

Hoang Hieu

DESIGN AND IMPLEMENTATION OF

A BLE GATEWAY USING ESP32 CHIPSET

Technology and Communication
2023

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Hoang Hieu
Title Design and Implemetation of a BLE Gateway Using ESP32

Chipset.
Year 2023
Language English
Pages 65
Name of Supervisor Jukka Matila

This thesis presents the design and implementation of a custom ESP32-based
gateway that integrates Bluetooth Low Energy (BLE) and Long Range (LoRa)
technologies for IoT applications.
The background for this study includes the in-creasing demand for low-power,
wide-area networks (LPWAN) to facilitate seamless data collection and
transmission for connected devices in various sectors, such as smart cities,
agriculture, and industrial automation.
The aim of this thesis was to develop a cost-effective and versatile gateway that
combines the advantages of both BLE and LoRa communication, leveraging the
capabilities of the ESP32 microcontroller. The material and methods used in this
project involve hardware selection, schematic design, PCB layout, firmware
development.
The results demonstrate the development of the custom ESP32 gateway,
enabling efficient data collection from BLE devices, and transmitting the
aggregated data to an MQTT server or a LoRaWAN cloud. In conclusion, the
custom ESP32 gateway provides a promising solution for IoT deployments,
offering a tailored and flexible approach to data communication and
management.

Keywords Bluetooth Low Energy, Internet of Things, ESP32 Microcontroller,
MQTT Protocol, and PCB design.

CONTENTS

ABSTRACT ... 2

LIST OF FIGURES AND TABLES.. 6

LIST OF LISTINGS .. 8

1 INTRODUCTION ... 10

1.1 The objectives of the Thesis ... 10

1.2 Gateway Topology ... 11

2 THEORETICAL BACKGROUND .. 13

2.1 Bluetooth IOT Gateway .. 13

2.2 Bluetooth Low Energy (BLE) ... 14

2.3 LoRa Technology .. 16

2.4 MQTT Protocol ... 18

3 PROOF-OF-CONCEPT (POC) PROTOTYPES ... 20

3.1 Prototyping Process ... 20

3.2 Prototyping Hardware Components .. 21

3.2.1 ESP32 Development Kit .. 21

3.2.2 Ethernet Module .. 23

3.2.3 LoRa Module .. 24

3.3 Connections Table .. 26

4 PCB DEVELOPMENT ... 28

4.1 PCB Block Diagram ... 28

4.2 Schematic Design ... 29

4.2.1 Ethernet LAN8720A Chip ... 30

4.2.2 USB-C to UART CP2104 Chip .. 33

4.2.3 Power Management... 34

4.2.4 ESP32 MCU and Lora Module .. 35

4.2.5 Peripherals ... 36

4.3 PCB Layout ... 37

4.4 PCB Assembled and Testing ... 39

5 FIRMWARE DEVELOPMENT ... 43

5.1 BLE Beacon Gateway Setup ... 43

5.2 Firmware .. 45

5.2.1 Main Code (main.ino)... 45

5.2.2 MQTT settings (mqtt.h) .. 49

5.2.3 LoRa Settings (lora.h) ... 52

5.2.4 Other Settings (setting.h) ... 55

5.3 Results .. 56

5.3.1 MQTT Data and Vizualization ... 56

5.3.2 Lora Server Data ... 59

6 CONCLUSIONS ... 61

REFERENCES ... 63

6

LIST OF FIGURES AND TABLES

Figure 1. Gateway design topology .. 11

Figure 2. BLE Gateway topology /1/ .. 13

Figure 3. Configurations Bluetooth Smart /3/ ... 15

Figure 4. MQTT Architecture /5/.. 18

Figure 5. Proof-of-concept setup ... 20

Figure 6. ESP32 DevKitC-32U ... 21

Figure 7. ESP32-WROOM-32U module .. 23

Figure 8. LAN8720 ETH module ... 23

Figure 9. Wio-E5 mini development board .. 24

Figure 10. LoRa-E5 module /7/ .. 26

Figure 11. PCB Block Diagram .. 29

Figure 12. LAN8720A system block /9/ .. 30

Figure 13. LAN8720A power .. 31

Figure 14. LAN8720A Transceiver .. 31

Figure 15. REF CLK for LAN8720A .. 32

Figure 16. RJ45 to LAN8720A ... 32

Figure 17. CP2104 chip ... 33

Figure 18. Power switch ... 34

Figure 19. Circuit power ... 34

Figure 20. ESP32 Pin IN/OUT .. 35

Figure 21. LoRa circuit .. 35

Figure 22. UART switch .. 36

Figure 23. Peripherals .. 36

Figure 24. Design rules ... 37

Figure 25. PCB layers .. 37

Figure 26. PCB layout ... 38

Figure 27. PCB 3D viewer ... 38

Figure 28. PCB unassembled .. 39

7

Figure 29. PCB assembled top .. 39

Figure 30. PCB assembled front ... 40

Figure 31. PCB problem 1 ... 40

Figure 32. PCB problem 2 ... 41

Figure 33. FIxed PCB problem 2 layout .. 41

Figure 34. Fixed PCB problem 2 back ... 42

Figure 35. Fully functional PCB... 42

Figure 36. BLE beacons Gateway setup ... 44

Figure 37. MQTT data collected ... 57

Figure 38. Node-Red Dashboard .. 58

Figure 39. LoRa server data .. 59

Table 1 LoRa Specifications /4/ .. 17

Table 2. ESP32-WROOM-32U Specifications /6/ .. 22

Table 3. Wio-E5 specifications /7/ .. 25

Table 4. ESP32 to LAN8720A Module ... 26

Table 5. ESP32 to Wio-E5 ... 27

8

LIST OF LISTINGS

Listing 1. Libraries for main.ino .. 45

Listing 2. Scan times ... 45

Listing 3. Decode beacons .. 48

Listing 4. BLE setups ... 48

Listing 5. Main loop .. 49

Listing 6. MQTT libraries ... 49

Listing 7: ETH and MQTT connect .. 50

Listing 8. MQTT pubblish .. 50

Listing 9. Send to MQTT ... 51

Listing 10. Lora settings .. 52

Listing 11. String to HEX ... 52

Listing 12. Lora iBeacon .. 53

Listing 13. Lora Eddystone beacon ... 54

Listing 14. Source code settings ... 55

Listing 15. Status LEDS settings .. 56

Listing 16. Decode Python Script .. 60

9

LIST OF ABBREVIATIONS AND ACRONYMS

BLE Bluetooth Low Energy

LoRa Long Range

IoT Internet of Things

ESP32 Espressif Systems 32-bit Microcontroller

MQTT Message Queuing Telemetry Transport

PCB Printed Circuit Board

LPWAN Low-Power Wide-Area Networks

UART Universal Asynchronous Receiver/Transmitter

HW Hardware

GPIO General Purpose Input/Output

IDE Integrated Development Environment

MCU Microcontroller Unit

SMT Surface Mount Technology

SWD Serial Wire Debug

SoC System on Chip

SW Software

RSSI Received Signal Strength Indicator

10

1 INTRODUCTION

1.1 The objectives of the Thesis

BLE (Bluetooth Low Energy) and LoRa (Long Range) are two popular wireless

technologies employed to address the connectivity requirements of IoT devices

due to their low power consumption and extended range. The integration of

both BLE and LoRa technologies into a single gateway can significantly enhance

the versatility of IoT networks, allowing for seamless data collection and

transmission.

BLE technology is designed for short-range, low-power communication, typically

suited for IoT devices, such as wearables, smart home appliances, and health

monitoring equipment. On the other hand, LoRa technology is intended for low-

power, wide-area networks (LPWAN), offering long-range communication for IoT

devices in remote or challenging environments.

This thesis aims to design and implement a custom ESP32 gateway using the

ESP32 microcontroller, which offers a low-cost, flexible, and powerful platform

for IoT applications. The custom gateway will combine the advantages of both

BLE and LoRa communication, enabling efficient data collection from BLE devices

and LoRa nodes, and transmitting the aggregated data to an MQTT server. This

work includes hardware selection, schematic design, PCB layout, firmware

development, and enclosure design, ultimately providing a tailored and flexible

approach to data communication and management for IoT deployments.

The main objectives of this thesis are as follows:

• Design and prototype a gateway using the ESP32 microcontroller.

• Develop the schematic and PCB layout for the gateway, integrating the

required hardware components.

• Implement firmware for data collection, processing, and transmission to

an MQTT server.

11

1.2 Gateway Topology

The primary use case for the custom ESP32 gateway is to collect data from nearby

BLE devices and transmit it to cloud platforms using MQTT. The gateway serves as

a central point of communication between the BLE devices and the cloud

platforms, enabling efficient data collection and transmission within the IoT

ecosystem.

In case the primary Internet connection is lost or disrupted, the custom gateway

leverages LoRa technology to transmit the data to The Things Network as a backup

communication channel. This ensures that the data collected from BLE devices is

not lost and can still be forwarded to the appropriate cloud platform or application

server.

Figure 1. Gateway design topology

12

 The Gateway topology includes:

• BLE sensors devices include various IoT devices equipped with BLE

capabilities, such as sensors, wearables, or smart home appliances. They

transmit data wirelessly to the custom gateway using the BLE protocol.

• The LoRa module refers to IoT devices that communicate with the custom

gateway using the LoRa protocol. They can be used for long-range

communication in remote or challenging environments and serve as a

backup communication channel in case the primary Internet connection is

disrupted.

• The ESP32 Gateway is responsible for collecting data from BLE devices

and LoRa nodes, aggregating the data, and transmitting it to an MQTT

broker using the primary Internet connection or the LoRa-based backup

communication channel.

• The MQTT Broker receives the data from the custom gateway and

forwards it to the appropriate cloud platform or application server, where

it can be processed, analyzed, or integrated with other IoT systems.

• The Cloud Platforms receive and store the data collected by the custom

gateway. They can also provide various services, such as data analytics,

visualization, and integration with other IoT systems or third-party

applications.

13

2 THEORETICAL BACKGROUND

This chapter provides an overview of the theoretical background relevant to the

custom ESP32 gateway, including a brief introduction to IOT Gateway, BLE, LoRa,

and MQTT technologies. Understanding these fundamental concepts is crucial for

the design and development of the gateway, as it allows for informed decisions

regarding component selection, system architecture, and communication

protocols.

2.1 Bluetooth IOT Gateway

A Bluetooth gateway is a key component in a Bluetooth IoT solution. A Bluetooth

gateway features a distribution network that supports the Bluetooth protocol.

After receiving information from BLE end devices, Bluetooth Gateways forward

information to the network server via Wi-Fi/Ethernet/LTE. /1/

Figure 2. BLE Gateway topology /1/

14

The Bluetooth IoT gateway locates a device, it recognizes the features and data

structures of surrounding BLE devices, which will transmit signals at regular

intervals. After that, the Bluetooth IoT gateway handles a request using MQTT or

another communication protocol to establish a connection. The MQTT server is

called a broker and the clients are simply the connected devices. When a device

(a client) wants to send data to the broker, we call this operation a “publish”.

When a device (a client) wants to receive data from the broker, we call this

operation a “subscribe”. Through the MQTT protocol, data from BLE devices can

be quickly retrieved by the cloud, and commands from the cloud will be sent

back to BLE devices.

2.2 Bluetooth Low Energy (BLE)

Bluetooth Low Energy (BLE) is a wireless communication technology designed

specifically for short-range, low-power connectivity in IoT devices. This section

provides a comprehensive overview of the theory behind BLE technology and its

application in the custom ESP32 gateway.

Bluetooth Low Energy (BLE, also marketed as Bluetooth Smart) started as part of

the Bluetooth 4.0 Core Specification. It’s tempting to present BLE as a smaller,

highly optimized version of its bigger brother, classic Bluetooth, but, BLE has an

entirely different lineage and design goals. Originally designed by Nokia as

Wibree before being adopted by the Bluetooth Special Interest Group (SIG), the

developers were not trying to propose another overly broad wireless solution

that attempts to solve every possible problem. From the beginning, the focus

was to design a radio standard with the lowest possible power consumption,

specifically optimized for low cost, low bandwidth, low power, and low

complexity. /2/

15

Figure 3. Configurations Bluetooth Smart /3/

In the ESP32 gateway, BLE technology is used to collect data from nearby BLE-

enabled devices. The gateway acts as a central device that scans for available BLE

peripherals, such as sensors, wearables, or smart home devices, and establishes a

connection with them to retrieve data.

The ESP32 microcontroller, which serves as the core of the custom gateway, has

integrated support for BLE communication, simplifying the implementation

process. The firmware for the gateway is developed to include BLE functionality,

enabling it to scan available peripherals, connect to them, and collect data.

When the gateway receives data from a BLE device, it aggregates the information

and combines it with data collected from LoRa nodes. The aggregated data is then

transmitted to an MQTT server, which facilitates communication with cloud

platforms, analytics tools, or other IoT systems.

16

2.3 LoRa Technology

Long Range (LoRa) technology is a low-power, wide-area network (LPWAN)

technology that enables long-range communication between IoT devices. This

section provides an in-depth overview of the theory behind LoRa technology and

its application in the custom ESP32 gateway, where it serves as a backhaul to

cloud platforms, such as The Things Network.

LoRa is a wireless communication technology that focuses on providing long-

range connectivity, low power consumption, and support for many devices. It

uses a proprietary modulation scheme called Chirp Spread Spectrum (CSS) to

provide robust and scalable communication in challenging environments, such as

urban areas with high interference levels or rural areas with limited network

coverage.

LoRa operates in the sub-GHz frequency bands, which are globally available and

generally unlicensed, eliminating the need for regulatory approval in most cases.

It can achieve a range of up to 15 kilometers in rural areas and several kilometers

in urban environments, depending on factors such as antenna height, output

power, and line-of-sight conditions. (4)

LoRa networks typically consist of end devices (for example, sensors, actuators),

gateways, and a network server. End devices transmit data to gateways using the

LoRa modulation scheme, while gateways forward the received data to the

network server over a backhaul connection, such as Ethernet, Wi-Fi, or cellular

networks. The network server then processes the data and sends it to the

appropriate application server or cloud platform. (4)

17

Table 1 LoRa Specifications /4/

In the custom ESP32 gateway, the primary focus is to collect data from BLE

devices and upload it to an MQTT server. LoRa technology is integrated into the

gateway to serve as a backup communication channel in case the main Internet

connection is disrupted.

To enable this backup communication channel, the gateway is equipped with a

LoRa module, which communicates with LoRaWAN gateways connected to TTN.

When the primary Internet connection is unavailable, the ESP32 microcontroller

interfaces with the LoRa module to transmit the aggregated data from BLE

devices to TTN. /10/

18

2.4 MQTT Protocol

MQTT (Message Queuing Telemetry Transport) is a lightweight, publish-subscribe

messaging protocol designed for efficient communication in IoT applications. This

section provides an overview of the MQTT protocol and its application in the

custom ESP32 gateway, where it is used for transmitting data to cloud platforms

or other IoT systems. /5/

MQTT was developed by IBM in the late 1990s as a protocol for telemetry

systems and has since evolved into a widely used communication protocol for IoT

applications. It operates over TCP/IP, providing a reliable and ordered delivery of

messages between devices. MQTT's publish-subscribe model allows devices to

send (publish) messages to "topics" and receive (subscribe) messages from those

topics, enabling efficient and scalable communication. /5/

The MQTT protocol is designed to be lightweight, with a small code footprint and

minimal bandwidth usage, making it suitable for resource-constrained IoT devices

and low-bandwidth networks. It also provides quality of service (QoS) levels that

enable devices to choose the appropriate level of message delivery assurance

based on their requirements. /5/

Figure 4. MQTT Architecture /5/

19

In the ESP32 gateway, the MQTT protocol is used to transmit data collected from

BLE devices and LoRa nodes to cloud platforms or other IoT systems. The

gateway firmware is developed to include MQTT functionality, allowing it to

connect to an MQTT broker and publish messages containing aggregated data

from the connected devices.

By incorporating the MQTT protocol into the custom gateway, efficient and

scalable communication with cloud platforms and IoT systems can be achieved.

MQTT's lightweight design and quality of service levels make it an ideal choice for

the gateway, ensuring reliable transmission of data while minimizing resource

usage and bandwidth consumption.

20

3 PROOF-OF-CONCEPT (POC) PROTOTYPES

3.1 Prototyping Process

The prototyping process is an essential step in the development of the custom

ESP32 gateway, as it allows for the testing and validation of design concepts,

hardware components, and software functionality. Initially, off-the-shelf

modules, such as an Ethernet module, ESP32 Development Board, and a LoRa

module, were used to create a prototype of the gateway. This prototype serves

as a platform for evaluating the performance and compatibility of the selected

components and assessing their suitability for the final product.

During the prototyping process, various iterations may be developed and tested

to refine the design, optimize the performance, and address any issues that arise.

This iterative process helps to identify potential problems early in the

development cycle and allows for modifications to be made before moving on to

the next stages, such as PCB design.

Figure 5. Proof-of-concept setup

21

3.2 Prototyping Hardware Components

Choosing the appropriate hardware components for the custom ESP32 gateway

is crucial for achieving the desired performance, functionality, and reliability. The

components used in the prototype serve as the basis for the final hardware

selection and integration into the PCB design. The following sections describe the

rationale behind the selection of the main hardware components and their

integration into the PCB design.

3.2.1 ESP32 Development Kit

The ESP32-DevKitC-32U is the core component of the custom gateway due to its

powerful processing capabilities, integrated BLE and Wi-Fi functionalities, and

extensive support for various communication protocols. The ESP32-DevKitC used

in the prototype is incorporated into the PCB design, enabling efficient

multitasking and concurrent processing of multiple tasks while maintaining its

integrated communication capabilities and support for IoT applications. ESP32-

WROOM-32U integrates a connector to connect an external antenna.

Figure 6. ESP32 DevKitC-32U

22

An overview of the specifications of the ESP32-DevKitC-32U used in the prototype.

This helped in understanding the capabilities and features of the ESP32

microcontroller that contribute to the performance of the ESP32 gateway. A

detailed picture of the ESP32-DevKitC-32U specifications is attached below for

reference.

Table 2. ESP32-WROOM-32U Specifications /6/

23

The ESP32-WROOM-32U included in the development kit above was used later in

the PCB design.

Figure 7. ESP32-WROOM-32U module

3.2.2 Ethernet Module

The Ethernet module was selected for its ability to provide a stable and reliable

Internet connection to the custom gateway, ensuring efficient data transmission

to cloud platforms or other IoT systems. The Ethernet module used in the

prototype is integrated into the PCB design, allowing for a compact and efficient

layout while maintaining the benefits of a wired connection, such as higher

reliability and lower latency compared to Wi-Fi. In this case, the LAN8720 ETH

Board was chosen.

Figure 8. LAN8720 ETH module

24

The advantages of the LAN8720 ETH module are:

• High-Performance 10/100 Ethernet Physical Layer Transceiver (PHY)

• Supports single 3.3V supply.

• Supports the reduced pin count RMII interface.

• Supports HP Auto-MDIX

• Onboard chip package: 24-pin QFN (4x4 mm) Lead-Free RoHS Compliant

package

• Flexible Power Management Architecture

• Integrated 1.2V regulator.

• I/O voltage range: +1.6V to +3.6V

3.2.3 LoRa Module

The LoRa module is integrated into the custom gateway to provide long-range

communication capabilities and serve as a backup communication channel in

case the primary Internet connection is disrupted. The LoRa module used in the

prototype is integrated into the PCB design, ensuring a compact and efficient

layout while maintaining the benefits of long-range connectivity. In this case, I

chose the Wio-E5 from SEEED Studio.

Figure 9. Wio-E5 mini development board

25

Wio-E5 mini is a compact-sized development board suitable for the rapid testing

and building of small-size prototyping. Wio-E5 mini is embedded with Wio-E5

STM32WLE5JC Module, which delivers the world-first combo of LoRa® RF and

MCU chip into one single tiny chip and is FCC and CE certified. It is powered by

ARM Cortex-M4 core and Semtech SX126X LoRa® chip and supports LoRaWAN®

protocol on the worldwide frequency and (G)FSK, BPSK, (G)MSK, and LoRa®

modulations. The built-in AT command firmware makes it easy to interact for our

ESP32 gateway application. /7/

The Lora-E5 STM32WLE5JC Module included in the above development kit was

used later in the PCB design (See Figure 10).

Table 3. Wio-E5 specifications /7/

26

Figure 10. LoRa-E5 module /7/

3.3 Connections Table

Table 4. ESP32 to LAN8720A Module

ESP32 DEVKIT LAN8720A ETH module

GPIO5 - PHY_POWER NC - Osc. Enable

GPIO22 - EMAC_TXD1 TX1

GPIO19 - EMAC_TXD0 TX0

GPIO21 - EMAC_TX_EN TX_EN

GPIO26 - EMAC_RXD1 RX1

GPIO25 - EMAC_RXD0 RX0

GPIO27 - EMAC_RX_DV CRS

GPIO00 - EMAC_TX_CLK nINT/REFCLK

GPIO23 - SMI_MDC MDC

GPIO18 - SMI_MDIO MDIO

GND GND

3V3 VCC

27

PHY_POWER, SMI_MDC and SMI_MDIO can freely be moved to other GPIOs.

EMAC_TXD0, EMAC_TXD1, EMAC_TX_EN, EMAC_RXD0, EMAC_RXD1,

EMAC_RX_DV and EMAC_TX_CLK are fixed and can't be rerouted to other GPIOs.

Table 5. ESP32 to Wio-E5

ESP32 DEVKIT WIO-E5 mini

GPIO12 TX

GPIO13 RX

No connection for 3.3 V and GND since the Wio-E5 mini has its own power supply

using USB Type-C.

28

4 PCB DEVELOPMENT

In the development of the custom BLE-LoRa gateway, designing a robust and

efficient Printed Circuit Board (PCB) is crucial. The PCB serves as the backbone of

the electronic device, providing a stable platform for mounting and

interconnecting various components. This chapter will discuss the process of PCB

development, from selecting appropriate design software to creating the

schematic design and routing the connections between components. The PCB

development process aims to create a compact and efficient layout that meets

the requirements of the custom ESP32 gateway while adhering to best practices

and design constraints.

4.1 PCB Block Diagram

Before going into the detailed schematic design and PCB layout, it is essential to

develop a block diagram that represents the placement of components on the

PCB. This block diagram serves as a visual guide for understanding the overall

structure of the custom ESP32 gateway and aids in the organization of

components during the design process. The diagram considers the functional

relationships between the various components, ensuring that their placement on

the PCB is efficient and logical.

A block diagram of the PCB for the custom ESP32 gateway is provided below in

Figure 11, illustrating the arrangement of the ESP32 module, LAN8720A Ethernet

module, Wio E5 LoRa module, and other essential components.

29

Figure 11. PCB Block Diagram

By creating a clear and organized block diagram, the PCB design process is

streamlined, allowing for more effective component placement and routing in

the subsequent stages of development.

4.2 Schematic Design

Creating a thorough schematic diagram that illustrates the connections between

components in the customized ESP32 gateway is part of the schematic design

process. This is an important step in PCB development since it offers a visual

representation of the overall design and ensures that all components are

properly connected before moving on to the PCB layout stage.

30

4.2.1 Ethernet LAN8720A Chip

The LAN8720A is a low-power 10BASE-T/100BASE-TX physical layer (PHY)

transceiver with variable I/O voltage that is compliant with the IEEE 802.3-2005

standards. The LAN8720A/LAN8720Ai supports communication with an Ethernet

MAC via a standard RMII interface. It contains a full-duplex 10-BASE-T/100BASE-

TX transceiver and supports 10Mbps (10BASE-T) and 100Mbps (100BASE-TX)

operation. /9/

Figure 12. LAN8720A system block /9/

The power for the LAN8720A is based on Twisted-Pair Interface Diagram or Dual

power supplies. In this case are name +3.3VLAN and VDDA connecting with a

600-ohm Ferrite Bead (L1).

The power for the LAN8720A is triggered by the PHY_PWR pin wich connected to

GPIO pin 5 in ESP32 MCU. When PHY_PWR is HIGH, in the Q1 Mosfet the GND

(Emitter) pin will connect with the OUT (Collector) pin. When Pin 1 in Mosfet Q4

is connected to GND, the dual power supplies are triggered by connecting to the

+3.3V (See Figure 13).

31

Figure 13. LAN8720A power

For the ethernet transceiver in the case of dual power supply, VDD1A and VDD2A

must connect to VDDA power line, and VDDIO must connect to 3.3VLAN power

line. Other pins have to pull-up to 3.3VLAN or pull-down to GND accordingly.

Figure 14. LAN8720A Transceiver

32

The external clock of LAN8720A is a 50Mhz crystal clock connecting to pin XTAL1

and triggered by PHY_PWR pin.

Another use case was designed for the CLK of LAN8720A. In this case the external

50Mhz clock is not used but. The nINT/REFCLK pin which connects to the GPIO0

of ESP32 module can be used, because the internal CLK in ESP32 through GPIO0

can be shared.

Figure 15. REF CLK for LAN8720A

We can choose the CLK for the LAN8720A module:

• By pull-up the PHY_LED_GREEN to VDDA, the external 50Mhz CLK is being

used with input through XTAL1 pin.

• By pull-down the PHY_LED_GREEN to GND, the internal CLK of ESP32 to

GPIO1 is being used with input through nINT/REFCLKO pin.

Figure 16. RJ45 to LAN8720A

33

4.2.2 USB-C to UART CP2104 Chip

The CP2104 is a highly integrated USB-to-UART Bridge Controller providing a

simple solution for updating RS-232/RS-485 designs to USB using a minimum of

components and PCB space. The CP2104 includes a USB 2.0 full-speed function

controller, USB transceiver, oscillator, one-time programmable ROM, and

asynchronous serial data bus (UART) with full modem control signals in a

compact 4 x 4 mm QFN-24 package (sometimes called “MLF” or “MLP”). No

other external USB components are required.

Figure 17. CP2104 chip

The connection is based on the datasheet of the CP2104 chip, the CP2104

includes an on-chip 5.0 to 3.45 V voltage regulator. This allows the CP2104 to be

configured as either a USB bus-powered device or a USB self-powered device.

When enabled, the voltage regulator output appears on the VDD pin and can be

used to power external devices. RXD pin connects to pin RX in ESP32, TXD to TX.

34

4.2.3 Power Management

The VUSB_UNSWITCHED, VBUS is connected to a power switch to control the

power of the board.

Figure 18. Power switch

A linear regulator was added to lower the output voltage from 5V to 3.3V. The

3.3V pin out of the regulator will be the power supply for the +3.3V layer of the

board since this is the 4 layers PCB.

Figure 19. Circuit power

35

4.2.4 ESP32 MCU and Lora Module

The ESP32-WROOM-32U with flash size 16Mb, all connection in and out to the
ESP32 in Figure 25.

Figure 20. ESP32 Pin IN/OUT

The LoRa-E5 module connects to the ESP32 with 3 pins PB7, PB6 and RST. The core

of LoRa module is an STM32 MCU, which can be flashed with customized firmware

using the SWDIO, SWCLK pin.

Figure 21. LoRa circuit

36

4.2.5 Peripherals

The Uart Switch is for debugging purposes, if several ESP32 connect to the

computer, sometimes choosing the COM port for uploading firmware can be

confusing. An Uart Switch is designed so that when the ESP32 gateway is not in

uploading mode, it can be turned OFF. LORA mode is for testing with the LoRa

module first before uploading the setting to ESP32, with Serial Terminal software

like RealTerm or Putty.

Figure 22. UART switch

The Status LED using an addressable LED, its only need 1 GPIO pin to control the

3 LEDs, the porwer use is 5V which is VUSB. Other connections for External

Antennas and SWD pin out for LoRa firmware.

Figure 23. Peripherals

37

4.3 PCB Layout

Before starting with the PCB layout and routing, we must set the design rules for

the PCB that fits the PCB manufacture capabilities which in this case is JLC PCB.

Figure 24. Design rules

 The next step is the Layer Manager, 4 layers PCB were used. PCB with layer 1

and 4 are signal layer, layer 2 is +3.3V and layer 3 for GND.

Figure 25. PCB layers

38

Figures 26 and 27 show the finished layout, routing and 3D view of the PCB.

Figure 26. PCB layout

Figure 27. PCB 3D viewer

39

4.4 PCB Assembled and Testing

Components were soldered to the PCB using a hot air gun for SMT parts and

solder iron for through-hole parts.

Figure 28. PCB unassembled

Figure 29. PCB assembled top

40

Figure 30. PCB assembled front

The next step was testing the PCB with our firmware, to see all the parts and

modules working as expected and fixing the problems.

After testing, a multimeter was used for checking values. Two problems were

found, and they are fixed as shown below.

Problem 1: USB to UART CP2104 was working but the firmware could not be

uploaded to the ESP32. The reason was the ESP32 only enters the uploading

mode when GPIO 0 is LOW, but there was a mistake in the schematic that made

this GPIO 0 pin pull-up to +3.3V.

The problems were fixed by removing the R6 resister and soldering an external

wire between GPIO 0 and the “right” pad of R6 footprint, following shown in

Figure 31 below.

Figure 31. PCB problem 1

41

Problem 2: UART switch was not working for LORA mode. The reason for this was

there was a wrong pin for LORA_RX and LORA_TX in the schematic, it is supposed

to be opposite, as in Figure 32.

Figure 32. PCB problem 2

This LORA mode is optional, and we can still use UART2 of the ESP32 to do the

testing with LORA module, it was decided to leave it that way.

Howerver, there is one way to fix this by soldering some external wires. Since we

have the OFF mode which are blank pins with no connection, we can wire it as in

Figure 33 below, and now the OFF mode turns into LORA mode and LORA mode

can be left unused.

Figure 33. FIxed PCB problem 2 layout

42

We can wire it in the back of the board to keep the “aesthetic” look of the front

PCB.

Figure 34. Fixed PCB problem 2 back

After fixing all the problems, the board is fully functional and ready.

Figure 35. Fully functional PCB

43

5 FIRMWARE DEVELOPMENT

The firmware of the custom ESP32 gateway serves as a software foundation that

controls and manages the functionality of the device. It enables communication

between the hardware components and implements the use case topology

designed during the hardware development phase (Figure 1). In this chapter, an

overview of the firmware development process, along with a visual

representation, will be provided.

5.1 BLE Beacon Gateway Setup

The BLE beacon gateway can automatically detect any BLE Beacons nearby, but

this firmware focuses on iBeacon and Eddystone beacon frametype. BLE beacon is

a broadcaster type, which means that it does not require making connections to

get the data from them (as BLE GATT devices do), it will advertise data packet to

the surrounding at regular intervals. The ESP32 gateway scans for the advertise

packets and decodes them according to the beacon frametype, collects data from

them, and then passes data using Ethernet/ LoRa module to the server by MQTT

protocols and LoRa server.

 The gateway can scan for every iBeacon or Eddystone beacon in range but only

send their data to MQTT topics or LoRa server when it matches the beacon MAC

address (each Beacon has a unique MAC address).

 The BLE Beacon Gateway setup is shown in Figure 36.

44

Figure 36. BLE beacons Gateway setup

In the testing setup, there were 3 BLE beacons, node 1 and node 2 (mark in

Figure 41) are Eddystone beacons frametype, the advertise packet included a

temperature and battery level whose the values been generated by random

function. Node 3 (mark in Figure 41) is an iBeacon frametype that include

manufature ID and an RSSI value to estimate the power signal.

The ESP32 with Ethernet connected, the 3 status LEDs were: GREEN for MQTT

server connection, BLUE for BLE connection and RED for LORA connection. Status

LEDs will blink WHITE color every time the connections get data in or out.

The Wio-E5 LoRa module with the long antenna connected to PC, was used as a

LoRa Gateway to replace the use case of The Thing Networks since there are no

nearby TTN Gateway in the region of Vaasa. The Lora module will receive data

sent from the ESP32 gateway and decode the data and print it to Serial Monitor.

45

5.2 Firmware

The source code includes four main files: the main code (main.ino) for scanning

BLE beacons and decode them, the MQTT settings (mqtt.h) and topic, the lora

settings (lora.h) and other settings (settings.h).

5.2.1 Main Code (main.ino)

The library includes: the necessary libraries for handling HTTP requests, BLE

devices, MQTT communication, LED control, and LoRa communication are

included.

#include <HTTPClient.h>

#include <Arduino.h>

#include <BLEDevice.h>

#include <BLEUtils.h>

#include <BLEScan.h>

#include <BLEAdvertisedDevice.h>

#include <BLEEddystoneURL.h>

#include <BLEEddystoneTLM.h>

#include <BLEBeacon.h>

#include "mqtt.h"

#include "led.h"

#include "settings.h"

#include "lora.h"

Listing 1. Libraries for main.ino

Global variables and objects were scanTime and pBLEScan, defined to control the

BLE scanning process. MyAdvertisedDeviceCallbacks class was derived from

BLEAdvertisedDeviceCallbacks to handle the discovered BLE devices.

nt scanTime = 5; //In seconds

BLEScan *pBLEScan;

class MyAdvertisedDeviceCallbacks : public BLEAdvertisedDeviceCallbacks

Listing 2. Scan times

46

MyAdvertisedDeviceCallbacks::onResult: This method is called when a new BLE

device is discovered. It handles two types of BLE devices: iBeacons and Eddystone

beacons. When a device is found, it processes its data, checks the device's MAC

address, and calls the appropriate functions to send data to the MQTT server and

over LoRa.

if (advertisedDevice.haveManufacturerData() == true)

 {

 std::string strManufacturerData = advertisedDevice.getManufacturerData();

 uint8_t cManufacturerData[100];

 strManufacturerData.copy((char *)cManufacturerData, strManufacturerData.length(),

0);

 if (strManufacturerData.length() == 25 && cManufacturerData[0] == 0x4C &&

cManufacturerData[1] == 0x00)

 {

 int rssi = advertisedDevice.getRSSI();

 Serial.println("Found an iBeacon!");

 BLEBeacon oBeacon = BLEBeacon();

 oBeacon.setData(strManufacturerData);

 Serial.printf("iBeacon Frame\n");

 Serial.printf("ID: %04X Major: %d Minor: %d UUID: %s Power: %d RSSi: %d\n",

oBeacon.getManufacturerId(), ENDIAN_CHANGE_U16(oBeacon.getMajor()),

ENDIAN_CHANGE_U16(oBeacon.getMinor()),

oBeacon.getProximityUUID().toString().c_str(), oBeacon.getSignalPower(), rssi);

 Serial.println("\n");

 std::string deviceAddress = advertisedDevice.getAddress().toString();

 if (deviceAddress == iBeaconMacAddress) {

 sendMqttiBeacon(deviceAddress.c_str(), oBeacon.getManufacturerId(),

ENDIAN_CHANGE_U16(oBeacon.getMajor()), ENDIAN_CHANGE_U16(oBeacon.getMinor()),

oBeacon.getProximityUUID().toString().c_str(), oBeacon.getSignalPower(), rssi);

 bleBlink();

 sendLoRaiBeacon(deviceAddress.c_str(), oBeacon.getManufacturerId(),

ENDIAN_CHANGE_U16(oBeacon.getMajor()), ENDIAN_CHANGE_U16(oBeacon.getMinor()),

oBeacon.getProximityUUID().toString().c_str(), oBeacon.getSignalPower(), rssi);

 }

 }

 }

 uint8_t *payLoad = advertisedDevice.getPayload();

 const uint8_t serviceDataEddystone[3] = {0x16, 0xAA, 0xFE};

 const size_t payLoadLen = advertisedDevice.getPayloadLength();

 uint8_t *payLoadEnd = payLoad + payLoadLen - 1;

 while (payLoad < payLoadEnd) {

 if (payLoad[1] == serviceDataEddystone[0] && payLoad[2] == serviceDataEddystone[1]

&& payLoad[3] == serviceDataEddystone[2]) {

47

 // found!

 payLoad += 4;

 break;

 }

 payLoad += *payLoad + 1;

 }

 if (payLoad < payLoadEnd)

 {

 if (*payLoad == 0x10)

 {

 Serial.println("Found an EddystoneURL beacon!");

 BLEEddystoneURL foundEddyURL = BLEEddystoneURL();

 uint8_t URLLen = *(payLoad - 4) - 3;

 foundEddyURL.setData(std::string((char*)payLoad, URLLen));

 std::string bareURL = foundEddyURL.getURL();

 if (bareURL[0] == 0x00)

 {

 Serial.println("DATA-->");

 uint8_t *payLoad = advertisedDevice.getPayload();

 for (int idx = 0; idx < payLoadLen; idx++)

 {

 Serial.printf("0x%02X ", payLoad[idx]);

 }

 Serial.println("\nInvalid Data");

 return;

 }

 Serial.printf("Found URL: %s\n", foundEddyURL.getURL().c_str());

 Serial.printf("Decoded URL: %s\n", foundEddyURL.getDecodedURL().c_str());

 Serial.printf("TX power %d\n", foundEddyURL.getPower());

 Serial.println("\n");

 }

 else if (*payLoad == 0x20)

 {

 Serial.println("Found an EddystoneTLM beacon!");

 BLEEddystoneTLM eddystoneTLM;

 eddystoneTLM.setData(std::string((char*)payLoad, 14));

 float roundedTemp = round(eddystoneTLM.getTemp() * 100.0) / 100.0;

 Serial.printf("Reported battery voltage: %dmV\n", eddystoneTLM.getVolt());

 Serial.printf("Reported temperature: %.2f°C (raw data=0x%04X)\n",

eddystoneTLM.getTemp(), eddystoneTLM.getRawTemp());

 Serial.printf("Reported advertise count: %d\n", eddystoneTLM.getCount());

 Serial.printf("Reported time since last reboot: %ds\n", eddystoneTLM.getTime());

 Serial.println("\n");

 String scannedUUID = advertisedDevice.getServiceUUID().toString().c_str();

 std::string deviceAddress = advertisedDevice.getAddress().toString();

 if (deviceAddress == EddyMacAddress1) {

 sendEddystoneTlmMqttMessage1(deviceAddress.c_str(), scannedUUID,

eddystoneTLM.getVolt(), roundedTemp, eddystoneTLM.getCount(),

eddystoneTLM.getTime());

48

 sendLoRaEddystoneTlm1(deviceAddress.c_str(), scannedUUID,

eddystoneTLM.getVolt(), roundedTemp, eddystoneTLM.getCount(),

eddystoneTLM.getTime());

 bleBlink();

 }

 else if (deviceAddress == EddyMacAddress2) {

 sendEddystoneTlmMqttMessage2(deviceAddress.c_str(), scannedUUID,

eddystoneTLM.getVolt(), roundedTemp, eddystoneTLM.getCount(),

eddystoneTLM.getTime());

 sendLoRaEddystoneTlm2(deviceAddress.c_str(), scannedUUID,

eddystoneTLM.getVolt(), roundedTemp, eddystoneTLM.getCount(),

eddystoneTLM.getTime());

 bleBlink();

 }

Listing 3. Decode beacons

setup(): initializes the status LEDs, serial communication, BLE scanning with

custom callbacks, MQTT, and LoRa.

void setup()

{

 initStatusLeds();

 updateLed(0, CRGB::Red);

 updateLed(1, CRGB::Blue);

 Serial.begin(115200);

 Serial.println("Scanning...");

 BLEDevice::init("");

 pBLEScan = BLEDevice::getScan();

 pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks());

 pBLEScan->setActiveScan(true);

 pBLEScan->setInterval(100);

 pBLEScan->setWindow(99);

 mqttInit();

 loraInit();

}

Listing 4. BLE setups

49

loop(): The main loop starts the BLE scanning process, waits for the specified scan

time, clears the results, and repeats the process every 2 seconds.

void loop()

{

 BLEScanResults foundDevices = pBLEScan->start(scanTime, false);

 Serial.println("Scan done!\n");

 pBLEScan->clearResults();

 delay(2000);

}

Listing 5. Main loop

5.2.2 MQTT settings (mqtt.h)

MQTT settings.h include the following files and declarations: The required header

files are included, and the AsyncMqttClient and TimerHandle_t instances are

declared.

#include <WiFi.h>

extern "C" {

 #include "freertos/FreeRTOS.h"

 #include "freertos/timers.h"

}

#include <AsyncMqttClient.h>

#include <ArduinoJson.h>

#include <BLEBeacon.h>

#include "settings.h"

#include "led.h"

Listing 6. MQTT libraries

50

 The MQTT and Ethernet connection functions are shown in Listing 7:

void connectToMqtt() {

 Serial.println("Connecting to MQTT...");

 mqttClient.connect();

}

void connectEthernet() {

 bool result = ETH.begin(ETH_ADDR, ETH_POWER_PIN, ETH_MDC_PIN, ETH_MDIO_PIN,

ETH_TYPE, ETH_CLK_MODE, true);

 if (!result) {

 Serial.println("ETH Init failed");

 }

}

Listing 7: ETH and MQTT connect

Message publishing functions:

• publishMessageiBeacon(): publishes an iBeacon message to the

specified MQTT topic.

• publishMessageEddy1(): publishes an EddystoneTLM message to

the specified MQTT topic.

• publishMessageEddy2(): publishes an EddystoneTLM message to

another specified MQTT topic.

void publishMessageiBeacon(String message) {

 mqttClient.publish(MQTT_TOPIC_SEND, 0, true, message.c_str());

}

void publishMessageEddy1(String message) {

 mqttClient.publish(MQTT_TOPIC_SEND_2, 0, true, message.c_str());

}

void publishMessageEddy2(String message) {

 mqttClient.publish(MQTT_TOPIC_SEND_3, 0, true, message.c_str());

}

Listing 8. MQTT pubblish

51

 The Message sending functions are:

• sendMqttiBeacon(): sends an iBeacon message to the MQTT server.

• sendEddystoneTlmMqttMessage1(): sends an EddystoneTLM

message to the MQTT server.

void sendMqttiBeacon(const char *mac, uint16_t ID, uint16_t major, uint16_t minor, const

char* uuid, int8_t signalPower, int rssi) {

 if (mqttClient.connected()) {

 DynamicJsonDocument doc(200);

 doc["MAC"] = mac;

 doc["ID"] = ID;

 doc["Major"] = major;

 doc["Minor"] = minor;

 doc["UUID"] = uuid;

 doc["SignalPower"] = signalPower;

 doc["RSSI"] = rssi;

 String message;

 serializeJson(doc, message);

 publishMessageiBeacon(message);

 mqttBlink();

 } else {

 Serial.println("MQTT is not connected. Discarding message");

 }

}

void sendEddystoneTlmMqttMessage1(const char *mac, String uuid, uint16_t

batteryVoltage, float temperature, uint32_t advertiseCount, uint32_t timeSinceReboot) {

 if (mqttClient.connected()) {

 DynamicJsonDocument doc(200);

 doc["MAC"] = mac;

 doc["UUID"] = uuid;

 doc["BatteryVoltage"] = batteryVoltage;

 doc["Temperature"] = temperature;

 doc["AdvertiseCount"] = advertiseCount;

 doc["TimeSinceReboot"] = timeSinceReboot;

 String message;

 serializeJson(doc, message);

 publishMessageEddy1(message);

 mqttBlink();

 } else {

 Serial.println("MQTT is not connected. Discarding message");

 }

}

Listing 9. Send to MQTT

52

5.2.3 LoRa Settings (lora.h)

loraInit(): Initializes the LoRa module by setting up Serial communication and

configuring the LoRa module with the required settings.

 Serial1.begin(9600, SERIAL_8N1, LORA_RXD, LORA_TXD, false);

 Serial.print("LORA start\r\n");

 at_send_check_response("+AT: OK", 1000, "AT\r\n");

 at_send_check_response("+MODE: TEST", 1000, "AT+MODE=TEST\r\n");

 at_send_check_response("+TEST: RFCFG", 1000, "AT+TEST=RFCFG,868,SF7,125,8,8,

14,ON,OFF,OFF\r\n");

 delay(200);

Listing 10. Lora settings

toHexString(const String &input): Converts a given string into a hex string, which

is used for sending data over LoRa.

String toHexString(const String &input)

{

 String hexString = "";

 for (size_t i = 0; i < input.length(); ++i)

 {

 hexString += String(input.charAt(i), HEX);

 }

 return hexString;

}

Listing 11. String to HEX

53

sendLoRaiBeacon(): Sends an iBeacon message over LoRa with the given

parameters, such as MAC address, ID, major and minor values, UUID, signal

power, and RSSI.

void sendLoRaiBeacon(const char *mac, uint16_t ID, uint16_t major, uint16_t minor, const

char *uuid, int8_t signalPower, int rssi)

{

 // Check if it's time to send a LoRa message (every 2 minutes)

 if (millis() - lastLoRaSent >= 0) {

 char cmd[512];

 DynamicJsonDocument doc(256);

 doc["MAC"] = mac;

 doc["ID"] = ID;

 doc["Major"] = major;

 doc["Minor"] = minor;

 doc["UUID"] = uuid;

 doc["SignalPower"] = signalPower;

 doc["RSSI"] = rssi;

 String jsonString;

 serializeJson(doc, jsonString);

 String hexString = toHexString(jsonString);

 sprintf(cmd, "AT+TEST=TXLRPKT,\"%s\"\r\n", hexString.c_str());

 int ret = at_send_check_response("+TEST: TXLRPKT", 5000, cmd);

 if (ret)

 Serial.println("Sent lora iBeacon.\n");

 else

 Serial.println("Send failed!\r\n\r\n");

 loraBlink();

 // Update the last time a LoRa message was sent

 lastLoRaSent = millis();

 }

}

Listing 12. Lora iBeacon

54

sendLoRaEddystoneTlm1(): Sends an Eddystone TLM (Telemetry) message (type

1) over LoRa with the given parameters, such as MAC address, UUID, battery

voltage, temperature, advertise count, and time since reboot.

void sendLoRaEddystoneTlm1(const char *mac, String uuid, uint16_t batteryVoltage, float

temperature, uint32_t advertiseCount, uint32_t timeSinceReboot)

{

 // Check if it's time to send a LoRa message (every 2 minutes)

 if (millis() - lastLoRaSent >= 0) {

 char cmd[512];

 DynamicJsonDocument doc(256);

 doc["MAC"] = mac;

 doc["UUID"] = uuid;

 doc["BatteryVoltage"] = batteryVoltage;

 doc["Temperature"] = temperature;

 doc["AdvertiseCount"] = advertiseCount;

 doc["TimeSinceReboot"] = timeSinceReboot;

 String jsonString;

 serializeJson(doc, jsonString);

 String hexString = toHexString(jsonString);

 sprintf(cmd, "AT+TEST=TXLRPKT,\"%s\"\r\n", hexString.c_str());

 int ret = at_send_check_response("+TEST: TXLRPKT", 5000, cmd);

 if (ret)

 Serial.println("Sent lora Eddystone 1.\n");

 else

 Serial.println("Send failed!\r\n\r\n");

 loraBlink();

 // Update the last time a LoRa message was sent

 lastLoRaSent = millis();

 }

}

Listing 13. Lora Eddystone beacon

55

5.2.4 Other Settings (setting.h)

Other settings for Ethernet, MQTT server, the MAC addresses of the BLE Beacons

and LoRa connections.

#include <ETH.h>

// Ethernet settings

#define ETH_CLK_MODE ETH_CLOCK_GPIO16_OUT

#define ETH_POWER_PIN 5

#define ETH_TYPE ETH_PHY_LAN8720

#define ETH_ADDR 0

#define ETH_MDC_PIN 23

#define ETH_MDIO_PIN 18

// MQTT Settings

#define MQTT_HOST IPAddress(192, 168, 0, 103)

#define MQTT_PORT 1883

#define MQTT_TOPIC_SEND "BLEtoMQTT/iBeacon"

#define MQTT_TOPIC_SEND_2 "BLEtoMQTT/Eddystone1"

#define MQTT_TOPIC_SEND_3 "BLEtoMQTT/Eddystone2"

// BLE beacons MAC addresses

const std::string iBeaconMacAddress = "b8:d6:1a:5c:1e:c6";

const std::string EddyMacAddress1 = "30:ae:a4:19:78:56";

const std::string EddyMacAddress2 = "30:ae:a4:1e:98:62";

// LoRa Settings

#define LORA_RXD 12

#define LORA_TXD 13

// LED Settings

#define ESP_LED_PIN 32

#define LED_COUNT 3

#define CHANNEL 0

Listing 14. Source code settings

56

The LED status settings are shows in Listing 15.:

// Lora status

void loraBlink(){

 updateLed(0, CRGB::White);

 delay(150);

 updateLed(0, CRGB::Red);

}

// BLE status

void bleBlink(){

 updateLed(1, CRGB::White);

 delay(150);

 updateLed(1, CRGB::Blue);

}

// MQTT status

void mqttBlink(){

 updateLed(2, CRGB::White);

 delay(150);

 updateLed(2, CRGB::Green);

}

Listing 15. Status LEDS settings

5.3 Results

5.3.1 MQTT Data and Vizualization

In Figure 37, the result of data collected is shown on MQTT server, three topics had

been created, each for one beacon. A simple dashboard was made using Node-RED

to demonstrate the use of data collected.

57

Figure 37. MQTT data collected

58

The Node-Red Dashboard is shown in Figure 38.

Figure 38. Node-Red Dashboard

The data collected from Eddystone beacons can be used to indicate temperature,

chart, battery level. While the iBeacon is usually used for proximity applications,

for example, the iBeacon can be used to trigger a LED when it is near the ESP32

Gateway.

59

5.3.2 Lora Server Data

There is no available Gateway from The Thing Networks to connect to in the region

of Vaasa. To demonstrate the use case of LoRa module that acts as a backhaul

channel to The Thing Networks LoRaWAN server, Wio-E5 lora devkit as a gateway

was used, connected to a PC. The Devkit receives the data from the ESP32

Gateway, decodes them by a short Python script and prints them to the console

log. An important note is this just “pure” Lora or just PHY layer, which means that

every listener on the same channel can receive our message and no security was

added.

Figure 39. LoRa server data

60

The Python script was used to decode the data received from the ESP32 Gateway

to JSON string since the Lora module only sends HEX data.

import serial

import json

import codecs

def hex_to_string(hex_string):

 return codecs.decode(hex_string, 'hex').decode('utf-8')

def parse_received_data(data):

 # Remove +TEST: RX and quotes from the received string

 cleaned_hex_string = data[11:-1]

 json_string = hex_to_string(cleaned_hex_string)

 try:

 json_data = json.loads(json_string)

 return json_data

 except json.JSONDecodeError:

 print("Error decoding JSON")

 return None

def main():

 port = "COM12"

 baudrate = 9600

 ser = serial.Serial(port, baudrate, timeout=1)

 while True:

 data = ser.readline().decode('utf-8').strip()

 if data.startswith("+TEST: RX"):

 json_data = parse_received_data(data)

 if json_data is not None:

 print(json.dumps(json_data, indent=2))

if __name__ == "__main__":

 main()

Listing 16. Decode Python Script

61

6 CONCLUSIONS

The primary objective of this project was to create a low-cost and effective BLE

gateway using the ESP32 chipset. Despite some challenges in the hardware

design, all the goals have been achieved with satisfactory performance in terms

of topology design, range, and data throughput. The project can be considered

successful in delivering a functional BLE gateway that meets the intended criteria.

From an electronic point of view, there were some mistakes in the schematic that

could be addressed in future iterations of the project. By refining the hardware

design and correcting these errors, the performance and reliability of the BLE

gateway could be further improved. Additionally, optimizing the selection of

components and their placement on the PCB could contribute to a reduction in

the bill of materials (BOM) cost.

In terms of software and firmware optimization, future work may involve

enhancing the efficiency of the algorithms, improving power consumption, and

exploring the possibility of incorporating additional features, such as support for

multiple communication protocols or advanced security measures. These

improvements could provide users with a more versatile and robust solution for

their wireless communication needs.

Moreover, it would be valuable to conduct comprehensive testing in various real-

world scenarios, which would allow for the identification of potential areas for

improvement and the assessment of the performance of the gateway under

different conditions. This would ultimately lead to the development of a more

robust and reliable BLE gateway that meets the diverse requirements of users in

various contexts.

62

In conclusion, the project has laid a solid solution for the development of

affordable and high-performing BLE gateways. By addressing the identified

limitations and incorporating the suggested improvements, there is significant

potential for continued innovation and growth in the field of wireless

communication technology. The project had highlighted the viability of ESP32-

based solutions for creating cost-effective and efficient BLE gateways, opening

new possibilities for the future of wireless connectivity.

63

REFERENCES

/1/ What is a Bluetooth Gateway? Complete Guide 2023. Accessed 12.04.2023.

https://www.dusuniot.com/blog/what-is-a-bluetooth-gateway/

/2/ Bluetooth SIG, Inc. (2021). Bluetooth Core Specification. Accessed 18.04.2023.

https://www.bluetooth.com/specifications/bluetooth-core-specification/

/3/ Nordic Semiconductor. (2021). Bluetooth Low Energy - Introduction. Accessed

12.04.2023. https://www.nordicsemi.com/Products/Low-power-short-range-

wireless/Bluetooth-low-energy-LE

/4/ LoRa Alliance. (2021). LoRaWAN Specification. Accessed 04.05.2023.

https://lora-alliance.org/resource-hub/lorawanr-specification-v102

/5/ MQTT.org. (2021). MQTT Protocol. Accessed 13.04.2023. https://mqtt.org/

/6/ NXP Semiconductors. (2021). ESP32 Series Datasheet. Accessed 13.04.2023.

https://www.nxp.com/products/wireless-connectivity/2-4-ghz-solutions/esp32-

series-datasheet:P-DS-ESP32-SERIES

/7/ Wio-E5 module. Accessed 13.04.2023.

Wio-E5 STM32WLE5JC lora module, embedded SX126X and MCU for LoRaWAN

Wireless Sensor Network & IoT devices - EU868 & US915 - Seeed Studio

/8/ Semtech Corporation. (2021). LoRa Modulation Basics. Accessed 04.05.2023.

https://www.semtech.com/products/wireless-rf/lora-

transceivers/applications/LoRa-Modulation-Basics

/9/ Microchip's LAN8720A/LAN8720Ai datasheet. Accessed 13.04.2023.

LAN8720A | Microchip Technology

/10/ The Things Network. (2021). LoRaWAN Gateway. Accessed 04.05.2023.

https://www.thethingsnetwork.org/docs/gateways/

https://www.nxp.com/products/wireless-connectivity/2-4-ghz-solutions/esp32-series-datasheet:P-DS-ESP32-SERIES
https://www.nxp.com/products/wireless-connectivity/2-4-ghz-solutions/esp32-series-datasheet:P-DS-ESP32-SERIES
https://www.seeedstudio.com/LoRa-E5-Wireless-Module-p-4745.html
https://www.seeedstudio.com/LoRa-E5-Wireless-Module-p-4745.html
https://www.semtech.com/products/wireless-rf/lora-transceivers/applications/LoRa-Modulation-Basics
https://www.semtech.com/products/wireless-rf/lora-transceivers/applications/LoRa-Modulation-Basics
https://www.microchip.com/en-us/product/LAN8720A

64

APPENDIX I

Schematic Design

65

APPENDIX II

PCB Layout

66

