in a simulated real-world environment before release.

IDE Integrated Development Environment is a software application that

provides a comprehensive set of tools and features for developing

software, including source code editing, debugging, testing, and

building. IDEs are used to streamline the development process and

improve productivity.

GitHub Cloud-based platform for version control and collaboration in

software development, built on Git. It provides a centralized

repository for storing and managing code, enabling efficient

teamwork and open-source contributions.

1

1 Introduction

The ownership of the project is held by Metropolia University of Applied Sciences,

and it represents a sophisticated web-based application that efficiently manages

and organizes daily business relationships between three crucial parties: the

employee, business company, and agency company. Its overarching mission is

to promote and enhance occupational safety, occupational health, and overall

well-being.

To achieve this, the project is technically focused on leveraging the benefits of an

electronic document management system. This will enable seamless document

storage, retrieval, management, and utilization, in a manner that is both efficient

and effective.

In terms of development, the project has been expertly crafted with ReactJS and

TypeScript, which serve as the bedrock of the programming language. The client-

side tools integrated into the project include React, Redux, Formic, Yup, and

Material UI, while the server-side tools are comprised of NodeJS, Express, and

MongoDB.

The study at hand has been meticulously crafted with a keen eye for details and

unwavering dedication, buoyed by the sincere hope that this thesis will serve as

a catalyst for innovation in the field. With a focus on improving business

relationships for all stakeholders involved, this thesis is sure to be a valuable

resource and a source of inspiration for future research.

1.1 Problem Description

During the development of the project, the need arose to change the development

team before the factual development was complete, resulting in the involvement

of multiple developers working on the same project for brief periods.

Unfortunately, the frequent reorganization of software teams caused chaos and

2

negatively impacted the project's quality assurance. The resulting inconsistent

code style within the teams made the code unreadable and difficult to maintain,

leading to delays in the project timeline. Furthermore, the developers who joined

the team for brief periods had an incomplete understanding of the software

architecture, resulting in an increase in software bugs, errors, and security

vulnerabilities that compromised the integrity of the software. These challenges

emphasize the importance of maintaining consistency in the development teams

to ensure software quality and minimize the likelihood of errors and

vulnerabilities. This thesis presents practical strategies and solutions to address

these challenges and enhance software development practices, with the ultimate

goal of improving the overall quality of software products.

1.2 Purpose

The primary objective of this thesis is to provide development teams with

strategies for improving software quality assurance, particularly when working on

a long-term project. This can be accomplished by promoting a consistent code

style, producing readable and maintainable code, minimizing bugs and errors,

and reducing security vulnerabilities in the software. By implementing these

strategies, development teams can avoid common pitfalls and improve software

development practices, resulting in higher-quality software products that meet the

needs of end-users and stakeholders alike. Ultimately, this thesis aims to assist

development teams in enhancing their software development practices to

achieve greater success and productivity in their work.

1.3 Study Structure

The study was conducted in a systematic manner, with each stage focusing on

addressing a specific problem. The structured approach consisted of four

sections:

The first section provides a comprehensive presentation of the problem,

highlighting its key features and associated challenges. In the second section, a

3

detailed and specific methodology is presented, along with the special materials

used to execute the solution. The third section presents the results obtained from

the execution of the methodology, including brief descriptions, explanations, or

instructions, and supporting visual aids such as tables, graphs and sample code

or files. The discussion section follows, wherein the implications and significance

of the obtained results were analysed and interpreted, leading to the formulation

of conclusions and recommendations in the final section.

This structured approach ensured that each problem was addressed with the

necessary rigor and provided a clear framework for presenting the findings,

thereby enhancing the study's clarity and overall effectiveness.

4

2 Static Analysis

The absence of static code analysis in software development can lead to negative

impacts, including an increased likelihood of introducing bugs and security

vulnerabilities, reduced code quality, and decreased maintainability and

scalability. To address this issue, developers can incorporate static code analysis

tools into the development process. These tools identify potential issues early in

the development cycle, making them easier and more cost-effective to address,

and improve overall code quality, making the system more maintainable and

scalable. This section emphasizes the importance of using static code analysis,

discusses the negative impacts of not utilizing it, presents two widely used static

code analysis tools (ESLint and Prettier) that can be employed to solve the

problem, evaluates the outcomes of their implementation, and concludes with a

discussion on the significance of incorporating static code analysis into the

software development process.

Static analysis is a debugging technique employed to examine the source code

of a software system while it is in a resting state (i.e., static) without the need to

execute the program. This method is utilized to detect potential quality issues

such as programming errors, coding standard violations, performance concerns,

and security weaknesses. By utilizing static analysis, developers gain a

comprehensive understanding of their codebase and can subsequently ensure

compliance, safety, and security of the software system. [1]

Static analysis tools offer an automated solution to the process of detecting code

quality issues and identifying flaws throughout the software development

lifecycle. These tools are invaluable for monitoring the codebase and ensuring

that it adheres to established coding standards and best practices. By providing

real-time feedback on code quality and identifying potential vulnerabilities, static

analysis tools can help developers address issues early in the development

process, resulting in more efficient development practices and a higher-quality

product.

5

Code analysis importance

Code analysis is a crucial element of the agile product development lifecycle,

serving as a pre-emptive measure against potential issues, defects, errors, and

bugs that may arise from the frequent changes to the source code that occur due

to various factors such as evolving software needs and requirements driven by

increasing customer demand, the need for code optimization resulting from

inadequate code review processes during the software development cycle, and

the ever-present threat of security breaches and vulnerabilities that require every

layer of a software application to be fully fortified. By systematically analysing the

codebase for issues related to broken code and bugs, code analysis provides

developers with a comprehensive understanding of the software system, which

enables them to take proactive measures to mitigate potential risks and ensure

the highest level of code quality and security.

Code analysis techniques for optimal code quality

Code analysis is broadly categorized into two distinct types, namely static and

dynamic analysis, each serving a specific purpose in detecting defects in software

systems. While both approaches aim to identify potential issues, they differ in the

stage of the development lifecycle where they locate defects. By combining static

and dynamic analysis techniques, developers can proactively identify and

address issues, resulting in software systems that are more efficient, secure, and

resilient. The two types are described below.

1 Static Code Analysis

Static analysis is a process that scrutinizes the source code by debugging it and

identifying potential issues, vulnerabilities, bugs, and security threats, without the

need to execute the program. By examining the code at rest, static analysis

provides developers with an understanding of the codebase, allowing them to

ensure compliance with established coding standards and best practices. This

6

helps to identify defects in code quality early in the development process, leading

to a strong and robust code base that is more efficient, secure, and resilient. [2]

2 Dynamic Code Analysis

Dynamic code analysis, also known as Dynamic Application Security Testing

(DAST), is a powerful technique that identifies defects and vulnerabilities in both

compile time and runtime by analysing the behaviour of the code after it has

executed. DAST tools are executed on a running application, enabling them to

detect a wide range of potential vulnerabilities that can occur at various stages of

the application, such as preparing input data, running a test program, and

analysing output data. By performing these critical steps based on the product's

set parameters, DAST tools provide developers with a comprehensive view of

their application's security posture, allowing them to identify and remediate

potential security issues before they can be exploited by attackers. Consequently,

dynamic code analysis is an essential tool in any comprehensive security testing

program, helping developers to build secure and resilient software systems that

meet the highest standards of quality and safety. [3]

Benefits of static code analysis

Static code analysis provides several benefits that can improve the efficiency,

quality, and security of the software development process. First and foremost,

automated testing using static code analysis tools saves significant time and

manual effort by defining and configuring required test rules. Additionally, early

detection and identification of issues and errors in the source code help prevent

failures and reduce costs associated with fixing them later in the development

lifecycle. Finally, static code analysis helps to improve source code quality and

accuracy, ensuring that the code is compliant, secure, and robust against

possible threats. [4]

7

2.1 Risks of Neglecting Static Code Analysis in Software Development

In the project, the developer team underwent constant changes over regular

intervals of approximately four months. The short periods of time made the teams

work under pressure to get tasks done on time before the deadline and meet

coding and compliance standards. This, in turn, affected their performance during

the application development phase and made them generally focus on the

functionality and design aspects of the software without paying much attention to

making the application robust enough to avoid security flaws. As a result, they

were unconscious of the security risks caused by poorly designed and untestable

code, which may have impacted the overall quality and security of the software.

Within the project, various types of defects have been identified, including

variables with undefined values, declared but unused variables, violations of

programming standards and syntax, inconsistencies in module and component

interfaces, security vulnerabilities, and unused code. To address these

weaknesses and improve the quality of the source code while mitigating risks and

vulnerabilities as early as possible in the development lifecycle, the study was

conducted to set up and execute static code analysis. By leveraging this

automated approach, the study aimed to eliminate the need for time-consuming

manual checks of security checklists and code reviews, while also enabling a

more comprehensive and consistent analysis of the code. While the scope of the

study was limited to static code analysis, it is an essential area of focus for

software development teams looking to enhance the security, performance, and

overall quality of the application.

2.2 Utilized Methods for Static Code Analysis

In order to address the issue, the decision was made to implement two static

analysis tools, namely ESLint and Prettier, which have been deemed to be the

most effective solutions for maintaining code quality and structure. By utilizing

these tools in tandem, developers can enhance their confidence in the code,

since Prettier is responsible for code formatting while ESLint is responsible for

8

ensuring code adheres to stylistic guidelines. Ultimately, this approach helps to

improve overall code quality and promotes a more efficient and streamlined

development process.

2.2.1 Selection Criteria for Best Tools

To ensure optimal results, it was imperative to carefully select a tool that could

effectively perform static analysis of the source code, in a manner that best aligns

with the project's requirements. Several key factors were taken into consideration

during the selection process, including the programming language used in the

project, which in this case is TypeScript.

Another key factor was the ease of integration with the development environment.

To ensure a seamless integration process, it was important to select tools that

offer ready-made plugins compatible with the development environment, in this

case, Visual Studio Code. This would allow issues to be caught during the

software writing process, enabling developers to address them promptly and

efficiently.

Moreover, the chosen tools must provide clear and easily understandable

documentation, explaining the configuration and analysis rules in detail. This

would enable developers to utilize the tools effectively and resolve any issues

that might arise during the analysis process. The analysis speed is also a crucial

factor, as it can significantly impact the development process, particularly in large

projects.

The type of reports generated by the tools is another important consideration.

The chosen tools must provide comprehensive reports that highlight the number

of errors sorted out by the level of certainty and detailed information about the

type of each error. This level of detail is critical for developers to prioritize and

address errors promptly and ensure that they do not negatively impact the

application's overall quality.

9

Lastly, the licensing cost of the selected tools was taken into account. In this case,

open-source libraries with free licenses were preferred. This not only saves costs,

but also provides the added benefit of a vast community of users, who can

contribute to the development and improvement of the tools. [5]

The selection process of a tool for static analysis of source code requires careful

consideration of several key factors, especially when using a programming

language like TypeScript. These factors include the programming language used

in the project, ease of integration with the development environment,

comprehensible documentation, analysis speed, comprehensive reporting, and

licensing cost. The selection process requires balancing these factors to ensure

optimal results.

2.2.2 ESlint

ESLint is a versatile linting tool for JavaScript that automatically detects

inconsistencies and errors in ECMAScript/JavaScript code, enforcing a set of

style, formatting, and coding standards across a codebase. As an open-source

library, it is fully customizable, allowing developers to configure the desired rules

to suit their coding practices and project requirements. With its extensive set of

default rules and customizable nature, ESLint is an essential tool for developers

seeking to write clean, reliable, and maintainable JavaScript code with

confidence. By promoting code consistency and reducing the occurrence of bugs,

ESLint helps developers to produce high-quality code that is easier to maintain

and scale over time. [6]

How ESlint works

TypeScript ESLint Parser is a cutting-edge tool that generates an abstract syntax

tree (AST) for TypeScript source code. This AST is then processed through a

series of rules, each representing a set of restrictions that code blocks must follow

to meet certain expectations. Detected issues typically take the form of syntactic,

10

semantic, or stylistic errors, and are reported in a detailed output that includes

descriptions of each issue. Certain rules also offer automated correction features,

enabling the tool to automatically correct issues, while other issues may need to

be corrected manually. The result is a powerful and flexible tool that helps ensure

TypeScript code conforms to best practices and delivers optimal results. [7] [8]

2.2.3 Prettier

Prettier is an advanced code formatting tool designed to enhance the readability

and consistency of codebases. This opinionated tool supports a vast array of

programming languages, including but not limited to JavaScript, JSX, Angular,

Vue, Flow, TypeScript, CSS, JSON, GraphQL, Markdown, and YAML. By

applying a consistent set of formatting rules, Prettier ensures that code is

presented in an optimal way that is easy to read and understand, promoting best

practices and enabling developers to focus on delivering high-quality code that is

both efficient and effective. [9]

Enhancing Code Quality with Prettier

Prettier is a cutting-edge tool designed to streamline the development process by

enforcing consistent code styling across entire codebases. This tool achieves this

by parsing JavaScript code into an abstract syntax tree (AST) and replacing the

original styling with pretty-printing of the parsed AST using a set of predefined

rules. These rules consider a variety of factors, including line length and

formatting standards, to ensure that code is presented in an optimal and

consistent manner. By promoting consistency across the entire codebase,

Prettier enables developers to work more efficiently and effectively, without the

need to worry about formatting and styling issues. [10]

11

2.2.4 Custom Rules Configuration for Optimal Code Standards

ESLint is a highly flexible and customizable tool designed to meet the specific

needs of different use cases. This powerful tool comes equipped with a wide

range of built-in rules, which can be easily enabled or disabled to suit the project

requirements. Developers can configure rules for an entire directory and its

subdirectories either in a separate file, typically named as a .eslintrc.*, or bundled

in an eslintConfig field within the package.json file. As illustrated in Code block 1,

ESLint rules can be configured using the rules key along with an error or warning

level and the desired options, making it simple and efficient to ensure that code

adheres to the desired standards. [11]

"rules": {

 "react/react-in-jsx-scope": "off",

 "camelcase": "warn",

 "spaced-comment": ["warn", "always", { "markers": ["/"] }],

 "quotes": ["warn", "single", {"avoidEscape": true}],

 "no-multi-spaces": "warn",

 "no-duplicate-imports": "error",

 "no-debugger": "error"

},

Code block 1. Customizable rules in ESLint empower effortless alignment with

desired coding standards and style.

Prettier is a versatile and widely used code formatter that offers an extensive

range of formatting options across a multitude of programming languages. It is

designed to be easily customizable through configuration files such as .prettierrc

in JSON or YAML format, with the support of cosmiconfig. What sets Prettier

apart from other code formatters is its intentional avoidance of global

configuration to ensure that every team member receives consistent results. By

default, Prettier's configuration is local, ensuring that the same consistent results

are produced throughout the project. Code block 2 illustrates how easy it is to

configure Prettier by simply modifying the options within the .prettierrc.json file.

This flexible approach to code formatting allows developers to focus on writing

12

high-quality code while Prettier handles the styling, ensuring consistency

throughout the codebase. [12]

{

 "semi": false,

 "tabWidth": 2,

 "printWidth": 100,

 "singleQuote": true,

 "trailingComma": "all",

 "jsxSingleQuote": true,

 "bracketSpacing": true

}

Code block 2. Configuring Prettier is effortlessly accomplished by modifying the

options in the .prettierrc.json file.

2.3 Results

By adopting the appropriate tools, a fully automated workflow was established to

effectively manage problematic coding patterns and noncompliant style

guidelines, ultimately resulting in a more consistent and higher quality software

product, while minimizing the associated effort and cost. The achieved results

were highly satisfactory, affirming the success of the tool implementation in

achieving the desired outcomes.

The initial analysis revealed that running ESLint and Prettier separately during

static code analysis was not optimal, as these tools have overlapping rules that

can potentially conflict with each other and lead to unexpected behavior. In order

to ensure that each tool performs its intended role accurately and effectively, a

specific strategy was implemented where Prettier handles formatting rules that

govern code style, while ESLint focuses on improving code quality and detecting

potential bugs. To accomplish this, rules that conflicted with Prettier were turned

off in ESLint by using the eslint-config-prettier configuration and adding it to the

extends array in the ESLint configuration file. Additionally, it was ensured that

Prettier configuration was placed last, thus allowing it to override settings from

other configurations. In summary, this approach ensures that Prettier is included

13

when calling ESLint from the command line. Code block 3 is a visual

representation of how Prettier was appended to the ESLint file.

"extends": [

 "eslint:recommended",

 "plugin:react/recommended",

 "plugin:@typescript-eslint/recommended",

 "prettier"

],

Code block 3. Integrating Prettier with ESLint for improved code quality and
consistency.

The comprehensive analysis report provided detailed information regarding the

identified issues, including the number of problems, their type (i.e., error or

warning), and their potential resolution (i.e., automatic or manual). Additionally,

the report indicated the precise file location and line number where each problem

occurred. This information proved to be instrumental in quickly identifying and

addressing the issues, resulting in a more efficient and effective error resolution

process.

ESLint is equipped to perform automatic code formatting for certain rule

violations, such as adding a missing semicolon or removing multiple empty

spaces or lines. However, for other rule violations that require fixing, an additional

"--fix" argument can be used to format the written code in accordance with

ESLint's rules. However, in the present study, this argument was not employed

for reasons of software safety, particularly given the large size of the codebase.

Running ESLint with "--fix" on existing code files could potentially introduce

unintended errors and lead to file breakage. Therefore, each file had to be

manually reviewed and handled individually to approve automatic repairs, which

consumed considerable time that could have been better spent on other aspects

of the development process. To mitigate this issue, code analysis could have

been employed from the outset of the project.

14

Prettier provided a notable advantage through its convenient integration with

VSCode, which allowed for automatic code formatting upon file change or save.

This feature was particularly valuable as it obviated the need for developers to

manually invoke Prettier, reducing the time required for code formatting and

enhancing productivity. Additionally, the automatic formatting ensured that code

was consistently formatted, making it easier to read and understand. By

leveraging this feature, code could be written without worrying about adhering to

formatting standards, resulting in a smoother development process overall.

2.4 Discussion

The study yielded promising results, as the employed static code analysis tools

successfully detected various types of defects, with the majority being effectively

addressed. However, certain difficulties and limitations stemming from design or

methodology have impacted the programmatic, quantitative, and temporal

aspects of the remediation process. It is worth noting that while static analysis

tools are capable to detect potential defects within a function, but they are unable

to verify whether the function is fulfilling its intended purpose. Additionally, it is

important to acknowledge that certain security vulnerabilities, such as

authentication issues and access control problems, may not be easily detectable

through automated means. Furthermore, the presence of a significant number of

unused files and excessive amounts of unreachable data hindered the speed of

the process and potentially impacted the accuracy of the results.

2.5 Conclusion

Static code analysis is an indispensable tool in the software development

process, facilitating the review of source code and enhancing its quality, thereby

accelerating development processes. It ensures code uniformity, following

specified rules to ensure consistency. Automated tools are faster than manual

code reviews, pinpointing errors in the code and speeding up the process of

defect detection and fixing. Difficult-to-read code can slow down teamwork,

creating problems for new developers who may struggle to decipher the code.

15

Moreover, static code analysis can identify potential security vulnerabilities,

helping to ensure that software is robust and resilient. By detecting issues early

in the development process, static code analysis can save time and resources,

avoiding costly errors and reducing the risk of bugs causing problems later on. In

addition, static code analysis can help enforce coding standards and best

practices, promoting good code maintenance and making it easier to maintain

and update code over time. Finally, it can aid in the creation of more maintainable

and sustainable code, helping to build software that can evolve and adapt to meet

changing needs over time.

It is strongly recommended that developers perform static code analysis early on

in the software development process. This approach can help identify potential

issues before they compound into more significant problems, ultimately saving

valuable time and resources in the long run. By detecting defects early,

developers can avoid costly errors and minimize the time spent fixing issues later

on in the development process.

Looking ahead, it is crucial for developers to remain mindful of the importance of

static code analysis and to continue leveraging its benefits regularly. This practice

can help ensure that the code remains consistent, clear, readable, and secure,

even as it undergoes ongoing changes and updates. By maintaining a proactive

approach to code quality and security, developers can help ensure that the

software remains reliable and effective over time, meeting the evolving needs of

end-users and stakeholders alike.

3 TypeScript

The importance of employing a type system in software development cannot be

overstated. The benefits of TypeScript are numerous, ranging from improved

code readability and maintainability to more efficient and reliable development

processes. When TypeScript is omitted from a project, the repercussions can be

severe.

16

Without TypeScript, codebases can quickly become disorganized and difficult to

understand, especially as the project grows in size and complexity. This can lead

to a higher likelihood of errors and bugs, which can be difficult and time-

consuming to debug and fix. Additionally, omitting TypeScript can make it more

challenging to collaborate effectively with other developers, as code changes

become more difficult to track and understand.

To address the challenges of working without TypeScript, various methodologies

and tools can be utilized. These might include more thorough testing, additional

code review processes, and more stringent development standards. While these

measures can help mitigate some of the risks associated with omitting

TypeScript, they cannot fully replace the benefits of a robust type system.

In the following section, the specific methodologies and tools utilized to address

the challenges of working without TypeScript in the project are introduced. A

detailed analysis of the results obtained is provided and conclusions are drawn

about the effectiveness of these approaches. Finally, the implications of the study

and the significance of employing TypeScript in software development projects

to ensure code quality, reliability, and efficiency are discussed.

TypeScript is a statically typed programming language that builds upon

JavaScript's core features, adding an additional layer of static typing to aid in

code reliability and maintainability. While JavaScript provides primitives like string

and number, it lacks the ability to consistently enforce the types of these values.

This is where TypeScript comes in, providing a robust type system to ensure code

consistency and prevent common programming errors. By catching issues before

runtime, TypeScript helps to reduce the risk of bugs and improve the overall

quality of code. [13]

3.1 Impact of Ignoring Typing Layer on Software Quality

In JavaScript, the ability to reassign any variable to “any” type can result in

challenges that are difficult to debug, especially in production environments. To

17

mitigate this issue, TypeScript offers a robust typing system that layers over

JavaScript, providing enhanced type support and error prevention. TypeScript's

type system allows developers to catch type errors during compilation, helping to

reduce potential runtime issues. Moreover, the language ensures that the correct

type is used when assigning variables, promoting efficient and reliable code. By

leveraging TypeScript's built-in type checking and error-catching features,

developers can streamline their development process and improve their code

quality. The language's ability to provide better type support and error prevention

makes it a preferred solution for software development projects that require

reliability and scalability.

The project aimed to utilize TypeScript as a programming language, however, the

developers frequently assigned the “any” or "unknown" type to most variables.

As is customary, third-party functions and libraries were integrated into the

codebase, leading to a situation where developers may not have had knowledge

of the types returned by these functions. Consequently, to save time, they opted

to use “any” as the variable type, thereby exposing the code to potential issues

and bugs during runtime or code updates. By relying heavily on “any”, the type

checking benefits offered by TypeScript were eliminated, effectively making the

codebase more akin to JavaScript, and increasing the likelihood of bugs arising

from faulty assumptions about variable types.

Defining variable types is an essential aspect of improving code quality and

preventing critical issues during runtime. In this study, the goal was to explore the

benefits of using TypeScript to detect type errors and enforce variable types,

ultimately promoting clean and scalable code. By leveraging TypeScript, the

study aimed to highlight unexpected behaviour in the program and reduce the

likelihood of bugs. Throughout the study, various coding scenarios were

examined, and the impact of using TypeScript on the overall code quality was

considered. An improvement in code quality was noticed as TypeScript was used

to detect type errors and enforce variable types, resulting in fewer bugs and

issues being detected. It was found that implementing these practices allowed for

consistency, reliability, and scalability in the code. In retrospect, the use of

18

TypeScript was demonstrated to be a valuable tool for promoting code quality

and preventing critical issues during runtime.

3.2 Utilized Methods for TypeScript

The adopted tool in the project for both client-side and server-side execution was

TypeScript, a free and open-source high-level programming language developed

and maintained by Microsoft, it offers all of JavaScript’s features, and an

additional layer of TypeScript’s type system. [14]

TypeScript is a strict syntactical superset of JavaScript designed for detecting

errors in code without running it, so it checks a program for errors before

execution, and does so based on the kinds of values. It does not consider any

JavaScript code to be an error because of its syntax, just it adds rules about how

different kinds of values can be used. [15]

As a principle, TypeScript preserves the runtime behaviour of JavaScript code

and never changes it, which means the transition between the two languages is

done easily without worrying about subtle differences that might stop program

working. [16]

TypeScript never changes the behaviour of the program based on the types it

inferred, so once the code is compiled, the resulting plain JS code has no type

information, because when TypeScript’s compiler is done with checking the code,

it erases the types to produce the resulting “compiled” code. [17]

3.2.1 TypeScript Compilation

Since browsers cannot directly execute TypeScript code, it must first be

converted into JavaScript code through a process called "transpiling". This is

done using the TypeScript compiler, known as tsc. To use the tsc compiler,

developers must first configure it by creating a tsconfig.json file. This file specifies

the root files of the project, as well as the compiler options required to compile

19

the code. The directory where the tsconfig.json file is located is considered the

root of the project. By using the tsc compiler and configuring the tsconfig.json file,

developers can ensure that their TypeScript code is properly transpiled into

JavaScript code that can be executed by browsers. Understanding this process

is crucial for building and deploying TypeScript projects, as it ensures that the

code will function as expected in the target environment. [18]

3.2.2 Structure of tsconfig.json

The tsconfig.json file plays a crucial role in configuring the TypeScript compiler to

accurately transpile TypeScript code into JavaScript. It is structured as a JSON

object, containing properties and values that define both the root options and

compiler options. Understanding the distinction between these two types of

options is essential for properly configuring a TypeScript project. The root options

are used to configure the overall behaviour of the TypeScript compiler and the

project structure, as well as how the output JavaScript should be generated, while

the compiler options configure the behaviour of the compiler itself to ensure

accurate and efficient compilation of TypeScript code. By accurately configuring

these options in the tsconfig.json file, the TypeScript compiler can effectively

transpile TypeScript code into JavaScript code that can be executed in web

browsers. [19]

The tsconfig.json file can be customized to specify various properties and values,

here are some of the key properties that can be included in the tsconfig.json file

to allow the configuration of a TypeScript project to be tailored to specific needs:

• "compilerOptions" is a configuration object in TypeScript that

contains a set of options for the TypeScript compiler, such as the
target version of JavaScript to compile to, the module format to use,
and the level of strictness for type checking. These options make up
the bulk of TypeScript’s configuration and cover how the language
should work.

Some common options that can be specified in the "compilerOptions"
object include:

"target": Specifies the version of ECMAScript that the TypeScript
code should be compiled to. For example, "ES5", "ES6", "ESNext".

20

"module": Specifies the module format of the compiled JavaScript
code. For example, "commonjs", "amd", "es2015", "esNext".

"strict": Enables strict type checking and other strictness-related
options in TypeScript.

"sourceMap": Generates a source map file that maps the compiled
JavaScript code back to the original TypeScript source code.

"outDir": Specifies the directory where compiled JavaScript files
should be outputted.

"declaration": Generates TypeScript declaration files (.d.ts) for
TypeScript code, which provide type information for external
consumers of the TypeScript code.

The project was divided into two separate repositories on GitHub - one for the

front-end and one for the backend. As a result, two independent TypeScript

configuration files had to be created, one for each repository.

Code block 4 provides an example of how the "compilerOptions" configuration

was defined within a "tsconfig.json" file for the backend of the project. This

configuration specifies that the code should be compiled to ECMAScript 6 and

utilize the CommonJS module format. The resulting JavaScript files should be

stored in the "./build/" directory. In addition to these fundamental options, the strict

settings have been enabled to enforce additional checks and constraints on the

code, which can enhance the code's overall quality. Other options have also been

enabled, such as the ability to import JSON files and to facilitate the use of older-

style module imports. By utilizing a "tsconfig.json" file in this way, fine-grained

control can be exerted over the TypeScript compilation process, and it ensures

that the resulting JavaScript code meets the specific requirements of the project.

This allows the TypeScript environment to be tailored to the project's needs,

providing developers with the ability to customize the compilation process

according to the project's unique requirements.

21

{

 "compilerOptions": {

 "target": "es6",

 "module": "commonjs",

 "outDir": "./build/",

 "strict": true,

 "noUnusedLocals": true,

 "noUnusedParameters": true,

 "noImplicitReturns": true,

 "noFallthroughCasesInSwitch": true,

 "esModuleInterop": true,

 "skipLibCheck": true,

 "resolveJsonModule": true

 }

}

Code block 4. Customizing TypeScript environment in the backend with strict

settings and other options using 'compilerOptions' for fine-grained control over

code quality.

In Code block 5, the "compilerOptions" configuration of the project is

demonstrated through a "tsconfig.json" file for the frontend. The configuration

encompasses various options such as the target ECMAScript version to compile

the code to, the libraries to include, and whether or not to check against them.

Additional options include enabling synthetic default imports, enforcing consistent

file naming conventions, specifying the module format, and setting the module

resolution method to the Node.js module system. The configuration also enables

the use of JSON files as modules and isolated modules. It's worth noting that the

"noEmit" option is set to true, indicating that no JavaScript files should be

generated as output, and the configuration file is intended only for checking and

validating purposes. In this way, the configuration can be set up to ensure that

the desired output is produced by the TypeScript compiler and that the resulting

JavaScript code meets high-quality standards, in accordance with the project's

specific requirements.

22

{

 "compilerOptions": {

 "target": "es6",

 "lib": ["dom", "dom.iterable", "esnext"],

 "skipLibCheck": true,

 "esModuleInterop": true,

 "allowSyntheticDefaultImports": true,

 "strict": true,

 "forceConsistentCasingInFileNames": true,

 "module": "esnext",

 "moduleResolution": "node",

 "resolveJsonModule": true,

 "isolatedModules": true,

 "noEmit": true,

 "jsx": "react",

 "downlevelIteration": true,

 "allowJs": true

 }

}

Code block 5. Fine-tuning the TypeScript environment for the frontend with

'compilerOptions' in the tsconfig.json file to enhance code quality and meet

specific requirements.

• "files": This property specifies an array of individual TypeScript files
that should be included in the compilation process. If this property is
used, the compiler will only compile the files listed in this array,
ignoring all others.

The "files" property can be particularly useful in larger projects, where it can help

to avoid compiling unnecessary files and reduce the build time. By carefully

selecting which files to include, developers can optimize the compilation process

and ensure that only the necessary files are compiled.

In Code block 6, the inclusion of specific TypeScript files in the compilation

process is determined by the "files" property in the tsconfig.json file. The array

contains seven files: "allUsersActions.ts", "breadcrumbActions.ts", "types.ts",

"formActions.ts", "parser.ts", "utilities.ts", and "tsc.ts", and any other TypeScript

files in the project are excluded. The "files" property offers a more granular

approach to file inclusion, enabling developers to precisely control which files are

included in the compilation process. In contrast, the "include" and "exclude"

23

properties provide broader control by specifying a pattern of files to be included

or excluded from the compilation process. It is worth noting that the "files"

property supersedes the "include" and "exclude" properties, meaning that any

TypeScript files specified in the "files" property will override any patterns specified

in the "include" and "exclude" properties.

{

 "files": [

 "allUsersActions.ts",

 "breadcrumbActions.ts",

 "types.ts",

 "formActions.ts",

 "parser.ts",

 "utilities.ts",

 "tsc.ts"

]

}

Code block 6. Precising Control over TypeScript Compilation with 'files' Property

in tsconfig.json.

• "extends":This property enables the extension of the configuration

from another tsconfig.json file, making it possible to share common
settings among multiple projects. This feature proves to be valuable
in scenarios where consistency is required across multiple
TypeScript projects.

Code block 7 illustrates the use of the "extends" property in the tsconfig.json file.

The "extends" property allows a TypeScript configuration file to extend or inherit

settings from another configuration file. In this example, the "./tsconfig" file is the

configuration file from which the current configuration file inherits settings. This is

particularly valuable in projects where multiple applications share similar

configurations, as it reduces duplication and promotes consistency. An excellent

use case for the "extends" property is in scenarios where a development team is

working on multiple applications that require a common set of dependencies or

build requirements. By defining these settings in a single configuration file and

then extending them in other files, the team can ensure that all their projects

utilize the same set of libraries and tools, which can improve collaboration and

productivity.

24

{

 "extends": "./tsconfig"

}

Code block 7. Streamlining TypeScript configuration management with 'extends'

in tsconfig.json enables the inheritance of settings from a common configuration

file and reduces duplication across multiple projects.

• "include": In the tsconfig.json file, the "include" property is used to
specify an array of file globs or patterns that are to be included in the
compilation process. These can include individual files, directories,
or a combination of both. This property is particularly useful in large
projects that contain a multitude of source files spread throughout a
nested directory structure. By including specific files or directories in
the compilation process, developers can ensure that only the
necessary TypeScript code is transpiled into JavaScript.

In the tsconfig.json file example, Code block 8 provides a practical illustration of

how the "include" property can be used. The example shows that by specifying

the "src" and "tests" directories within the "include" property and setting the

"recursive" option to true, TypeScript will compile all files in these directories,

along with their respective subdirectories. This can be particularly useful when

working on large projects with multiple files and directories, as it simplifies the

TypeScript compilation process.

{

 "include": [

 "src/**/*",

 "tests/**/*"

]

}

Code block 8. Using the "include" property in tsconfig.json to include files from

specific directories and their subdirectories in the TypeScript compilation

process.

• "exclude": This property specifies an array of file globs or patterns

that should be excluded from the compilation process. This can be
useful for excluding files that should not be compiled, such as
documentation files, configuration files, and build output files.

25

Excluding these files can help to improve the efficiency of the
compilation process and reduce the overall size of the compiled
output.

In the given example, Code block 9 illustrates that the exclude property is set to

./**/*/ignore.ts, which means any file with the name "ignore.ts" located in any

directory and any subdirectory of the project will be excluded from the compilation

process. This can be useful when you have files that should not be compiled or

when you want to ignore specific parts of your project for various reasons. This

can be useful when files should not be compiled, or specific parts of a project

need to be ignored for various reasons.

{

 "exclude": [

 "./**/*/ignore.ts"

]

}

Code block 9. Excluding files from the TypeScript compilation process can be

easily done using the "exclude" property in the tsconfig.json file.

• "references": This property is utilized to reference other TypeScript

projects that the current project relies on, and it helps to manage
dependencies between different projects by ensuring that they are
built in the correct order. This feature was introduced in TypeScript
3.0 to allow programs to be structured into smaller pieces for faster
build times, enforce logical separation between components, and
organize code more effectively.

Code block 10 illustrates the usage of the "references" property, where a

reference to another TypeScript project is made. In the given example, the

references property is used to reference another TypeScript project located in a

directory that is one level up from the current project directory. The "path"

property is set to "../src", which means that the current project depends on the

TypeScript project located in the "../src" directory.

This can help to manage dependencies between different projects and ensure

that they are built in the correct order. By referencing other projects, the

TypeScript compiler can build the dependencies first before building the current

26

project, which can help to speed up build times and ensure that the code is

organized in a logical and consistent way.

{

 "references": [

 { "path": "../src" }

]

}

Code block 10. The 'references' property is used to reference another TypeScript

project, allowing for better dependency management and optimized build times.

The tsconfig.json file plays a fundamental role in configuring the TypeScript

compiler, facilitating efficient transpilation of TypeScript code into high-quality

JavaScript that aligns with project specifications. Accurate configuration of this

file is crucial for achieving precise and efficient compilation, allowing for greater

control and accuracy in the TypeScript-to-JavaScript conversion process. With

proper configuration, the tsconfig.json file can help ensure that the resulting code

is of the highest quality and meets all project requirements, emphasizing the

importance of its accurate and thorough setup.

3.3 Results

Throughout the study, the TypeScript Compiler tool was utilized to perform

rigorous type checking on the program. By analysing the code at compile-time,

the tool was able to ensure that variables and functions were used in a manner

consistent with their intended types. Type-related errors were able to be identified

and resolved before the program was ever run, allowing for more efficient

debugging and a more stable final product. Overall, the use of the TypeScript

Compiler was instrumental in guaranteeing that the program computed with the

expected values, and helped to produce clean, well-documented code that could

be more easily maintained and expanded upon in the future.

TypeScript, as a robust type system, proved highly effective in detecting and

preventing numerous type errors and successfully brought attention to potential

27

bugs that could be prevented during the coding process by enforcing variables

and other data structures to be declared with specific types to determine what

values the variables could have and what operations could be performed on

them. Figure 1 demonstrates how type error were identified and highlighted when

“any” was used as a type specifier.

Figure 1. The effectiveness of TypeScript's type system in detecting and

preventing type errors, where the use of “any” as a type specifier is highlighted

as a type error.

Figure 2 illustrates how the previously detected type error has been resolved by

replacing the generic “any” type with an explicit type declaration. The new type

declaration specifies that the data in question is an array of objects, with each

object conforming to the User data type.

This is a significant improvement over using “any” as the data type, as it removes

any ambiguity about the structure of the data and allows for more precise type

checking. By explicitly specifying the data type, TypeScript is able to enforce

stricter typing rules, which helps catch errors earlier in the development process.

By replacing “any” with an explicit type declaration, developers can reduce the

likelihood of errors occurring in their code and make it easier to maintain and

modify over time. This is particularly important in larger codebases, where a

single mistake can have far-reaching consequences.

Overall, the use of explicit type declarations is a best practice in TypeScript

development and is essential for building robust and reliable software easy to

maintain, and less prone to errors.

28

Figure 2. Replacing “any” with an explicit type declaration in TypeScript will

improve code reliability and make it easier to maintain.

The application of static typing in TypeScript proved to be a highly effective

technique, as it had a profound impact on the quality, efficiency, and reliability of

the software. By enforcing strict type checking, TypeScript was able to detect

potential bugs in code before it was executed, minimizing the likelihood of errors

and enhancing the stability of the software. In addition to increasing reliability,

static typing also led to enhanced run-time efficiency. Since the TypeScript

compiler checked for type errors before execution, there was less need for type

checks during runtime, which reduced overhead and resulted in faster, more

efficient code. Another benefit of static typing was that it encouraged developers

to adopt a more structured and organized approach to coding. By requiring

explicit declaration of variable and function types, TypeScript promoted code

readability, understandability, and maintainability over time. This helped reduce

the likelihood of bugs and errors that can arise from complex, poorly structured

code. Moreover, the use of static typing sped up the development process by

enabling developers to catch and fix errors early in the coding cycle. This saved

valuable time and resources, allowing developers to focus on adding new

features and functionality to the software.

The study succeeded in using TypeScript's inbuilt support for interfaces, which is

an important typing feature, to define the specifications of an entity. This allowed

the study to catch related errors using TypeScript's type inference capabilities,

which examine the name of an object's property and its associated data type.

TypeScript interfaces provide a way to define the structure of an object, specifying

the properties and their types. This ensures that objects are created consistently

throughout the codebase, which helps to prevent errors and maintain code

quality. The use of interfaces also promotes code readability and maintainability

by providing a clear definition of the properties that an object should have. By

29

using TypeScript's type inference capabilities to examine the name of an object's

property and its associated data type, the study was able to detect errors early in

the development process. This helped to ensure that errors were caught and fixed

before they caused any serious issues in the software. Code block 11 was used

in the study to illustrate an example of an interface structure, which contains the

names of all the properties of a UserInformation object along with their associated

data types. This interface structure provided clear guidelines for developers to

follow, ensuring that the UserInformation object was created consistently

throughout the development process.

export interface UserInformation {

 name: string

 email: string

 city?: string

 street?: string

 zipCode?: string

 phoneNumber?: string

 website?: string

 licenses?: string

 profilePicture?: string

 category?: string

}

Code block 11. Using TypeScript interfaces to define object specifications and

leveraging its type inference capabilities helps to catch related errors early in

development. and improve code quality.

The study successfully leveraged TypeScript's support for enums, a powerful

feature that provides a way to define a set of named constants with specific

values. Unlike regular JavaScript, TypeScript provides both numeric and string-

based enums. [20]

This feature enabled the study to define a variable as a set of predefined

constants, ensuring that it can only be equal to one of the predefined values. This

allowed the study to clearly document intent and create a set of distinct cases

that could be easily referenced and understood throughout the code. One of the

major benefits of using enums was the improvement in code readability and

maintainability. By providing a clear definition of the values that a variable can

30

take, the study was able to improve the structure and organization of the code.

Additionally, by using the standard structure for string-based enums, the study

was able to define a set of distinct cases that were easy to reference and

document. Code block 12 provided a visual representation of the standard

structure for string-based enums, which includes a list of constant values, each

with a unique string identifier. This structure was used in the study to define a set

of distinct cases, making it easier to document the intent of the code and ensure

consistency throughout the project.

export enum usersType {

 USER_CREATED_REQUEST = 'USER_CREATED_REQUEST',

 USER_CREATED_SUCCESS = 'USER_CREATED_SUCCESS',

 USER_ACTION_FAILURE = 'USER_ACTION_FAILURE',

 USER_GET_ALL_REQUEST = 'USER_GET_ALL_REQUEST',

 USER_GET_ALL_SUCCESS = 'USER_GET_ALL_SUCCESS',

 USER_GET_CURRENT_REQUEST = 'USER_GET_CURRENT_REQUEST',

 USER_GET_CURRENT_SUCCESS = 'USER_GET_CURRENT_SUCCESS',

 USER_UPDATE_REQUEST = 'USER_UPDATE_REQUEST',

 USER_UPDATE_SUCCESS = 'USER_UPDATE_SUCCESS',

 USER_DELETED_REQUEST = 'USER_DELETED_REQUEST',

 USER_DELETED_SUCCESS = 'USER_DELETED_SUCCESS',

 USER_UPDATE_STATUS_REQUEST = 'USER_UPDATE_STATUS_REQUEST',

 USER_UPDATE_STATUS_SUCCESS = 'USER_UPDATE_STATUS_SUCCESS',

 USERSTATUS_UPDATE_REQUEST = 'USERSTATUS_UPDATE_REQUEST',

 USERSTATUS_UPDATE_SUCCESS = 'USERSTATUS_UPDATE_SUCCESS',

}

Code block 12. The standard structure for string-based enums, which allows for

a set of distinct cases to be easily referenced and understood throughout the

code.

The study demonstrated the benefits of using TypeScript, a robust type system

that enforced strict type checking and promoted code organization, readability,

and maintainability. By analysing code at compile-time, TypeScript's inbuilt tools

caught potential bugs early, leading to more stable and efficient software.

Features such as interfaces and Enums provided clear guidelines for developers,

improved code structure and readability, and reduced the likelihood of errors. In

summary, the study results indicate that incorporating TypeScript's static typing

31

into the software development process significantly improves software quality,

efficiency, and reliability.

3.4 Discussion

TypeScript's strong static typing feature has been widely adopted by software

developers for its ability to catch type-related errors early in the development

process. The study was able to leverage from this feature, which resulted in more

reliable and efficient code. By requiring developers to declare variable types,

TypeScript prevents common errors that can lead to bugs and poor performance

in production. This means that the codebase is more robust and maintainable,

and the development process is streamlined, leading to faster debugging and

refactoring.

TypeScript is a strongly typed language, which means that every variable in a

TypeScript program must have a specific type. This ensures code correctness

but can also be time-consuming for developers to manually declare all the types

for their variables. However, the use of IDE like Visual Studio Code was a

significant advantage for the study, enabling developers to work more efficiently

and effectively as it comes with built-in TypeScript intelligence that can

automatically infer variable types based on the code context. This can save

developers time and effort when writing code. Additionally, when the variable

types are explicitly declared, the IDE can provide accurate suggestions, code

navigation, and autocompletion, making it easier for developers to write correct

code and navigate through the codebase. Furthermore, Visual Studio Code can

also perform real-time error checking, highlighting any syntax errors, semantic

errors, or type mismatches as the developer writes code. This can help catch

errors early in the development process, leading to more efficient debugging and

reducing the risk of introducing bugs into the codebase. Finally, when errors are

detected, VS Code can help with debugging by providing detailed information

about the error, including the line number and the specific error message.

32

TypeScript's compile-time error detection is a powerful feature that allows

developers to catch type-related errors before running the program, which can

save significant time and effort during the debugging and refactoring processes.

This feature was utilized in the study, resulting in more efficient development

processes. When developers declare the type of variables in TypeScript, the

compiler can catch type errors immediately and highlight them as they occur. This

means that developers can identify and resolve issues early in the development

cycle, resulting in code that is more dependable and optimized for performance.

By providing early feedback on type-related errors, TypeScript can significantly

improve the software development process by reducing the likelihood of errors in

production. It achieves this by enforcing strong static typing, which catches

potential bugs early before moving to production phase. Applying TypeScript to

the project also gives the codebase more structure, enhances its readability and

keeps it robust, organized, and maintainable.

Applying TypeScript to the project added a layer of structure and organization by

requiring developers to declare variable types and adhere to strict syntax rules.

This resulted in more readable and maintainable code, as well as easier

collaboration between team members. Additionally, TypeScript's ability to detect

and catch errors at the compile stage and prevent bugs from slipping through to

production leads to a more robust and stable codebase. This allows for smoother

maintenance and reduces the likelihood of costly errors or downtime. Overall, the

use of TypeScript can greatly enhance the quality and reliability of a project's

codebase.

The study greatly benefited from the powerful object-oriented programming

features provided by TypeScript, including the ability to define interfaces and

classes. An interface is a way to define the structure and contract that a class

should follow. It specifies the method signatures and property types that a class

should have but does not provide the implementation. Instead, the class that

implements the interface defines all its members. The primary purpose of an

interface was to provide a level of abstraction that allowed developers to separate

the concerns of different parts of their code. This helped make code more

33

modular, reusable, and easier to maintain over time. In a research study context,

this led to more efficient and effective development, as it allowed researchers to

more easily isolate and test different parts of the codebase. In TypeScript,

interfaces were only used at development time and were removed by the compiler

when it generated the JavaScript code. This meant that they had no impact on

the runtime performance of an application but could provide significant benefits

during the development process. By using interfaces, developers could create

well-organized and highly structured codebases that were easier to understand,

modify, and extend. This was particularly useful in the context of a research study,

where there may have been a need to modify and extend the codebase over time

as new findings emerged or new research questions were posed.

3.5 Conclusion

Statically-typed programming languages, such as Java and C++, were developed

with stricter typing rules enforced at compile-time to detect and prevent type

errors at an early stage of the development process. This leads to the production

of clear and expressive code. Conversely, dynamic, and weakly-typed

languages, such as JavaScript, perform type checking at runtime based on

contextual information and data, which allows variables to be assigned different

types after initialization, as typing is associated with the variable's value rather

than the variable itself.

With the additional strong typing capabilities in TypeScript, developers can

benefit from stricter rules for defining data types, which enable them to detect

type errors at compile-time before running the program. This results in

considerable time and effort savings, as compile-time errors can be easily

addressed during the code development phase, leading to the creation of cleaner

and better-documented code.

The project was initially intended to use TypeScript as its primary programming

language, which is known for its static typing capabilities that can help catch type

errors early in the development process. However, upon reviewing the written

34

code, it was discovered that the code was written without the proper use of types,

with the type “any” being used extensively throughout the codebase.

The use of “any” type means that the code was written without explicitly defining

the data types for variables, functions, and other components, making it more

difficult to ensure code correctness and maintainability. This lack of proper type

annotations can lead to more bugs and errors during the running time of the

program, as the TypeScript compiler is forced to disable type checking for

variables and returned values of call-backs and ignore the comments around

them. This can ultimately lead to a more challenging debugging process, as it can

be difficult to track down and fix errors that arise from incorrect data types. To

mitigate these issues and ensure the long-term maintainability and stability of the

codebase, it is important to use TypeScript's strong typing capabilities effectively

and consistently throughout the development process. To address this issue, the

study aimed to revisit the codebase and update it to use TypeScript's strong

typing capabilities more effectively, starting by creating interfaces to define the

structure and contracts that classes and functions should follow, to make it easier

to catch errors related to incorrect usage of objects and functions. Additionally,

adding explicit type annotations to variables and function parameters, to clear

what types are expected and reducing the risk of introducing errors.

Throughout the study, the effective utilization of TypeScript resulted in the

successful detection and resolution of type errors in numerous files located

throughout the project's various folders. This was accomplished by capitalizing

on the inherent strong typing capabilities that TypeScript provides. However,

despite the progress made, there are still number of files where type errors had

not been handled. As a result, it is highly recommended that future work

continues to use TypeScript and focuses on resolving these remaining issues. It

may also be beneficial to evaluate and potentially delete any unreachable files,

as these could introduce unnecessary complexity and maintenance overhead. By

continuing to use TypeScript and prioritizing type safety, the project can ensure

a more stable and reliable codebase over time.

35

4 Unit Testing and Integration Testing

The purpose of this section is to address the issue of missing code tests

encountered during the project's development. The absence of code testing had

a significant impact on the development process, leading to delays, errors, and a

decrease in overall software quality. Thus, this section aims to highlight the

importance of code testing in ensuring software quality, identifying and resolving

bugs early in the development cycle, and meeting user requirements.

This section presents solutions for creating a suitable environment with the

necessary assets for running the tests, such as tools, frameworks, and automated

testing procedures. By implementing these solutions, developers can ensure that

their software meets the required standards of quality and functionality, resulting

in better user satisfaction and trust.

Overall, this section emphasizes the significance of code testing in software

development and the detrimental effects of neglecting it. The solutions presented

in this section will serve as a roadmap for developers to establish an effective

code testing process, leading to a higher quality and more reliable software

product.

The software testing process typically involves dividing testing into four primary

levels, including unit, integration, system, and acceptance testing. This study,

however, focuses primarily on API integration testing, which is a critical part of

software development. API integration testing is a type of integration testing that

focuses on testing the interactions between different software components,

including servers, databases, and applications. The study provides an overview

of the software testing process and the different testing levels, with a particular

emphasis on API integration testing. The study also explores the significance of

API integration testing, its challenges, and the best practices for designing and

executing effective API integration tests. By focusing on this specific testing level,

this study aims to provide insights that can help developers improve the quality

and reliability of their software products.

36

4.1 Consequences of Untested Code in Software Development

The software development in this project was missing an essential phase, which

is unit and integration testing. Writing code without testing is a high risk, because

it relies on the skills and the knowledge of the programmer and as codes are

written manually it is so possible to make mistakes, which can cause trivial or

catastrophic errors, defects, or failure at any stage of the software development

life cycle, also making changes and submitting potentially non-working code to a

common branch makes the processes of development and code refactoring to be

complicated.

Since many programmers have worked on this project, lines of codebase has

been always piling up in the version control system for a build without a steady

review or testing, which negatively affected the development process time to

become much longer, that the developers are always required to work for long

time to find out the sources and causes of the code breakdown and to figure out

the appropriate solutions to fix them to be able to resume the development

process. As the entire code has been written without tests, so it is unreliable, and

it has been difficult to identify the root of many detected problems and issues in

the codebase and understand where bugs come from and when they occur.

The best practice to find out if a feature is likely to cause a production downtime

is to test that feature, therefore the study aimed to set up an effective

environment that provides the best approaches to the testing process to

implement early testing to shorten error logs by helping the developers to benefit

from writing testable code to prevent the unnecessary effort of searching for

solutions to the discovered defects and bugs before the delivery to the client,

reduce code complexity and eliminate the unnecessary parts, make the code

more robust and easier to maintain, help developers to detect problems and find

bugs easily with less effort and fewer resources, guarantee the quality and high-

performance of the software and make it more reliable and easier to use.

37

The critical role of code testing in software development

Code testing is an essential part of software development as it ensures the quality

and reliability of software products by detecting and eliminating bugs and errors.

It involves running various tests on the code to identify any issues that could affect

the program's performance or stability. Testing allows developers to identify and

fix bugs and errors in the code before they reach end-users, reducing the risk of

product failures, security breaches, and other issues. Code testing also helps

ensure that software meets the requirements and specifications set out by clients

or stakeholders, ensuring customer satisfaction and trust.

One of the most significant benefits of code testing is that it helps identify issues

early in the development process, making it easier and less expensive to fix. By

catching problems early, developers can avoid the need for more extensive and

costly fixes down the line, which can save time, money, and resources in the long

run. Additionally, code testing helps identify areas of the code that may need

improvement, leading to better overall code quality and maintainability.

Exploring the Levels of Code Testing

There are several levels of code testing in software development, beginning with

unit testing at the individual component level, followed by integration testing to

ensure proper interactions between components, system testing to validate the

entire system, and acceptance testing to confirm that the software meets the

specified requirements and is ready for release. These levels of testing work

together to provide thorough coverage, enabling the delivery of a stable, reliable,

and high-quality software solution.

• Unit testing

A unit testing is the first level of functional testing that verifies the functionality of

a single, isolated component of a larger system. This component is typically a

function, method, or class within the codebase, and it is tested in isolation from

38

any other components that may depend on it. The purpose of this isolation is to

ensure that any failures or issues that arise during the test can be easily traced

back to the specific component being tested. Unit testing uses modules for testing

purpose, and these modules are combined and tested in integration testing.

Unit tests are designed to be automated, meaning that they are written as code

and can be executed automatically by a testing framework. They are typically

written by developers as part of the software development process, and they are

run frequently during the development cycle to catch bugs and issues early on.

This helps to ensure that the code is stable and reliable before it is released to

users. [21]

Unit test provides several valuable advantages, including the early detection of

bugs, which reduces defects in newly developed features and when changing

existing functionality. Catching bugs early in the development process means

they can be addressed before they propagate to higher levels of the system,

which ultimately leads to a more stable and reliable software product.

Additionally, unit testing helps to reduce the total cost of testing by detecting

defects and bugs in the early development phase before they become more

complex and expensive to fix. This approach also simplifies the refactoring of

code and improves design, making it easier for developers to make changes to

the codebase without introducing new issues. Moreover, when integrated with the

build process, unit tests can improve the quality of the build, ensuring that the

software is free from defects and behaves as expected. Finally, unit testing

encourages developers to write modular, well-structured code, which is easier to

maintain, reduces technical debt, and improves overall software quality. [22]

• Integration testing

Integration testing is a crucial stage in the software testing process that occurs

after unit testing. It involves testing individual components or units of the software

in a group, with the objective of identifying defects at the point of interaction

between the integrated components or units of an application before they are

released to production.

39

The primary goal of integration testing is to ensure that the different modules,

which may have been developed by different programmers, work correctly as

intended when combined and that data can be correctly passed between them.

Integration test checks the correctness of communication, performance, and

reliability among all the modules in the system.

The integration testing process can involve several approaches, such as top-

down testing, bottom-up testing, and a combination of both approaches. It can be

conducted manually or automated, depending on the complexity of the software

being tested. [23]

Integration test provides several benefits that help improve the quality, reliability,

and performance of the system. One of the key advantages of integration testing

is that it guarantees the performance of integrated modules, even when designed

by different software developers. This is particularly important in complex

systems that rely on multiple modules working together to function correctly.

Another significant advantage of integration testing is that it can identify

integration issues early in the development process. Finding and resolving issues

at this stage is generally easier and less expensive than finding them later, saving

developers time and effort. Additionally, integration testing improves test

coverage and reliability by testing the interactions between modules.

By catching defects early, integration testing can reduce the overall cost of

maintaining a system over its lifetime. This is because it is generally less

expensive to fix issues during development than after deployment. Finally,

integration testing can help accelerate the development process, reducing time-

to-market and giving developers a competitive edge in the marketplace. [24]

• System testing

System testing is a type of software testing that evaluates the entire system or

software application, rather than its individual components or modules. It is

typically conducted after integration testing and before acceptance testing to

40

ensure that the system meets the specified requirements and works as expected

in a real-world environment. [25]

System testing involves testing the system's functionality, performance, reliability,

and security by simulating real-world scenarios and inputs. This includes testing

the system's user interfaces, APIs, hardware, software, and network connectivity,

as well as testing for compatibility with different operating systems, devices, and

browsers.

The goal of system testing is to identify any defects or issues that may have been

missed during earlier testing phases and to ensure that the system is ready for

deployment. This is typically the final testing phase before the system is released

to users or customers. System testing is an essential aspect of the software

development process, as it helps ensure that the system meets the needs of its

users and functions as expected in a real-world environment.

• Acceptance testing

Acceptance testing is a vital phase of software testing that validates whether a

software application meets the business and user requirements and is ready for

deployment. It is typically the final phase of testing, performed by end-users or

customer representatives, and tests the application's functionality and usability

using real-world scenarios. There are two main types of acceptance testing: User

Acceptance Testing (UAT) and Operational Acceptance Testing (OAT), each with

a specific focus on validating the functionality and ability of the software to

perform in its intended environment. UAT verifies that the software meets the

needs of its intended users and is acceptable for deployment, while OAT

evaluates the software's ability to perform in its operational environment. [26]

4.2 Utilized Methods for Testing Process

The application has been developed by TypeScript language, so Jest is a great

option for implementing unit and integration testing for TypeScript projects due to

its wide benefits.

41

Jest is a widely used, open-source JavaScript testing framework that has gained

popularity in recent years for its ability to perform both unit and integration testing.

Built by Meta (Facebook), Jest's design and features make it a great choice for

testing TypeScript projects, providing many benefits to developers.

One of the main advantages of Jest for TypeScript projects is its built-in support

for TypeScript. TypeScript is a typed superset of JavaScript that allows

developers to write more reliable and maintainable code. However, testing

TypeScript code can be challenging, especially when dealing with type checking

and interfaces. Jest simplifies this process by providing built-in support for

TypeScript, making it easy to write tests for TypeScript projects without requiring

any additional configuration or setup. [27]

In addition to its support for TypeScript, Jest is known for its speed and reliability.

Jest uses a highly optimized test runner that runs tests in parallel, making it faster

than other testing frameworks. Jest also has built-in features for snapshot testing,

which makes it easier to test complex components and ensure that they are

working as expected. [28]

Another benefit of Jest is its ease of use. Jest has a simple and intuitive API that

makes it easy to write tests. It also has built-in matchers that allow developers to

write more expressive and readable tests. Jest's test runner provides instant

feedback and displays test results in an easy-to-read format, making it easy for

developers to identify and troubleshoot any issues that arise. [29]

Jest also has comprehensive documentation that covers all aspects of testing,

including unit and integration testing. This documentation makes it easy for

developers to get started with testing and to troubleshoot any issues that they

may encounter. Jest also provides many plugins and extensions that can be used

to extend its functionality, providing even more flexibility for developers. [30]

Finally, Jest has a large and active community of developers who contribute to

the framework, provide support, and share their knowledge and expertise. This

42

community ensures that Jest is continuously improved and updated to meet the

needs of developers.

the best option to implement unit and integration testing as it is the most popular

framework for testing TypeScript and react components.

Jest is a delightful JavaScript testing framework with a focus on simplicity. It

works with projects using: Babel, TypeScript, Node, React, Angular, Vue and

more. It is open source designed by Facebook to ensure correctness of any

JavaScript codebase. It allows developers to write tests with an approachable,

familiar, and feature-rich API that gives results quickly. Jest is well-documented,

requires little configuration and can be extended to match the desired

requirements. [31]

To make Jest work with TypeScript, Jest transformer had to be used. Ts-jest is a

Jest transformer with source map support that lets developers use Jest to test

projects written in TypeScript. It supports all features of TypeScript including type-

checking. [32]

4.3 Results

The study successfully achieved integration tests for the authentication API, as

demonstrated by the results in Figure 3. These tests not only verified that

individual components of the authentication system were functioning correctly,

but also tested the system as a whole in a more realistic environment. By running

these integration tests, the study was able to identify and address issues that

could only be detected at the system level, rather than in individual unit tests.

Overall, the successful integration testing of the authentication API was a critical

step in ensuring the reliability and functionality of the software system.

43

Figure 3. Successful integration tests were conducted on the authentication API,

confirming the proper operation of each component within the authentication

system.

By utilizing Jest's features, such as code coverage tracking and reporting, the

study was able to identify areas of the code that required additional testing and

improve the overall quality of the software. Furthermore, the Jest test report

served as documentation of the testing process and provided evidence of the

software's reliability and suitability for deployment.

As shown in Figure 4, the test report generated by Jest provided several benefits

for the study. For instance, by using Jest, the tests were executed in a consistent

and repeatable manner, ensuring that the test results were reliable and

reproducible. Additionally, the report provided a clear overview of the test results,

including the coverage metrics for function, branch, lines, and statement,

indicating the percentage of code covered by the tests in each category.

44

Figure 4. The report presented a comprehensive summary of the test outcomes,

with coverage metrics for function, branch, lines, and statement, which accurately

depicted the percentage of code covered by the tests in each category.

Throughout the testing process, the pursuit of achieving complete code coverage

faced several challenges and limitations. The process of testing specific aspects

of the code, including error handling and exception cases, presented difficulties.

For instance, when testing the login process, difficulties arose in testing the case

where a user's account had been blocked for security reasons, as shown in

Figure 5. The code responsible for handling this scenario was difficult to test as

it relied on specific conditions that were not easily replicable in a testing

environment.

Figure 5. The code that manages the testing of the scenario where a user's

account is blocked due to security concerns was flagged as untested.

Similarly, during the registration process, the code handling errors and

exceptions was challenging to test, as illustrated in Figure 6. The code that dealt

with cases where a user document cannot be saved due to a database save

45

operation error or a validation error when creating a new user document was

difficult to test.

Figure 6. The testing of the code that manages errors and exceptions presented

challenges, resulting in it being flagged as untested in the evaluation.

Furthermore, achieving complete code coverage was found to be time-

consuming and resource-intensive, especially for larger codebases.

Consequently, testing efforts had to be prioritized based on the most critical parts

of the code.

Despite the encountered challenges, every effort was made to ensure that as

much of the code as possible was covered by tests, ensuring the software's

reliability and freedom from defects. The most critical parts of the code were

tested through creating test cases, and various testing techniques were

employed to increase code coverage. However, the constraints and limitations of

the testing process made it infeasible to achieve complete code coverage.

4.4 Discussion

One of the key challenges in testing is setting up and maintaining test

environments, so the study used an in-memory database for testing because it

offers several advantages over traditional databases that can make the testing

process more efficient and effective. First and foremost, testing with an in-

memory database is generally faster than testing with a physical database. Since

data is not being written or read to disk, tests can be executed more quickly. This

is especially important for larger test suites, where the time to run tests can add

up quickly. Another benefit of testing with an in-memory database is isolation. A

fresh database can be started for each test, eliminating the risk of test data

46

interfering with other tests. This can help ensure that tests are more reliable and

accurate, as they are only testing the specific functionality they were designed

for. Additionally, consistency between tests can be ensured by using an in-

memory database. With a physical database, data may be left over from previous

tests or manual changes, which can make it difficult to ensure that each test is

starting from the same baseline. Utilizing an in-memory database ensures that

data is consistently in a reliable and stable state at the beginning of each test. In-

memory databases have another advantage for testing, in that they are highly

scalable. Unlike traditional databases, they are not limited by physical constraints

and can manage large amounts of data and high levels of traffic without becoming

overloaded or slowing down. This is particularly critical for testing applications

that are designed to handle a massive volume of data or traffic. By using an in-

memory database, developers can ensure that their applications are able to

perform optimally under heavy load, which is essential for maintaining the stability

and reliability of their software products. Finally, in-memory databases offer a

remarkable degree of flexibility and customization. As they are specifically

designed for testing, they can be effortlessly configured to accommodate the

demands of diverse testing scenarios. For instance, they can be set up to mimic

different forms of data, traffic, or user behaviour, thereby guaranteeing that tests

are comprehensive and precise. This ability to adapt to different testing

requirements makes in-memory databases a highly versatile tool in the software

development process.

The results of this study highlight the critical role that testing plays in the software

development life cycle. The successful implementation proved to be effective in

establishing a suitable global environment for conducting tests, and the outcomes

of the study were generally favourable, almost meeting the anticipated

expectations. However, it is important to note that the implementation covered

only two APIs due to the presence of a vast amount of untested code in the

system version control, some of which was deemed redundant or irrelevant and

some was non-functional or unreachable. This made it challenging to resolve

issues and difficult to apply the testing process in those areas. In some instances,

47

this problem was overcome by removing part of the code that was either repetitive

or insignificant.

The presence of long and convoluted code presented difficulties in both testing

and rectifying issues, which required an extensive amount of time to address. The

complexity of the code made it difficult to identify the root cause of the problems,

slowing down the resolution process. Moreover, testing the code became more

demanding, as errors or bugs may not have been immediately apparent due to

the code's length and complexity. Therefore, it was crucial to write clear and

concise code that was easy to test and maintain.

During the testing process, some challenges and limitations were encountered in

attempting to achieve complete code coverage, that in some cases, it was difficult

to test specific parts of the code, such as error handling or exception cases. For

instance, the line "return res.status(500).json({message: error.message})" in a

codebase was responsible for handling a 500 Internal Server Error response and

sending a JSON payload back to the client. However, simulating this error

condition during testing could be challenging, making it difficult to test this

particular line of code and achieve complete code coverage. As a result,

alternative testing strategies had to be devised, such as manual testing or code

reviews, to ensure that these parts of the code were functioning correctly.

Furthermore, a focus had to be placed on ensuring that the code performed

correctly under a wide range of scenarios, including edge cases and unexpected

situations, to improve the testing process's effectiveness.

The study emphasized that testing plays a crucial role in managing information

security risks, that during the testing process, potential risks were identified,

analysed, and addressed to avoid or eliminate them. The testing process involved

identifying vulnerabilities and weaknesses in the system, such as software

vulnerabilities, system weaknesses, or potential attack vectors that could be

exploited by malicious actors. Risk analysis was performed to determine the

potential impact of these risks on the system and the urgency required to address

them. Once identified and analysed, appropriate measures were taken to mitigate

48

or eliminate the identified risks. These measures could include implementing

security patches or updates, improving access control measures, or

implementing additional security controls to address the identified risks.

4.5 Conclusion

In today's fast-paced software development environment, quality has become a

vital element in the software development process. End-users have come to

expect software that is reliable, user-friendly, and bug-free. Failing to meet these

expectations can result in lost sales, reputation damage, and even legal action.

Therefore, it is crucial to focus on testing early in the software design process.

When testing is integrated into the design process, it ensures that coding errors

and bugs are identified early on and addressed before they grow exponentially,

which makes them much harder to debug later in the development cycle. This

approach can also reduce the time and cost of software development by detecting

issues at the earliest possible stage, minimizing the need for rework or significant

changes to the codebase.

A structured testing process that is followed from the beginning of the

development cycle ensures that all aspects of the software are adequately tested,

and any defects that are detected can be quickly and efficiently fixed. This results

in higher-quality software that is more reliable and meets the needs of users.

Moreover, prioritizing testing in the software design process not only ensures

quality but also helps to establish a culture of quality within development teams.

By prioritizing quality, developers become more aware of the importance of

testing, and it becomes an integral part of the development process. This culture

of quality leads to a mindset where developers are continually looking for ways

to improve the quality of the software they produce.

The incorporation of testing into the software development life cycle empowers

developers to improve consistency and performance and create robust software.

So, to ensure the ongoing success of this project, it is highly recommended to

49

prioritize and maintain a focus on testing in future development efforts. By

dedicating time and resources to writing tests and continuously testing new

features and resolved issues, developers can reduce the risk of delays and cost

overruns and ensure the project progresses smoothly and the project can remain

reliable and user-friendly, ultimately resulting in higher quality software.

50

5 Summary

Quality assurance plays a pivotal role in software development, as it ensures that

the software adheres to the required specifications and delivers the intended

functionality. Nonetheless, quality assurance involves extensive testing and

analysis, which can be a complex and time-consuming process. To overcome

these challenges, this study focused on enhancing the quality assurance process

by leveraging powerful tools such as static analysis, TypeScript, and unit testing.

The study employed static analysis tools to detect various types of defects and

issues, with the majority effectively addressed. However, limitations and

difficulties stemming from design and methodology impacted the programmatic,

quantitative, and temporal aspects of the remediation process. Static analysis

tools are effective in detecting various types of defects and issues, but they have

limitations when it comes to verifying whether a function fulfils its intended

purpose. In addition, certain security vulnerabilities may not be easily detectable

through automated means. Furthermore, unused files and unreachable data can

slow down the process and potentially affect the accuracy of the results.

Therefore, it is important to use static analysis tools alongside other methods to

ensure thorough testing and analysis of the software.

The study also utilized TypeScript, which is known for its static typing capabilities

that can help catch type errors early in the development process. However, the

code was written without the proper use of types, with the type "any" being used

extensively throughout the codebase. The coding practices used in the project

lacked appropriate usage of types, with the "any" type being excessively utilized

throughout the codebase. This lack of proper type annotations can result in a

greater number of bugs and errors during program execution. Additionally, the

TypeScript compiler is compelled to disable type checking for variables and

returned values of call-backs and disregard any comments around them. Thus,

to address such issues, it is crucial to leverage TypeScript's robust typing

capabilities efficiently and consistently throughout the software development

process.

51

Alongside static analysis and TypeScript, the study incorporated unit testing to

guarantee the accuracy of each code component while operating in isolation. The

testing process presented various challenges in attempting to achieve

comprehensive code coverage, with certain code segments such as error

handling and exception cases posing difficulty in testing. In response, alternative

testing strategies were devised to ensure the correct functioning of these parts of

the code. Additionally, the study focused on examining the software's behaviour

under a variety of scenarios, including edge cases and unexpected situations, to

enhance the effectiveness of the testing process.

Integration testing was also incorporated into the study to evaluate the software's

behaviour in the context of its environment, examining the interactions between

its individual components. This type of testing uncovered various defects and

issues, which were addressed through appropriate remediation efforts. Through

the combined use of unit and integration testing, the study was able to provide

comprehensive coverage of the software's functionalities, improving the quality

assurance process overall.

The study yielded promising results, indicating that the employed tools

successfully improved the quality assurance process. However, certain

difficulties and limitations, including those related to the design, methodology,

and code complexity, impacted the overall effectiveness of the process.

Therefore, it is crucial to continually enhance and refine the quality assurance

process through the implementation of best practices and reliable tools to ensure

the long-term maintainability and stability of the codebase.

52

References

[1] R. Billairs, “What is static code analysis? Static analysis overview,”

Perforce, 10 February 2020. [Online]. Available:

https://www.perforce.com/blog/sca/what-static-analysis#static.

[Accessed 3 August 2022].

[2] Encora, “Static Code Analysis: Types and How it Works,” Encora, 18 July

2022. [Online]. Available: https://www.encora.com/insights/how-static-

code-analysis-works. [Accessed 8 August 2022].

[3] Checkpoint, “What is Dynamic Code Analysis?,” Check Point, 1994.

[Online]. Available: https://www.checkpoint.com/cyber-hub/cloud-

security/what-is-dynamic-code-analysis/. [Accessed 4 June 2022].

[4] A. S. Gillis, “static analysis (static code analysis),” IBM, 1999. [Online].

Available: https://www.techtarget.com/whatis/definition/static-analysis-

static-code-analysis. [Accessed 29 June 2022].

[5] M. Ekaterina and K. Sergey, “How to choose a static analysis tool,” 21

November 2021. [Online]. Available: https://pvs-

studio.com/en/blog/posts/0884/. [Accessed 4 July 2022].

[6] N. C. Zakas, “ESlint Documentation,” ESlint, 30 June 2013. [Online].

Available: https://eslint.org/docs/latest/. [Accessed 31 May 2022].

[7] J. Goldberg, “ASTs and typescript-eslint,” typescript-eslint Doc, [Online].

Available: https://typescript-

eslint.io/docs/development/architecture/asts/. [Accessed 17 December

2022].

[8] ESLint, “Configure Rules,” ESLint, [Online]. Available:

https://eslint.org/docs/latest/user-guide/configuring/rules. [Accessed 8

June 2022].

[9] Prettier, “What is Prettier?,” Prittier, [Online]. Available:

https://prettier.io/docs/en/index.html. [Accessed 9 June 2022].

[10

]

Prittier, “What is Prettier?,” Prittier, [Online]. Available:

https://prettier.io/docs/en/index.html. [Accessed 11 June 2022].

53

[11

]

ESLint, “Configuring ESLint,” ESLint, [Online]. Available:

https://eslint.org/docs/latest/user-guide/configuring/. [Accessed 5 June

2022].

[12

]

Prettier, “Configuration File,” prettier Docs, [Online]. Available:

https://prettier.io/docs/en/configuration.html. [Accessed 7 June 2022].

[13

]

Microsoft, “TypeScript for JavaScript Programmers,” Microsoft, 2012.

[Online]. Available:

https://www.typescriptlang.org/docs/handbook/typescript-in-5-

minutes.html. [Accessed 11 February 2023].

[14

]

Microsodt, “What is TypeScript,” Microsoft, 1st October 2012. [Online].

Available: https://www.typescriptlang.org/. [Accessed 3 March 2023].

[15

]

Microsoft, “TypeScript for the New Programmer,” Microsoft, 1st October

2012. [Online]. Available:

https://www.typescriptlang.org/docs/handbook/typescript-from-

scratch.html. [Accessed 7 March 2023].

[16

]

Microsoft, “TypeScript for the New Programmer,” Microsoft, 1st October

2012. [Online]. Available:

https://www.typescriptlang.org/docs/handbook/typescript-from-

scratch.html. [Accessed 7 March 2023].

[17

]

Microsoft, “TypeScript for the New Programmer,” Microsoft, 1st October

2012. [Online]. Available:

https://www.typescriptlang.org/docs/handbook/typescript-from-

scratch.html. [Accessed 9 March 2023].

[18

]

Microsoft, “What is a tsconfig.json,” Microsoft, 1st October 2012. [Online].

Available: https://www.typescriptlang.org/docs/handbook/tsconfig-

json.html. [Accessed 15 March 2023].

[19

]

Microsoft, “Intero to the TSConfig Reference,” TypeScript, 1st October

2012. [Online]. Available: https://www.typescriptlang.org/tsconfig.

[Accessed 15 April 2023].

[20

]

Microsoft, “Enums,” Microsoft, 1st October 2012. [Online]. Available:

https://www.typescriptlang.org/docs/handbook/enums.html. [Accessed 3

March 2023].

54

[21

]

JavaTpoint, “Unit Testing,” JavaTpoint, 2011. [Online]. Available:

https://www.javatpoint.com/unit-testing. [Accessed 8 March 2023].

[22

]

Tutorialspoint, “Unit Testing,” Tutorialspoint, 2006. [Online]. Available:

https://www.tutorialspoint.com/software_testing_dictionary/unit_testing.h

tm. [Accessed 7 October 2022].

[23

]

Javatpoint, “Integration testing,” Javatpoint, 2011. [Online]. Available:

https://www.javatpoint.com/integration-testing. [Accessed 17 October

2022].

[24

]

R. Kuldeep, “Integration Testing,” ArtOfTesting, 29 May 2021. [Online].

Available: https://artoftesting.com/integration-testing. [Accessed 5

October 2022].

[25

]

j. T. point, “System Testing,” java T point, 2011. [Online]. Available:

https://www.javatpoint.com/system-testing. [Accessed 13 December

2022].

[26

]

A. S. Gillis, “user acceptance testing (UAT),” TechTarget, 1999. [Online].

Available:

https://www.techtarget.com/searchsoftwarequality/definition/user-

acceptance-testing-UAT. [Accessed 10 April 2023].

[27

]

Lambdatest, “Jest Tutorial: Complete Guide to Jest Testing,”

Lambdatest, 2017. [Online]. Available: https://www.lambdatest.com/jest.

[Accessed 18 September 2022].

[28

]

K. Jeremy, “Comparing the best Node.js unit testing frameworks,”

Logrocket, 13 May 2022. [Online]. Available:

https://blog.logrocket.com/comparing-best-node-js-unit-testing-

frameworks/. [Accessed 28 September 2022].

[29

]

M. Waweru, “Beyond API testing with Jest,” Circleci Blog, 30 September

2022. [Online]. Available: https://circleci.com/blog/api-testing-with-

jest/#c-consent-modal. [Accessed 29 November 2022].

[30

]

K. Jeremy, “Comparing the best Node.js unit testing frameworks,”

Logrocket, 13 May 2022. [Online]. Available:

https://blog.logrocket.com/comparing-best-node-js-unit-testing-

frameworks/. [Accessed 29 Spetember 2022].

55

[31

]

Facebook, “JEST,” Facebook, [Online]. Available: https://jestjs.io/.

[Accessed 5 October 2022].

[32

]

npm, “ts-jest,” npm, 2014. [Online]. Available:

https://www.npmjs.com/package/ts-jest. [Accessed 6 October 2022].

