VAMK

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES

Hoang Hieu

DESIGN AND IMPLEMENTATION OF
A BLE GATEWAY USING ESP32 CHIPSET

Technology and Communication
2023

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Hoang Hieu

Title Design and Implemetation of a BLE Gateway Using ESP32
Chipset.

Year 2023

Language English

Pages 65

Name of Supervisor Jukka Matila

This thesis presents the design and implementation of a custom ESP32-based
gateway that integrates Bluetooth Low Energy (BLE) and Long Range (LoRa)
technologies for loT applications.

The background for this study includes the in-creasing demand for low-power,
wide-area networks (LPWAN) to facilitate seamless data collection and
transmission for connected devices in various sectors, such as smart cities,
agriculture, and industrial automation.

The aim of this thesis was to develop a cost-effective and versatile gateway that
combines the advantages of both BLE and LoRa communication, leveraging the
capabilities of the ESP32 microcontroller. The material and methods used in this
project involve hardware selection, schematic design, PCB layout, firmware
development.

The results demonstrate the development of the custom ESP32 gateway,
enabling efficient data collection from BLE devices, and transmitting the
aggregated data to an MQTT server or a LoRaWAN cloud. In conclusion, the
custom ESP32 gateway provides a promising solution for loT deployments,
offering a tailored and flexible approach to data communication and
management.

Keywords Bluetooth Low Energy, Internet of Things, ESP32 Microcontroller,
MQTT Protocol, and PCB design.

CONTENTS

ABSTRACT ..ttt ettt ettt et a e e bt e st e e be e et e e be e sab e e beeeab e e sbe e st e e saeeenbeesaeeeaneas 2
LIST OF FIGURES AND TABLES.......coitiiiieieeeerteeteeste ettt 6
LIST OF LISTINGS ...ttt ettt ettt sttt st ae e st sae e st e b e st e e beesaeeens 8

1 INTRODUCTION ..oeiiiiiiiiieieente ettt ettt et e e e ne e e 10
1.1 The objectives of the Thesis.......cccovvciiiiiiiiiec e 10
1.2 Gateway TOPOIOBY ..occceeeieeeee et e e e e e s e e e e e e e nraeneeas 11

2 THEORETICAL BACKGROUNDcoociiiiieniiieiienie ettt ettt ettt s 13
2.1 Bluetooth IOT GateWay.....cccoeeeeeiei e e e e e 13
2.2 Bluetooth Low ENErgy (BLE).......cuueiieiiiieeeeiiie e ceiieee s esivee e esvvee e seeee e 14
p2C T o] ¥ I I =Tol o[0T] (o =4V USRS 16
2.4 MOQTT ProtoCOol....ccooueiiiiiiiiiiieieeeee ettt 18

3 PROOF-OF-CONCEPT (POC) PROTOTYPESccootiieieeeiieeeiieeeieee st siee e 20
3.1 ProOtOtYPING PrOCESS ..uuuuuuiiiiiiiii s nan 20
3.2 Prototyping Hardware COmMpPONENtS.......ccccecuveeeiriiiieeeeiiieeeescieeeeeeieee e e 21
3.2.1 ESP32 Development Kit........coeeveeiiiicciiiieieeee e, 21
3.2.2 Ethernet Module...........cooiiiiiiiii e 23
3.2.3 LORA MOUIE ... 24
3.3 Connections Table.......cooiiiiieiieee e 26

4 PCB DEVELOPMENT ...ttt ettt ettt sttt sttt st eeeas 28
4.1 PCB BIOCK DIi@ramucceeieeiieciiiieieee e e e e ccctree e e e e e e seevtreneee e s e e e e snnraaeneeaaeens 28
N Yol a =T 0 =Y 4 (ol D LT 1= o PSP 29
4.2.1 Ethernet LAN8720A Chip ...coceeiieeiiinieeie e 30
4.2.2 USB-C t0 UART CP2104 Chip ..eevveeieeeieeiee e 33
4.2.3 Power Management........cceeeiiiiiiiiiiiiiie e eeresn e e e 34
4.2.4 ESP32 MCU and Lora Moduleccccveeveerieinienieeee e 35
4.2.5 (T aT o] o1 - | O USURR 36
e T 2 3 I 1Y T RSN 37

4.4 PCB Assembled and TeStiNg.....cccuveeieieieicciiieeee et 39

5 FIRMWARE DEVELOPMENTooutiiitiite ettt ettt ettt e 43
5.1 BLE BEacON GAteWay SETUD ...uuuuuiiiiiiiic s 43
5.2 FIFMWAIE ettt e e s 45
5.2.1 Main Code (MaiN.iN0)....cccvurireeieiiiiicireeeee e 45
5.2.2 MQTT settings (Matt.h) ..o 49
5.2.3 LoRa Settings (10ra.h)cooeieeecee e 52
5.2.4 Other Settings (SEttiNg.N)cceeuviieiieeeee e 55
5.3 RESUIES ..t 56
5.3.1 MQTT Data and Vizualization..........ccocveeriiiiiiieiniieenieceeeieee 56
5.3.2 Lora Server Data......cooo e 59
6 CONCLUSIONS.... .ottt ettt st esae e e s e saeeenrees 61
REFERENCES ... 63

LIST OF FIGURES AND TABLES

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10
Figure 11

Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.

Gateway desigN tOPOIOGY.....cuivvuiiiiiiiiiiieeeiiie et 11
BLE Gateway topology /1/ ..cceeveeeeeeeeceeee ettt 13
Configurations Bluetooth Smart /3/cccceoeeeiieeciieeceeeeeee e 15
MQTT AFCRItECEUIE /5/ ettt 18
Proof-of-concept SETUP ...uvviieiiieeccee e 20
ESP32 DeVKITC-32U ..ciiiiiiiiiiiiiiiiieieeieeeeeeeteee e eeeeeeeeeeeeeeesereseseeeeeseeeseseeesseenes 21
ESP32-WROOM-32U MOAUIEceiiiiiiiiiiiieeeeieee e 23
LANS8720 ETH MOUIE «..evvieeiiiieeeeee ettt 23
Wio-E5 mini development board.......ccccoevciiiiiieiiiecccceeee e, 24
. LOR@-ES MOAUIE 7/ ettt 26
. PCB BIOCK DI@gramuuuiieeeiiiieiiiiiieee e eescitree e e e e evrae e e e e e e e e e nnneneeas 29
LAN8720A system BIOCK /9/oeeereeeeiee et 30
LANSBT20A POWET «eeieiieiieeeeeee e 31
LANSB720A TranSCOIVET ...cciiiiriieiiiiiieeiiiriee ettt 31
REF CLK fOr LANS720A ...t 32
RIA5 10 LANST20A ..., 32
CP2104 ChiP ettt 33
POWET SWITCRN ... 34
O] ol U T o 7o 11,V T RN 34
ESP32 Pin IN/OUT ..ottt sttt ettt s ereas 35
LOR@ CIFCUIT...eiiiiiiiiiiiiric et 35
UART SWITCR . 36
(T aTo] o 1T = £ UUPRR 36
DESIZN TUIBS ...vvvveeeeei ettt e e ee e rer e e e e e e s eesnbbrreeeeeeeeesnannes 37
O 3 YT RPN 37
PCB I@YOUL «..uuvvrieieeieeeieicitteeeee e e eeeecitreeee e e e e eesetsraeeeeeseeseesnnsssseeeeesesesnnnnes 38
PCB 3D VIBWET ...ttt 38
PCB UNASSEMDbIEMcceieiieieerie e 39

Figure 29. PCB assembled tOP....ccvuiiiiiriiiie ettt e 39
Figure 30. PCB assembled frontccccuveeiiiiiiie e 40
Figure 31. PCB problem L........ooo ittt eee e e e 40
Figure 32. PCB Problem 2.ttt re e e e e e e e e e e e e 41
Figure 33. Fixed PCB problem 2 1ayOutcoccuiiiiiiiiiieiiiieee et 41
Figure 34. Fixed PCB problem 2 bacK........ccoooiiiiiiieei e, 42
Figure 35. Fully fuNctional PCBi..........cooviiiiiiiiiiiee ettt 42
Figure 36. BLE beacons Gateway SEtUPccoovieciviiieiee e eerree e e e e 44
Figure 37. MQTT data collected.......uumieiieiieiieeeee e e 57
Figure 38. Node-Red Dashboard........cccuveviiiiiiiiieiiiiee e 58
Figure 39. LORA SErVEr data.....cccecieceeiiiieeeee ettt e e e e e e e e e e 59
Table 1 LoRa SPECIfICAtIONS /4/ ..ocoveeeeeee et et 17
Table 2. ESP32-WROOM-32U Specifications /6/.......cccveeveeeeceeeeiieeeceee e 22
Table 3. WI0-E5 SPeCifiCations /7/ ...cccueeeceieeeeee ettt 25
Table 4. ESP32 t0 LAN8720A MOAUIE.......coiuiiriiiiieeieeee e 26

Table 5. ESP32 10 WO ES ...coeeeeeeeeee ettt ettt s e e et e tetaes e e e e e eeesanansesesenees 27

LIST OF LISTINGS

Listing 1. Libraries for Main.inoceoeiiiiiiiiee e e 45
LISTING 2. SCAN TIMES ceeiiiiiiiiiieeee ettt ettt e e e e e e st e e e e s e s aabereeeeeesessanrenaeeeeeesanas 45
Listing 3. DECOUE DEACONSuviiiieiiiie ettt ettt e e s bree e s s e e s s b e e e s sabee e e enareeas 48
LiSTING 4. BLE SETUPS «eeeeiiiieiiiieeie ettt e ettt e e e e ettt e e e e s e st e e e e e e e s sssannreaaeeeeseeanan 48
R a1 oY= T |V, =11 o T [o o SRR 49
Listing 6. MQTT lIDrari@S...cceccuieeeeeiiieeeciiee ettt et e e s tee e e e ee e e e sara e e s eabeeeeennraeeeenareeas 49
Listing 7: ETH and MQTT CONNECT ...eviiiiiiiieeiiiieeeeiiieeeeciteeeesiveeessaveeesssnveeeseaveeeeennsaneeennnenas 50
Listing 8. MQTT PUBDIISNeiiiiiiiiieecee e st e e enes 50
Listing 9. SENA 1O IMQTT ..eoiiiiiie ettt et e e et te e e e st e e e s abe e e e e nbae e e enbeeeeennraeeeennrenas 51
[Ty AT Y=g O R W TR o o Y =3 52
Listing 11. STriNG 10 HEX ..ouuuiiiiiiiiiiiiieiiiiit b aaaaaaasnsaaaannnnes 52
LiStiNg 12. LOTa iBEACONueeiiiiieiet ettt ettt sttt e e e e e s s e st ee e e e e s sssasbtnaeeeesssnnas 53
Listing 13. Lora EAdystONe BEACONccuviiiiiieee ettt 54
Listing 14. SOUrce COAE SELLINGS ..uuvviiiiiiiieeiiiee e ectee ettt see e e e e e b e e e e sabae e e s nareeas 55
Listing 15. Status LEDS SETTINGS ..cciiiviiiiiiieiei ettt ettt et e e e e s s sabeeaee e e e s eenes 56

Listing 16.

Decode PYthon SCript.....ccuiii it et e e s e e 60

LIST OF ABBREVIATIONS AND ACRONYMS

BLE Bluetooth Low Energy

LoRa Long Range

loT Internet of Things

ESP32 Espressif Systems 32-bit Microcontroller
MQTT Message Queuing Telemetry Transport
PCB Printed Circuit Board

LPWAN Low-Power Wide-Area Networks

UART Universal Asynchronous Receiver/Transmitter
HW Hardware

GPIO General Purpose Input/Output

IDE Integrated Development Environment
MCU Microcontroller Unit

SMT Surface Mount Technology

SWD Serial Wire Debug

SoC System on Chip

SwW Software

RSSI Received Signal Strength Indicator

10

1 INTRODUCTION

1.1 The objectives of the Thesis

BLE (Bluetooth Low Energy) and LoRa (Long Range) are two popular wireless
technologies employed to address the connectivity requirements of loT devices
due to their low power consumption and extended range. The integration of
both BLE and LoRa technologies into a single gateway can significantly enhance
the versatility of loT networks, allowing for seamless data collection and

transmission.

BLE technology is designed for short-range, low-power communication, typically
suited for loT devices, such as wearables, smart home appliances, and health
monitoring equipment. On the other hand, LoRa technology is intended for low-
power, wide-area networks (LPWAN), offering long-range communication for loT

devices in remote or challenging environments.

This thesis aims to design and implement a custom ESP32 gateway using the
ESP32 microcontroller, which offers a low-cost, flexible, and powerful platform
for loT applications. The custom gateway will combine the advantages of both
BLE and LoRa communication, enabling efficient data collection from BLE devices
and LoRa nodes, and transmitting the aggregated data to an MQTT server. This
work includes hardware selection, schematic design, PCB layout, firmware
development, and enclosure design, ultimately providing a tailored and flexible

approach to data communication and management for loT deployments.

The main objectives of this thesis are as follows:
e Design and prototype a gateway using the ESP32 microcontroller.
e Develop the schematic and PCB layout for the gateway, integrating the
required hardware components.
e Implement firmware for data collection, processing, and transmission to

an MQTT server.

11

1.2 Gateway Topology

The primary use case for the custom ESP32 gateway is to collect data from nearby
BLE devices and transmit it to cloud platforms using MQTT. The gateway serves as
a central point of communication between the BLE devices and the cloud
platforms, enabling efficient data collection and transmission within the loT

ecosystem.

In case the primary Internet connection is lost or disrupted, the custom gateway
leverages LoRa technology to transmit the data to The Things Network as a backup
communication channel. This ensures that the data collected from BLE devices is

not lost and can still be forwarded to the appropriate cloud platform or application

server.
LoRaWAN Cloud
BLE
N THE THINGS
Sensor node “ad&“"" ' NETWORK
= 2
0
BLE
The ESP32 GATEWAY
device
BLE e
Sensor node
o
or E% MQTT Broker
ey
&fgh
mosauitto
MQTT BROKER

Figure 1. Gateway design topology

12

The Gateway topology includes:

BLE sensors devices include various loT devices equipped with BLE
capabilities, such as sensors, wearables, or smart home appliances. They

transmit data wirelessly to the custom gateway using the BLE protocol.

The LoRa module refers to loT devices that communicate with the custom
gateway using the LoRa protocol. They can be used for long-range
communication in remote or challenging environments and serve as a
backup communication channel in case the primary Internet connection is

disrupted.

The ESP32 Gateway is responsible for collecting data from BLE devices
and LoRa nodes, aggregating the data, and transmitting it to an MQTT
broker using the primary Internet connection or the LoRa-based backup

communication channel.

The MQTT Broker receives the data from the custom gateway and
forwards it to the appropriate cloud platform or application server, where

it can be processed, analyzed, or integrated with other loT systems.

The Cloud Platforms receive and store the data collected by the custom
gateway. They can also provide various services, such as data analytics,
visualization, and integration with other loT systems or third-party

applications.

13

2 THEORETICAL BACKGROUND

This chapter provides an overview of the theoretical background relevant to the
custom ESP32 gateway, including a brief introduction to I0T Gateway, BLE, LoRa,
and MQTT technologies. Understanding these fundamental concepts is crucial for
the design and development of the gateway, as it allows for informed decisions
regarding component selection, system architecture, and communication

protocols.

2.1 Bluetooth IOT Gateway

A Bluetooth gateway is a key component in a Bluetooth loT solution. A Bluetooth
gateway features a distribution network that supports the Bluetooth protocol.
After receiving information from BLE end devices, Bluetooth Gateways forward

information to the network server via Wi-Fi/Ethernet/LTE. /1/

Bluetooth protocols

Figure 2. BLE Gateway topology /1/

14

The Bluetooth loT gateway locates a device, it recognizes the features and data
structures of surrounding BLE devices, which will transmit signals at regular
intervals. After that, the Bluetooth loT gateway handles a request using MQTT or
another communication protocol to establish a connection. The MQTT server is
called a broker and the clients are simply the connected devices. When a device
(a client) wants to send data to the broker, we call this operation a “publish”.
When a device (a client) wants to receive data from the broker, we call this
operation a “subscribe”. Through the MQTT protocol, data from BLE devices can
be quickly retrieved by the cloud, and commands from the cloud will be sent

back to BLE devices.

2.2 Bluetooth Low Energy (BLE)

Bluetooth Low Energy (BLE) is a wireless communication technology designed
specifically for short-range, low-power connectivity in loT devices. This section
provides a comprehensive overview of the theory behind BLE technology and its

application in the custom ESP32 gateway.

Bluetooth Low Energy (BLE, also marketed as Bluetooth Smart) started as part of
the Bluetooth 4.0 Core Specification. It's tempting to present BLE as a smaller,
highly optimized version of its bigger brother, classic Bluetooth, but, BLE has an
entirely different lineage and design goals. Originally designed by Nokia as
Wibree before being adopted by the Bluetooth Special Interest Group (SIG), the
developers were not trying to propose another overly broad wireless solution
that attempts to solve every possible problem. From the beginning, the focus
was to design a radio standard with the lowest possible power consumption,
specifically optimized for low cost, low bandwidth, low power, and low

complexity. /2/

15

€) Bluetooth

SMART
(single mode or BLE)

GAP GATT

SMP AT

L2CAP

Link Layer

({. LE PHY

Figure 3. Configurations Bluetooth Smart /3/

In the ESP32 gateway, BLE technology is used to collect data from nearby BLE-
enabled devices. The gateway acts as a central device that scans for available BLE
peripherals, such as sensors, wearables, or smart home devices, and establishes a

connection with them to retrieve data.

The ESP32 microcontroller, which serves as the core of the custom gateway, has
integrated support for BLE communication, simplifying the implementation
process. The firmware for the gateway is developed to include BLE functionality,

enabling it to scan available peripherals, connect to them, and collect data.

When the gateway receives data from a BLE device, it aggregates the information
and combines it with data collected from LoRa nodes. The aggregated data is then
transmitted to an MQTT server, which facilitates communication with cloud

platforms, analytics tools, or other loT systems.

16

2.3 LoRa Technology

Long Range (LoRa) technology is a low-power, wide-area network (LPWAN)
technology that enables long-range communication between loT devices. This
section provides an in-depth overview of the theory behind LoRa technology and
its application in the custom ESP32 gateway, where it serves as a backhaul to

cloud platforms, such as The Things Network.

LoRa is a wireless communication technology that focuses on providing long-
range connectivity, low power consumption, and support for many devices. It
uses a proprietary modulation scheme called Chirp Spread Spectrum (CSS) to
provide robust and scalable communication in challenging environments, such as
urban areas with high interference levels or rural areas with limited network

coverage.

LoRa operates in the sub-GHz frequency bands, which are globally available and
generally unlicensed, eliminating the need for regulatory approval in most cases.
It can achieve a range of up to 15 kilometers in rural areas and several kilometers
in urban environments, depending on factors such as antenna height, output

power, and line-of-sight conditions. (4)

LoRa networks typically consist of end devices (for example, sensors, actuators),
gateways, and a network server. End devices transmit data to gateways using the
LoRa modulation scheme, while gateways forward the received data to the
network server over a backhaul connection, such as Ethernet, Wi-Fi, or cellular
networks. The network server then processes the data and sends it to the

appropriate application server or cloud platform. (4)

17

Table 1 LoRa Specifications /4/

Specification LoRa Feature

Range 2-5Km Urban (1.24-3.1 mi),

Frequency ISM 868/915 MHz

Standard |EEE 802.15.49

Modulation Spread spectrum modulation type based

on FM pulses which vary.

Capacity One LoRa gateway takes thousands of
nodes

Battery Long battery life

LoRa Physical layer Frequency, power, modulation and

signalling between nodes and gateways

In the custom ESP32 gateway, the primary focus is to collect data from BLE
devices and upload it to an MQTT server. LoRa technology is integrated into the
gateway to serve as a backup communication channel in case the main Internet

connection is disrupted.

To enable this backup communication channel, the gateway is equipped with a
LoRa module, which communicates with LoRaWAN gateways connected to TTN.
When the primary Internet connection is unavailable, the ESP32 microcontroller
interfaces with the LoRa module to transmit the aggregated data from BLE

devices to TTN. /10/

18

2.4 MQTT Protocol

MQTT (Message Queuing Telemetry Transport) is a lightweight, publish-subscribe
messaging protocol designed for efficient communication in loT applications. This
section provides an overview of the MQTT protocol and its application in the
custom ESP32 gateway, where it is used for transmitting data to cloud platforms

or other loT systems. /5/

MQTT was developed by IBM in the late 1990s as a protocol for telemetry
systems and has since evolved into a widely used communication protocol for loT
applications. It operates over TCP/IP, providing a reliable and ordered delivery of
messages between devices. MQTT's publish-subscribe model allows devices to
send (publish) messages to "topics" and receive (subscribe) messages from those

topics, enabling efficient and scalable communication. /5/

The MQTT protocol is designed to be lightweight, with a small code footprint and
minimal bandwidth usage, making it suitable for resource-constrained loT devices
and low-bandwidth networks. It also provides quality of service (QoS) levels that
enable devices to choose the appropriate level of message delivery assurance

based on their requirements. /5/

MQIT Client MQTT Broker /

Publish: 24° C /
Publisher: Temperature Sensor r //
/
14
E Publish to topic: temperature 4 /l
= -
= Publish: 24°C W Publish: 24° C
w ~L ~ ,
, f
oy
\

Figure 4. MQTT Architecture /5/

19

In the ESP32 gateway, the MQTT protocol is used to transmit data collected from
BLE devices and LoRa nodes to cloud platforms or other loT systems. The
gateway firmware is developed to include MQTT functionality, allowing it to
connect to an MQTT broker and publish messages containing aggregated data

from the connected devices.

By incorporating the MQTT protocol into the custom gateway, efficient and
scalable communication with cloud platforms and loT systems can be achieved.
MQTT's lightweight design and quality of service levels make it an ideal choice for
the gateway, ensuring reliable transmission of data while minimizing resource

usage and bandwidth consumption.

20

3 PROOF-OF-CONCEPT (POC) PROTOTYPES

3.1 Prototyping Process

The prototyping process is an essential step in the development of the custom
ESP32 gateway, as it allows for the testing and validation of design concepts,
hardware components, and software functionality. Initially, off-the-shelf
modules, such as an Ethernet module, ESP32 Development Board, and a LoRa
module, were used to create a prototype of the gateway. This prototype serves
as a platform for evaluating the performance and compatibility of the selected

components and assessing their suitability for the final product.

During the prototyping process, various iterations may be developed and tested
to refine the design, optimize the performance, and address any issues that arise.
This iterative process helps to identify potential problems early in the
development cycle and allows for modifications to be made before moving on to

the next stages, such as PCB design.

Figure 5. Proof-of-concept setup

21

3.2 Prototyping Hardware Components

Choosing the appropriate hardware components for the custom ESP32 gateway
is crucial for achieving the desired performance, functionality, and reliability. The
components used in the prototype serve as the basis for the final hardware
selection and integration into the PCB design. The following sections describe the
rationale behind the selection of the main hardware components and their

integration into the PCB design.

3.2.1 ESP32 Development Kit

The ESP32-DevKitC-32U is the core component of the custom gateway due to its
powerful processing capabilities, integrated BLE and Wi-Fi functionalities, and
extensive support for various communication protocols. The ESP32-DevKitC used
in the prototype is incorporated into the PCB design, enabling efficient
multitasking and concurrent processing of multiple tasks while maintaining its
integrated communication capabilities and support for loT applications. ESP32-

WROOM-32U integrates a connector to connect an external antenna.

Figure 6. ESP32 DevKitC-32U

22

An overview of the specifications of the ESP32-DevKitC-32U used in the prototype.

This helped in understanding the capabilities and features of the ESP32

microcontroller that contribute to the performance of the ESP32 gateway. A

detailed picture of the ESP32-DevKitC-32U specifications is attached below for

reference.
Table 2. ESP32-WROOM-32U Specifications /6/
802.11 b/g/n (802.11n up to 150 Mbps)
WiFi Protocols A-MPDU and A-MSDU aggregation and 0.4 us guard
i-Fi
interval support
Center frequency range of operatin
eauency 9 P G 2412 ~ 2484 MHz
channel
Bluetooth v4.2 BR/EDR and Bluetooth LE specifica-
Protocols]
tion
NZIF receiver with 97 dBm sensitivity
Bluetooth
Radio Class-1, class-2 and class-3 transmitter
AFH
Audio CVSD and SBC
SD card, UART, SPI, SDIO, I12C, LED PWM, Motor
PWM, 128, IR, pulse counter, GPIO, capacitive touch
Module interfaces sensor, ADC, DAC, Two-Wire Automotive Interface
(TWAI®), compatible with ISO11898-1 (CAN Specifi-
cation 2.0}
Integrated crystal 40 MHz crystal
Integrated SPI flash ! 4 MB
Hardware -
Operating voltage/Power supply 3.0V~38V
Operating current Average: 80 mA
Minimum current delivered by power
500 mA
supply
Recommended operating ambient tem-
5 -40°C ~ +85 °C
perature range
Moisture sensitivity level (MSL) Level 3

23

The ESP32-WROOM-32U included in the development kit above was used later in
the PCB design.

J2_UFL 2

B9 W R W B W

'ILIIILIYII'III‘.
[

IIIJIIJII_*

Figure 7. ESP32-WROOM-32U module

3.2.2 Ethernet Module

The Ethernet module was selected for its ability to provide a stable and reliable
Internet connection to the custom gateway, ensuring efficient data transmission
to cloud platforms or other loT systems. The Ethernet module used in the
prototype is integrated into the PCB design, allowing for a compact and efficient
layout while maintaining the benefits of a wired connection, such as higher
reliability and lower latency compared to Wi-Fi. In this case, the LAN8720 ETH

Board was chosen.

Figure 8. LAN8720 ETH module

24

The advantages of the LAN8720 ETH module are:

e High-Performance 10/100 Ethernet Physical Layer Transceiver (PHY)

e Supports single 3.3V supply.

e Supports the reduced pin count RMll interface.

e Supports HP Auto-MDIX

e Onboard chip package: 24-pin QFN (4x4 mm) Lead-Free RoHS Compliant
package

e Flexible Power Management Architecture

e Integrated 1.2V regulator.

e |/O voltage range: +1.6V to +3.6V

3.2.3 LoRa Module

The LoRa module is integrated into the custom gateway to provide long-range
communication capabilities and serve as a backup communication channel in
case the primary Internet connection is disrupted. The LoRa module used in the
prototype is integrated into the PCB design, ensuring a compact and efficient
layout while maintaining the benefits of long-range connectivity. In this case, |

chose the Wio-E5 from SEEED Studio.

Figure 9. Wio-E5 mini development board

25

Wio-E5 mini is a compact-sized development board suitable for the rapid testing
and building of small-size prototyping. Wio-E5 mini is embedded with Wio-E5
STM32WLE5JC Module, which delivers the world-first combo of LoRa® RF and
MCU chip into one single tiny chip and is FCC and CE certified. It is powered by
ARM Cortex-M4 core and Semtech SX126X LoRa® chip and supports LoRaWAN®
protocol on the worldwide frequency and (G)FSK, BPSK, (G)MSK, and LoRa®
modulations. The built-in AT command firmware makes it easy to interact for our

ESP32 gateway application. /7/

The Lora-E5 STM32WLESJC Module included in the above development kit was

used later in the PCB design (See Figure 10).

Table 3. Wio-E5 specifications /7/

Parameters Specifications
size 50*23mm
voltage -
s 3.7V -5V
supply
power -)
up to +20.8 dBm at 3.3V
output
workin
5 868/915MHz
frequency
protocol Long Range
sensitivity -116.5dBm ~-136 dBm
)) USB Type C/ 2P-2.54mm Hole / 1*12P-2.54mm
interfaces
Header*2 / SMA-K / IPEX
modulation Long Range , (G)FSK, (G)MSK, BPSK
working .
-40°C ~ 85°C
temperature
Wio-E5 module sleep current as low as 2.1uA
current

(WOR mode)

Core

LoRaWAN stack

Package
Interfaces
Sensitivity
Modulation
Certificate
Power Supply

RF Output Power

26

LoRa-ES (STM32WLESIC)

32-bit Arm Cortex-M4 CPU, up to 48MHz

Built-in with AT Command Firmware

Program with STM32Cube MCU Package
12+=12mm. 28 pins SMD

UART=3, 12C+~1, ADC{12-bmt)*1, SPI*1, GPIO*6
-116 5dBm(SF5), -121 5dBm(SF7), -136dBm(SF12)
LoRa, (G)FSK, (G)MSK and BPSK

FCC and CE (EU868/US915)

18v ~ 36V

up to +20.8 dBm at 3.3V

Figure 10. LoRa-E5 module /7/

3.3 Connections Table

Table 4. ESP32 to LAN8720A Module

ESP32 DEVKIT

LAN8720A ETH module

GPIO5 - PHY_POWER

NC - Osc. Enable

GPI022 - EMAC_TXD1 TX1
GPI019 - EMAC_TXDO TXO
GPI021 - EMAC_TX_EN TX_EN
GP1026 - EMAC_RXD1 RX1
GPI1025 - EMAC_RXDO RXO
GPI027 - EMAC_RX_DV CRS

GPIO0O - EMAC_TX_CLK

nINT/REFCLK

GPIO23 - SMI_MDC MDC
GPIO18 - SMI_MDIO MDIO
GND GND
3Vv3 VCC

27

PHY_POWER, SMI_MDC and SMI_MDIO can freely be moved to other GPIOs.

EMAC_TXDO, EMAC_TXD1, EMAC_TX_EN, EMAC_RXDO, EMAC_RXD1,
EMAC_RX_DV and EMAC_TX_CLK are fixed and can't be rerouted to other GPIOs.

Table 5. ESP32 to Wio-E5

ESP32 DEVKIT WIO-ES5 mini
GPIO12 X
GPIO13 RX

No connection for 3.3 V and GND since the Wio-E5 mini has its own power supply

using USB Type-C.

28

4 PCB DEVELOPMENT

In the development of the custom BLE-LoRa gateway, designing a robust and
efficient Printed Circuit Board (PCB) is crucial. The PCB serves as the backbone of
the electronic device, providing a stable platform for mounting and
interconnecting various components. This chapter will discuss the process of PCB
development, from selecting appropriate design software to creating the
schematic design and routing the connections between components. The PCB
development process aims to create a compact and efficient layout that meets
the requirements of the custom ESP32 gateway while adhering to best practices

and design constraints.

4.1 PCB Block Diagram

Before going into the detailed schematic design and PCB layout, it is essential to
develop a block diagram that represents the placement of components on the
PCB. This block diagram serves as a visual guide for understanding the overall
structure of the custom ESP32 gateway and aids in the organization of
components during the design process. The diagram considers the functional
relationships between the various components, ensuring that their placement on

the PCB is efficient and logical.

A block diagram of the PCB for the custom ESP32 gateway is provided below in
Figure 11, illustrating the arrangement of the ESP32 module, LAN8720A Ethernet

module, Wio E5 LoRa module, and other essential components.

LoRa ES chip

. Regulator 5V

Figure 11. PCB Block Diagram

By creating a clear and organized block diagram, the PCB design process is
streamlined, allowing for more effective component placement and routing in

the subsequent stages of development.

4.2 Schematic Design

Creating a thorough schematic diagram that illustrates the connections between
components in the customized ESP32 gateway is part of the schematic design
process. This is an important step in PCB development since it offers a visual
representation of the overall design and ensures that all components are

properly connected before moving on to the PCB layout stage.

30

4.2.1 Ethernet LAN8720A Chip

The LAN8720A is a low-power 10BASE-T/100BASE-TX physical layer (PHY)
transceiver with variable 1/0 voltage that is compliant with the IEEE 802.3-2005
standards. The LAN8720A/LAN8720Ai supports communication with an Ethernet
MAC via a standard RMII interface. It contains a full-duplex 10-BASE-T/100BASE-
TX transceiver and supports 10Mbps (10BASE-T) and 100Mbps (100BASE-TX)
operation. /9/

10/100
LANB720A/
Ethernet FMII . Transformer
LANST20Ai
MAC
Mode LED
% r,

Crystal or

Clock
Oscillator

Figure 12. LAN8720A system block /9/

The power for the LAN8720A is based on Twisted-Pair Interface Diagram or Dual
power supplies. In this case are name +3.3VLAN and VDDA connecting with a
600-ohm Ferrite Bead (L1).

The power for the LAN8720A is triggered by the PHY_PWR pin wich connected to
GPIO pin 5 in ESP32 MCU. When PHY_PWR is HIGH, in the Q1 Mosfet the GND
(Emitter) pin will connect with the OUT (Collector) pin. When Pin 1 in Mosfet Q4
is connected to GND, the dual power supplies are triggered by connecting to the

+3.3V (See Figure 13).

31

LAN power

1
Lad
h
Lsd
=

+33VLAN VDDA

|
1

Q4
WPM2015-2ITR

R Mg

=co Ra H]

22uF 10K
ffj
1k
Qi ¢__JFHY FWE
DTG 1-’-‘r’KAT14E!| $
GRND

Figure 13. LAN8720A power

=

2
22uF

1

C10 C11
100nF 100nF

GRD

For the ethernet transceiver in the case of dual power supply, VDD1A and VDD2A
must connect to VDDA power line, and VDDIO must connect to 3.3VLAN power

line. Other pins have to pull-up to 3.3VLAN or pull-down to GND accordingly.

Ethernet transceiver

+33VLAN \'JZED‘-\

FHY PWR +33VLAN
i et 1
: i : n
100nF
o1
100nF il e
GRD Buerace= OFD e
o . 2 Ra
G L EPB 121k
X1 L vDD2A RBIAS 3 — 'G\‘D
SOMHz H #av 16D GRERN LEDZ/mINTSEL RXF B3 —ETH FD- ¥
PHY_PWR[> Lim-s voplE PHY LHD_VHLLO] \'B:E IEs1{pEcor g ELE FD-
2lonp ouThE 3 xmaLyeLkn T S Eg{r-%)‘ VDDA
i i o ST
Al i A {D1/ M X = A
= FL A T8 RXDO/MODED 100 [v Ty
GRD T Ekigani 7] VODIO THEN 15 il L{C‘Txl' pﬁ_\l
L 17| RXER/PHVADO nRSTE3 T
o7 EMAC R DV [5|CRS_DV/MODE2 nINT/REFCLKO] ETHFERCLR
Imnnr SMIMDIO| < MDIG MDC P4 SEDC
Gl s
10uF
GRI

Figure 14. LAN8720A Transceiver

32

The external clock of LAN8720A is a 50Mhz crystal clock connecting to pin XTAL1
and triggered by PHY_PWR pin.

Another use case was designed for the CLK of LAN8720A. In this case the external
50Mhz clock is not used but. The nINT/REFCLK pin which connects to the GPIOO0
of ESP32 module can be used, because the internal CLK in ESP32 through GPIOO0

can be shared.

REF CLK

ETE_REFCLE[>

x

Figure 15. REF CLK for LAN8720A

We can choose the CLK for the LAN8720A module:

e By pull-up the PHY_LED_GREEN to VDDA, the external 50Mhz CLK is being
used with input through XTAL1 pin.

e By pull-down the PHY_LED_GREEN to GND, the internal CLK of ESP32 to
GPIO1 is being used with input through nINT/REFCLKO pin.

R3145

VDDA

EIH_K = — -
IH_I'R
ETH_EL L e [
H_ . —
H_T1 < L

Figure 16. RJ45 to LAN8720A

33

4.2.2 USB-C to UART CP2104 Chip

The CP2104 is a highly integrated USB-to-UART Bridge Controller providing a
simple solution for updating RS-232/RS-485 designs to USB using a minimum of
components and PCB space. The CP2104 includes a USB 2.0 full-speed function
controller, USB transceiver, oscillator, one-time programmable ROM, and
asynchronous serial data bus (UART) with full modem control signals in a
compact 4 x 4 mm QFN-24 package (sometimes called “MLF” or “MLP”). No

other external USB components are required.

USB-C/UART

< WIS

‘ .
P
<D - CP2104-FO3-GM ;l
" e ; epaD !
VBUS VBUS i—-‘-‘a—G'-.'vsa_Lf:s:.\:I;dED 4 oCp (5
cc2 sBUL 4 GND DR 62 DTR.
Spp2 DNIfE D- D+ 2= DRI gy 4y R20
4DN2 DP1f3E D+ D- 90- TS ED 10
ssU2 ccifld s 2o RND 2 —(|TXD
yBUS VEUS [VISB_UNSWITEE oD R RT3 b
A recin crsfy X_LED
1 ' VBUS suspeND Rk
12 GuozZenn 2 rat= uep -2 ——]|———fjiGND
= e osusenps [o
m = GPIO.3 GPIO.O _-5 :
GPI0.2 GPIo.1 |-
GAD

Figure 17. CP2104 chip

The connection is based on the datasheet of the CP2104 chip, the CP2104
includes an on-chip 5.0 to 3.45 V voltage regulator. This allows the CP2104 to be
configured as either a USB bus-powered device or a USB self-powered device.
When enabled, the voltage regulator output appears on the VDD pin and can be

used to power external devices. RXD pin connects to pin RX in ESP32, TXD to TX.

34
4.2.3 Power Management

The VUSB_UNSWITCHED, VBUS is connected to a power switch to control the

power of the board.

Power switch

ST
-i.'lJ.r: ==L
= VURE
(uli|
VUSE_UNSWITCHED
L

Figure 18. Power switch

A linear regulator was added to lower the output voltage from 5V to 3.3V. The
3.3V pin out of the regulator will be the power supply for the +3.3V layer of the

board since this is the 4 layers PCB.

Power Circuit

+3.3V

Qs
XCE220B331MR-G
L1 1|® 5
! LSBDTT—E WVIN VOuT
VWSS
3 = c16

c17 CE MNC
i 10uF l 4 7uF

Figure 19. Circuit power

35

4.2.4 ESP32 MCU and Lora Module

The ESP32-WROOM-32U with flash size 16Mb, all connection in and out to the
ESP32 in Figure 25.

5 gy O
=3 3% D UG
ESFIZWROOM-12U[1EME]
S81_MIH
EX EMAL_ 1K
SP_ 1R
ESFTRAL
3 EMSC TX_EN
ESP_LEL PN 03 EMAL_TXI
- BE Sa11_BIIHO
EALAL XL 025 FHY_FWH
EMALTEXLII L 102
EMAL_EX LY 4 1027
. 4 LORA_RE]
LR A_ K[et 10H}
Lo Ak e—
3A =5
3 ’
= Fah

GHD

Figure 20. ESP32 Pin IN/OUT

The LoRa-E5 module connects to the ESP32 with 3 pins PB7, PB6 and RST. The core
of LoRa module is an STM32 MCU, which can be flashed with customized firmware

using the SWDIO, SWCLK pin.

LORA

SW3 mn
GT-TCO29B-HOZE-LIN - 350
el E

433V

+ I
EgM-EE mrk?ﬂ:) GND

. codtomoo
cia Do —m—a
4 TuF cfmamaiy
- i vee PAg GND
GT\D{ GND PE1D
SWDIO PA13 pAZ :
SWCLK PA14 PAz b RI5
PB15 RET
PA15 GND
PB4 RFIC [e
mMon—o S ~N
mmmmo o=
oo D
i T
GND
& GND
o
2E=
o
"
e

Figure 21. LoRa circuit

36

4.2.5 Peripherals

The Uart Switch is for debugging purposes, if several ESP32 connect to the
computer, sometimes choosing the COM port for uploading firmware can be
confusing. An Uart Switch is designed so that when the ESP32 gateway is not in
uploading mode, it can be turned OFF. LORA mode is for testing with the LoRa
module first before uploading the setting to ESP32, with Serial Terminal software

like RealTerm or Putty.

Figure 22. UART switch

The Status LED using an addressable LED, its only need 1 GPIO pin to control the
3 LEDs, the porwer use is 5V which is VUSB. Other connections for External

Antennas and SWD pin out for LoRa firmware.

Hi Rzmmsn
=R = Status LED
a LORA RST =
3 SWCLK
2 SWDIO
L l
GND \ DI \ b\ \ S]" AT}
4%op b 41%00 b %00 o ESP ' LED_PIN
DO GND DO GND DO GND

RF atenna e K

GNDY|

+33V

LED_LORA HEL :
LOR—’-_LEDD—H——D—T

o

4 GHDEGHD =
lGN[-‘-‘GNn l

Figure 23. Peripherals

37
4.3 PCB Layout

Before starting with the PCB layout and routing, we must set the design rules for

the PCB that fits the PCB manufacture capabilities which in this case is JLC PCB.

Design Rule
Rule Track Width Clearance Via Diameter Via Drill Diameter Track Length
Default 0.254 0.152 0.6 0.305

Figure 24. Design rules

The next step is the Layer Manager, 4 layers PCB were used. PCB with layer 1

and 4 are signal layer, layer 2 is +3.3V and layer 3 for GND.

Layer Manager

Copper Layer, 4 ~

No. [Display Name Type Color Transparency(%)
1 TopLayer Signal - 0
2 +3.3V Plana w -]
3 GND Plane v - 0
4 BottomLayer Signal - 0
5 TopSilkLayer Mon-Signal #FFCCO0 0
6 BottomSilkLayer Mon-Signal - 0
7 TopFasteMaskLayer Mon-Signal - 0
8 BottomPasteMaskLayer Mon-Signal - 0
9 TopSolderMaskLayer Mon-Signal - 30
10 BottomSolderMaskLayer Mon-Signal - 30

— [—

Figure 25. PCB layers

38

Figures 26 and 27 show the finished layout, routing and 3D view of the PCB.

Er=r=i=r=1
I - =

Figure 26. PCB layout

Figure 27. PCB 3D viewer

39

4.4 PCB Assembled and Testing
Components were soldered to the PCB using a hot air gun for SMT parts and

solder iron for through-hole parts.

| | |
. | _J =
. S

[Esps2
LTI il

Lonnmpasnnnnence

| LORA-ES |
naaneE, 53
=n

1]l

r

i 6322,
s TR

[RESET] Egga E%:Eg c2

PRIININAR A
l-‘llommru

-

& Q

STATUS LED

1
okl B E @

£ (3 e
(SRRl

SRRzl m
(Gl 1

ESP32
&4 B9S2

HanRum . ' "
o Eﬂm

HR911105A s W (wrm @

[i] P L L GE ED

RJ45 Connector Power switch UART switch

Figure 29. PCB assembled top

40

Figure 30. PCB assembled front

The next step was testing the PCB with our firmware, to see all the parts and
modules working as expected and fixing the problems.
After testing, a multimeter was used for checking values. Two problems were

found, and they are fixed as shown below.

Problem 1: USB to UART CP2104 was working but the firmware could not be
uploaded to the ESP32. The reason was the ESP32 only enters the uploading
mode when GPIO 0 is LOW, but there was a mistake in the schematic that made
this GPIO 0 pin pull-up to +3.3V.

The problems were fixed by removing the R6 resister and soldering an external
wire between GPIO 0 and the “right” pad of R6 footprint, following shown in

Figure 31 below.

—

(N G N G

B
D
B
[
B
[
m
Lo

B
|

=k
=R

D BDG@

Figure 31. PCB problem 1

41

Problem 2: UART switch was not working for LORA mode. The reason for this was
there was a wrong pin for LORA_RX and LORA_TX in the schematic, it is supposed

to be opposite, as in Figure 32.

Figure 32. PCB problem 2

This LORA mode is optional, and we can still use UART2 of the ESP32 to do the
testing with LORA module, it was decided to leave it that way.

Howerver, there is one way to fix this by soldering some external wires. Since we
have the OFF mode which are blank pins with no connection, we can wire it as in

Figure 33 below, and now the OFF mode turns into LORA mode and LORA mode

can be left unused.

Figure 33. Fixed PCB problem 2 layout

42
We can wire it in the back of the board to keep the “aesthetic” look of the front

PCB.

Figure 34. Fixed PCB problem 2 back

After fixing all the problems, the board is fully functional and ready.

Figure 35. Fully functional PCB

43

5 FIRMWARE DEVELOPMENT

The firmware of the custom ESP32 gateway serves as a software foundation that
controls and manages the functionality of the device. It enables communication
between the hardware components and implements the use case topology
designed during the hardware development phase (Figure 1). In this chapter, an
overview of the firmware development process, along with a visual

representation, will be provided.

5.1 BLE Beacon Gateway Setup

The BLE beacon gateway can automatically detect any BLE Beacons nearby, but
this firmware focuses on iBeacon and Eddystone beacon frametype. BLE beacon is
a broadcaster type, which means that it does not require making connections to
get the data from them (as BLE GATT devices do), it will advertise data packet to
the surrounding at regular intervals. The ESP32 gateway scans for the advertise
packets and decodes them according to the beacon frametype, collects data from
them, and then passes data using Ethernet/ LoRa module to the server by MQTT

protocols and LoRa server.

The gateway can scan for every iBeacon or Eddystone beacon in range but only
send their data to MQTT topics or LoRa server when it matches the beacon MAC

address (each Beacon has a unique MAC address).

The BLE Beacon Gateway setup is shown in Figure 36.

Figure 36. BLE beacons Gateway setup

In the testing setup, there were 3 BLE beacons, node 1 and node 2 (mark in
Figure 41) are Eddystone beacons frametype, the advertise packet included a
temperature and battery level whose the values been generated by random
function. Node 3 (mark in Figure 41) is an iBeacon frametype that include

manufature ID and an RSSI value to estimate the power signal.

The ESP32 with Ethernet connected, the 3 status LEDs were: GREEN for MQTT
server connection, BLUE for BLE connection and RED for LORA connection. Status

LEDs will blink WHITE color every time the connections get data in or out.

The Wio-E5 LoRa module with the long antenna connected to PC, was used as a
LoRa Gateway to replace the use case of The Thing Networks since there are no
nearby TTN Gateway in the region of Vaasa. The Lora module will receive data

sent from the ESP32 gateway and decode the data and print it to Serial Monitor.

45

5.2 Firmware

The source code includes four main files: the main code (main.ino) for scanning
BLE beacons and decode them, the MQTT settings (mqtt.h) and topic, the lora

settings (lora.h) and other settings (settings.h).

5.2.1 Main Code (main.ino)

The library includes: the necessary libraries for handling HTTP requests, BLE
devices, MQTT communication, LED control, and LoRa communication are

included.

#include <HTTPClient.h>

#include <Arduino.h>

#include <BLEDevice.h>

#include <BLEUtils.h>

#include <BLEScan.h>

#include <BLEAdvertisedDevice.h>

#include <BLEEddystoneURL.h>
#include <BLEEddystoneTLM.h>
#include <BLEBeacon.h>
#include "mqtt.h"

#include "led.h"

#include "settings.h"

#include "lora.h"

Listing 1. Libraries for main.ino

Global variables and objects were scanTime and pBLEScan, defined to control the
BLE scanning process. MyAdvertisedDeviceCallbacks class was derived from

BLEAdvertisedDeviceCallbacks to handle the discovered BLE devices.

scanTime = 5;
BLEScan *pBLEScan;

MyAdvertisedDeviceCallbacks : BLEAdvertisedDeviceCallbacks

Listing 2. Scan times

46

MyAdvertisedDeviceCallbacks::onResult: This method is called when a new BLE
device is discovered. It handles two types of BLE devices: iBeacons and Eddystone
beacons. When a device is found, it processes its data, checks the device's MAC
address, and calls the appropriate functions to send data to the MQTT server and

over LoRa.

if (advertisedDevice.haveManufacturerData() == true)

{

std::string strManufacturerData = advertisedDevice.getManufacturerData();

uint8_t cManufacturerData[100];

strManufacturerData.copy((char *)cManufacturerData, strManufacturerData.length(),
0);

if (strManufacturerData.length() == 25 && cManufacturerData[0] == 0x4C &&
cManufacturerData[1] == 0x00)
{

int rssi = advertisedDevice.getRSSI();

Serial.printIn("Found an iBeacon!");

BLEBeacon oBeacon = BLEBeacon();

oBeacon.setData(strManufacturerData);

Serial.printf("iBeacon Frame\n");

Serial.printf("ID: %04X Major: %d Minor: %d UUID: %s Power: %d RSSi: %d\n",
oBeacon.getManufacturerld(), ENDIAN_CHANGE_U16(oBeacon.getMajor()),
ENDIAN_CHANGE_U16(oBeacon.getMinor()),
oBeacon.getProximityUUID().toString().c_str(), oBeacon.getSignalPower(), rssi);

Serial.printin("\n");

std::string deviceAddress = advertisedDevice.getAddress().toString();
if (deviceAddress == iBeaconMacAddress) {
sendMgqttiBeacon(deviceAddress.c_str(), oBeacon.getManufacturerld(),
ENDIAN_CHANGE_U16(oBeacon.getMajor()), ENDIAN_CHANGE_U16(oBeacon.getMinor()),
oBeacon.getProximityUUID().toString().c_str(), oBeacon.getSignalPower(), rssi);
bleBlink();
sendLoRaiBeacon(deviceAddress.c_str(), oBeacon.getManufacturerld(),
ENDIAN_CHANGE_U16(oBeacon.getMajor()), ENDIAN_CHANGE_U16(oBeacon.getMinor()),
oBeacon.getProximityUUID().toString().c_str(), oBeacon.getSignalPower(), rssi);

uint8_t *payLoad = advertisedDevice.getPayload();
const uint8_t serviceDataEddystone[3] = {0x16, OxAA, OxFE};
const size_t payLoadlLen = advertisedDevice.getPayloadLength();
uint8 t *payLoadEnd = paylLoad + payLoadlen - 1;
while (payLoad < payLoadEnd) {
if (payLoad[1] == serviceDataEddystone[0] && paylLoad[2] == serviceDataEddystone[1]
&& payload[3] == serviceDataEddystone[2]) {

payLoad += 4;
break;
}
paylLoad += *paylLoad + 1;
}

if (payLoad < payLoadEnd)
{
if (*payLoad == 0x10)
{
Serial.printIn("Found an EddystoneURL beacon!");
BLEEddystoneURL foundEddyURL = BLEEddystoneURL();
uint8_t URLLen = *(payLoad - 4) - 3;
foundEddyURL.setData(std::string((char*)payLoad, URLLen));
std::string bareURL = foundEddyURL.getURL();
if (bareURL[0] == 0x00)
{
Serial.printIn("DATA-->");
uint8 t *payLoad = advertisedDevice.getPayload();
for (int idx = 0; idx < payLoadLen; idx++)
{
Serial.printf("0x%02X ", payLoad[idx]);
}
Serial.printIn("\nInvalid Data");
return;

Serial.printf("Found URL: %s\n", foundEddyURL.getURL().c_str());
Serial.printf("Decoded URL: %s\n", foundEddyURL.getDecodedURL().c_str());
Serial.printf("TX power %d\n", foundEddyURL.getPower());
Serial.printin("\n");

}

else if (*payLoad == 0x20)

{
Serial.printIn("Found an EddystoneTLM beacon!");
BLEEddystoneTLM eddystoneTLM;
eddystoneTLM.setData(std::string((char*)payLoad, 14));
float roundedTemp = round(eddystoneTLM.getTemp() * 100.0) / 100.0;
Serial.printf("Reported battery voltage: %dmV\n", eddystoneTLM.getVolt());
Serial.printf("Reported temperature: %.2f°C (raw data=0x%04X)\n",

eddystoneTLM.getTemp(), eddystoneTLM.getRawTemp());

Serial.printf("Reported advertise count: %d\n", eddystoneTLM.getCount());
Serial.printf("Reported time since last reboot: %ds\n", eddystoneTLM.getTime());
Serial.printin("\n");

String scannedUUID = advertisedDevice.getServiceUUID().toString().c_str();

std::string deviceAddress = advertisedDevice.getAddress().toString();

if (deviceAddress == EddyMacAddress1) {

sendEddystoneTImMgttMessagel(deviceAddress.c_str(), scannedUUID,
eddystoneTLM.getVolt(), roundedTemp, eddystoneTLM.getCount(),
eddystoneTLM.getTime());

sendLoRaEddystoneTim1(deviceAddress.c_str(), scannedUUID,
eddystoneTLM.getVolt(), roundedTemp, eddystoneTLM.getCount(),
eddystoneTLM.getTime());

bleBlink();

}
else if (deviceAddress == EddyMacAddress2) {

sendEddystoneTImMgqttMessage2(deviceAddress.c_str(), scannedUUID,
eddystoneTLM.getVolt(), roundedTemp, eddystoneTLM.getCount(),
eddystoneTLM.getTime());

sendLoRaEddystoneTIm2(deviceAddress.c_str(), scannedUUID,
eddystoneTLM.getVolt(), roundedTemp, eddystoneTLM.getCount(),
eddystoneTLM.getTime());

bleBlink();

}

Listing 3. Decode beacons

setup(): initializes the status LEDs, serial communication, BLE scanning with

custom callbacks, MQTT, and LoRa.

setup()
{
initStatusLeds();
updatelLed(0, CRGB::Red);
updatelLed(1, CRGB::Blue);
Serial.begin(115200);
Serial.printIn("Scanning...");

BLEDevice::init("");

pBLEScan = BLEDevice::getScan();
pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks());
pBLEScan->setActiveScan();

pBLEScan->setInterval(100);

pBLEScan->setWindow(99);

mqttinit();
loralnit();

Listing 4. BLE setups

49
loop(): The main loop starts the BLE scanning process, waits for the specified scan

time, clears the results, and repeats the process every 2 seconds.

loop()
{

BLEScanResults foundDevices = pBLEScan->start(scanTime,

Serial.printIn("Scan done!\n");
pBLEScan->clearResults();
delay(2000);

}

Listing 5. Main loop

5.2.2 MQTT settings (mqtt.h)

MQTT settings.h include the following files and declarations: The required header
files are included, and the AsyncMqttClient and TimerHandle_t instances are

declared.

#tinclude <WiFi.h>
IICII {
#include "freertos/FreeRTOS.h"
#include "freertos/timers.h"

}

#include <AsyncMqttClient.h>
#include <Arduinolson.h>
#include <BLEBeacon.h>
#include "settings.h"

#include "led.h"

Listing 6. MQTT libraries

50

The MQTT and Ethernet connection functions are shown in Listing 7:

connectToMqtt() {
Serial.printIn("Connecting to MQTT...");
mqttClient.connect();

}

connectEthernet() {
result = ETH.begin(ETH_ADDR, ETH_POWER_PIN, ETH_MDC_PIN, ETH_MDIO_PIN,
ETH_TYPE, ETH_CLK_MODE, true);
if (Iresult) {
Serial.printin("ETH Init failed");

Listing 7: ETH and MQTT connect

Message publishing functions:
° publishMessageiBeacon(): publishes an iBeacon message to the
specified MQTT topic.
° publishMessageEddy1(): publishes an EddystoneTLM message to
the specified MQTT topic.
° publishMessageEddy2(): publishes an EddystoneTLM message to
another specified MQTT topic.

publishMessageiBeacon(String message) {
mqttClient.publish(MQTT_TOPIC_SEND, 0O, , message.c_str());

}

publishMessageEddy1(String message) {

mqttClient.publish(MQTT_TOPIC_SEND_2, O, , message.c_str());

}

publishMessageEddy2(String message) {
mqttClient.publish(MQTT_TOPIC_SEND_3, O, , message.c_str());

}

Listing 8. MQTT pubblish

51
The Message sending functions are:
e sendMgqttiBeacon(): sends an iBeacon message to the MQTT server.
e sendEddystoneTiImMqttMessagel(): sends an EddystoneTLM

message to the MQTT server.

sendMqttiBeacon(mac,
uuid, signalPower, int rssi) {
if (mgttClient.connected()) {
DynamicJsonDocument doc(200);

doc["MAC"] = mac;

doc["ID"] = ID;

doc["Major"] = major;
doc["Minor"] = minor;
doc["UUID"] = uuid;
doc["SignalPower"] = signalPower;
doc["RSSI"] = rssi;

String message;
serializeJson(doc, message);
publishMessageiBeacon(message);
mqttBlink();
}else {
Serial.printIn("MQTT is not connected. Discarding message");

}
}

sendEddystoneTImMgttMessagel(mac, String uuid,
batteryVoltage, temperature, advertiseCount, timeSinceReboot) {
if (mgttClient.connected()) {
DynamicJsonDocument doc(200);

doc["MAC"] = mac;

doc["UUID"] = uuid;

doc["BatteryVoltage"] = batteryVoltage;
doc["Temperature"] = temperature;
doc["AdvertiseCount"] = advertiseCount;
doc["TimeSinceReboot"] = timeSinceReboot;

String message;
serializeJson(doc, message);
publishMessageEddyl(message);
mqttBlink();
}else {
Serial.printIn("MQTT is not connected. Discarding message");
}
}

Listing 9. Send to MQTT

52

5.2.3 LoRa Settings (lora.h)

loralnit(): Initializes the LoRa module by setting up Serial communication and

configuring the LoRa module with the required settings.

Seriall.begin(9600, SERIAL_8N1, LORA_RXD, LORA_TXD,
Serial.print("LORA start\r\n");
at_send_check_response("+AT: OK", 1000, "AT\r\n");

at_send_check_response("+MODE: TEST", 1000, "AT+MODE=TEST\r\n");
at_send_check_response("+TEST: RFCFG", 1000, "AT+TEST=RFCFG,868,5F7,125,8,8,
14,0N,OFF,OFF\r\n");

delay(200);

Listing 10. Lora settings

toHexString(const String &input): Converts a given string into a hex string, which

is used for sending data over LoRa.

String toHexString(String &input)
{
String hexString = "";

for (i =0; i <input.length(); ++i)
{

hexString += String(input.charAt(i), HEX);
}

return hexString;

Listing 11. String to HEX

53

sendLoRaiBeacon(): Sends an iBeacon message over LoRa with the given
parameters, such as MAC address, ID, major and minor values, UUID, signal

power, and RSSI.

sendLoRaiBeacon(
uuid, signalPower, rssi)

if (millis() - lastLoRaSent >= 0) {
cmd[512];

DynamicJsonDocument doc(256);
doc["MAC"] = magc;

doc["ID"] = ID;

doc["Major"] = major;
doc["Minor"] = minor;
doc["UUID"] = uuid;
doc["SignalPower"] = signalPower;
doc["RSSI"] = rssi;

String jsonString;
serializeJson(doc, jsonString);

String hexString = toHexString(jsonString);

sprintf(cmd, "AT+TEST=TXLRPKT,\"%s\"\r\n", hexString.c_str());
ret = at_send_check_response("+TEST: TXLRPKT", 5000, cmd);

if (ret)

Serial.printIn("Sent lora iBeacon.\n");
else

Serial.printIn("Send failed!\r\n\r\n");

loraBlink();

lastLoRaSent = millis();

}

}

Listing 12. Lora iBeacon

54

sendLoRaEddystoneTIlm1(): Sends an Eddystone TLM (Telemetry) message (type
1) over LoRa with the given parameters, such as MAC address, UUID, battery

voltage, temperature, advertise count, and time since reboot.

sendLoRaEddystoneTIm1(mac, String uuid, batteryVoltage,
temperature, advertiseCount, timeSinceReboot)

{

if (millis() - lastLoRaSent >= 0) {
cmd[512];

DynamicJsonDocument doc(256);
doc["MAC"] = mac;

doc["UUID"] = uuid;

doc["BatteryVoltage"] = batteryVoltage;
doc["Temperature"] = temperature;
doc["AdvertiseCount"] = advertiseCount;
doc["TimeSinceReboot"] = timeSinceReboot;

String jsonString;
serializeJson(doc, jsonString);

String hexString = toHexString(jsonString);

sprintf(cmd, "AT+TEST=TXLRPKT,\"%s\"\r\n", hexString.c_str());
ret = at_send_check_response("+TEST: TXLRPKT", 5000, cmd);

if (ret)

Serial.printIn("Sent lora Eddystone 1.\n");
else

Serial.printIn("Send failed!\r\n\r\n");

loraBlink();

lastLoRaSent = millis();

}

}
Listing 13. Lora Eddystone beacon

55
5.2.4 Other Settings (setting.h)

Other settings for Ethernet, MQTT server, the MAC addresses of the BLE Beacons

and LoRa connections.

#include <ETH.h>

IPAddress(192, 168, 0, 103
1883
"BLEtoMQTT/iBeacon"
"BLEtoMQTT/Eddystonel"

"BLEtoMQTT/Eddystone2"

std::string iBeaconMacAddress = "b8:d6:1a:5c:1e:c6";
std::string EddyMacAddress1 = "30:ae:24:19:78:56";
std::string EddyMacAddress2 = "30:ae:a4:1e:98:62";

Listing 14. Source code settings

The LED status settings are shows in Listing 15.:

loraBlink(){
updatelLed(0, CRGB::White);
delay(150);
updatelLed(0, CRGB::Red);
}

bleBlink(){
updateLed(1, CRGB::White);

delay(150);
updatelLed(1, CRGB::Blue);

}

mqttBlink(){
updatelLed(2, CRGB::White);
delay(150);
updatelLed(2, CRGB::Green);
}

Listing 15. Status LEDS settings

5.3 Results
5.3.1 MAQTT Data and Vizualization

56

In Figure 37, the result of data collected is shown on MQTT server, three topics had

been created, each for one beacon. A simple dashboard was made using Node-RED

to demonstrate the use of data collected.

57

03/05/2023, 16.44 27 node: d94f4e90630adTec
BLEtoMQTT/Eddystone1 : meg.payload : Object

*object

MAC: "3@:3s:54:19:78:58"

UUID: “eopofeaa-pood-1000-5000-08885T9b34Th"
BatteryVoltage: 2988

Temperature: 16

AdvertiseCount: 3

TimeSinceReboot: 27

03/05/2023, 16.44 27 node: db31e2cdfdbeacad
BLEtoMQTT/iBeacon : msg.payload - Object

vobject
MAC: "b8:d6:1a:5c:le:c”
ID: 76
Major: 5
Minor: B8
UUID: "“2d7a9f@c-ePeB-4cc9-a7lb-a21db2de34a1"
signalPower: -59
R55I: -41
03/05/2023, 16.44 27 node: d55af2e2cfd5ffca
BLEtoMQTT/Eddystone2 : msg.payload : Object
*object
MAC: "3@:ae:ad:1le:98:62"
UUID: "eoeafeaa-0008-1000-3000-0a385Tob34fb"
BatteryVoltage: 33e8
Temperature: 12.32999932
AdvertiseCount: 386
TimeSinceReboot: 5653

Figure 37. MQTT data collected

58

The Node-Red Dashboard is shown in Figure 38.

= BLE Scanner

Temperature Temperature LED: OFF

Temperature chart Temperature chart
30

25
25 20
18.75 15

15 10
15:00:00 15:30:00 16:00:00 16:45:00 15:00:00 15:30:00 16:00:00 16:45:00

Battery Battery

88% 100%

Figure 38. Node-Red Dashboard

The data collected from Eddystone beacons can be used to indicate temperature,
chart, battery level. While the iBeacon is usually used for proximity applications,
for example, the iBeacon can be used to trigger a LED when it is near the ESP32

Gateway.

59

5.3.2 Lora Server Data

There is no available Gateway from The Thing Networks to connect to in the region
of Vaasa. To demonstrate the use case of LoRa module that acts as a backhaul
channel to The Thing Networks LoRaWAN server, Wio-E5 lora devkit as a gateway
was used, connected to a PC. The Devkit receives the data from the ESP32
Gateway, decodes them by a short Python script and prints them to the console
log. An important note is this just “pure” Lora or just PHY layer, which means that
every listener on the same channel can receive our message and no security was

added.

main

"TimeSinceReboot™: 1130

}
.[
"MAC": "30:ae:a4:1e:98:62",
"UUID": "D000feaa-0000-1000-8000-00805TFb34fb",
"BatteryVoltage": 3300,
"Temperature": 19.01000023,
"AdvertiseCount™: 78,
"TimeSinceReboot": 1130
}
.[
"MAC": "b8:dé6:la:5c:le:ce”,
"ID": 7o,
"Major": 5,
"Minor": 88,
"UUID": "2d7a9f0c-ebe8-4cc9-a7lb-a2ldb2do34al",
"SignalPower": -59,
"RSS5I": -46
}
.[
"MAC": "3D:ae:a4:19:78:56",
"UUID": "00E0feaa-0000-1000-8000-00805F9b34fh",
"BatteryVoltage": 2900,
"Temperature": 16.29999924,
"AdvertiseCount™: 111,
"TimeSinceReboot": 1505
}

Figure 39. LoRa server data

60
The Python script was used to decode the data received from the ESP32 Gateway

to JSON string since the Lora module only sends HEX data.

import serial
import json
import codecs

def hex_to_string(hex_string):
return codecs.decode(hex_string, 'hex').decode('utf-8')

def parse_received_data(data):
Remove +TEST: RX and quotes from the received string
cleaned_hex_string = data[11:-1]
json_string = hex_to_string(cleaned_hex_string)

try:
json_data = json.loads(json_string)
return json_data

except json.JSONDecodeError:
print("Error decoding JSON")
return None

def main():
port = "COM12"
baudrate = 9600

ser = serial.Serial(port, baudrate, timeout=1)

while True:
data = ser.readline().decode('utf-8').strip()

if data.startswith("+TEST: RX"):
json_data = parse_received_data(data)

if json_data is not None:
print(json.dumps(json_data, indent=2))
if _name__=="_main__":
main()

Listing 16. Decode Python Script

61
6 CONCLUSIONS

The primary objective of this project was to create a low-cost and effective BLE
gateway using the ESP32 chipset. Despite some challenges in the hardware
design, all the goals have been achieved with satisfactory performance in terms
of topology design, range, and data throughput. The project can be considered

successful in delivering a functional BLE gateway that meets the intended criteria.

From an electronic point of view, there were some mistakes in the schematic that
could be addressed in future iterations of the project. By refining the hardware
design and correcting these errors, the performance and reliability of the BLE
gateway could be further improved. Additionally, optimizing the selection of
components and their placement on the PCB could contribute to a reduction in

the bill of materials (BOM) cost.

In terms of software and firmware optimization, future work may involve
enhancing the efficiency of the algorithms, improving power consumption, and
exploring the possibility of incorporating additional features, such as support for
multiple communication protocols or advanced security measures. These
improvements could provide users with a more versatile and robust solution for

their wireless communication needs.

Moreover, it would be valuable to conduct comprehensive testing in various real-
world scenarios, which would allow for the identification of potential areas for
improvement and the assessment of the performance of the gateway under
different conditions. This would ultimately lead to the development of a more
robust and reliable BLE gateway that meets the diverse requirements of users in

various contexts.

62
In conclusion, the project has laid a solid solution for the development of
affordable and high-performing BLE gateways. By addressing the identified
limitations and incorporating the suggested improvements, there is significant
potential for continued innovation and growth in the field of wireless
communication technology. The project had highlighted the viability of ESP32-
based solutions for creating cost-effective and efficient BLE gateways, opening

new possibilities for the future of wireless connectivity.

63

REFERENCES

/1/ What is a Bluetooth Gateway? Complete Guide 2023. Accessed 12.04.2023.

https://www.dusuniot.com/blog/what-is-a-bluetooth-gateway/

/2/ Bluetooth SIG, Inc. (2021). Bluetooth Core Specification. Accessed 18.04.2023.

https://www.bluetooth.com/specifications/bluetooth-core-specification/

/3/ Nordic Semiconductor. (2021). Bluetooth Low Energy - Introduction. Accessed

12.04.2023. https://www.nordicsemi.com/Products/Low-power-short-range-

wireless/Bluetooth-low-energy-LE

/4/ LoRa Alliance. (2021). LoRaWAN Specification. Accessed 04.05.2023.

https://lora-alliance.org/resource-hub/lorawanr-specification-v102

/5/ MQTT.org. (2021). MQTT Protocol. Accessed 13.04.2023. https://mqtt.org/

/6/ NXP Semiconductors. (2021). ESP32 Series Datasheet. Accessed 13.04.2023.

https://www.nxp.com/products/wireless-connectivity/2-4-ghz-solutions/esp32-

series-datasheet:P-DS-ESP32-SERIES

/7/ Wio-E5 module. Accessed 13.04.2023.
Wio-E5 STM32WLES5JC lora module, embedded SX126X and MCU for LoRaWAN

Wireless Sensor Network & 10T devices - EU868 & US915 - Seeed Studio

/8/ Semtech Corporation. (2021). LoRa Modulation Basics. Accessed 04.05.2023.

https://www.semtech.com/products/wireless-rf/lora-

transceivers/applications/LoRa-Modulation-Basics

/9/ Microchip's LAN8720A/LAN8720Ai datasheet. Accessed 13.04.2023.
LAN8720A | Microchip Technology

/10/ The Things Network. (2021). LoRaWAN Gateway. Accessed 04.05.2023.

https://www.thethingsnetwork.org/docs/gateways/

https://www.nxp.com/products/wireless-connectivity/2-4-ghz-solutions/esp32-series-datasheet:P-DS-ESP32-SERIES
https://www.nxp.com/products/wireless-connectivity/2-4-ghz-solutions/esp32-series-datasheet:P-DS-ESP32-SERIES
https://www.seeedstudio.com/LoRa-E5-Wireless-Module-p-4745.html
https://www.seeedstudio.com/LoRa-E5-Wireless-Module-p-4745.html
https://www.semtech.com/products/wireless-rf/lora-transceivers/applications/LoRa-Modulation-Basics
https://www.semtech.com/products/wireless-rf/lora-transceivers/applications/LoRa-Modulation-Basics
https://www.microchip.com/en-us/product/LAN8720A

64

APPENDIX |
Schematic Design

ETHERNET Serial

USB-C/UART
ETH RO —
T
ETH D[> CIVUSB_UNSWITEHED
ETH_TD-[>
CIVUSB_UNSWITCHED

PHY_LED_GREENL >
PHY_LED_YELLOW[>

1t
i
o

= =)

REF CLK Ethernet transceiver

-33VLAN VDDA

+33VLAN

Power Circuit
3IVLAN 2 msmmg 3V
nﬂA_w %Ls.;u By s HCeaenNRG
Lo mucan
H_En SM_MDIO| H;a‘
o GND GND (5]
GXD
Status LED

ESP32

v

EMAC B¥DA| RF atenna
EMAC R

TITiE
Sheet_1 REV: 1.0
Company: _Your Company |shess: 11
MDJ_NU\»_
OB UBIEDAl o 20021215 brann v hieuht2000
I T T

T 3 T 7 0

65

APPENDIX Il

PCB Layout

66

