

Kirill Zateishchikov

Scaling a Software Platform Using Micro

Frontends

Technology and Communication
2023

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Kirill Zateishchikov
Title Scaling a Software Platform Using Micro Frontends
Year 2023
Language English
Pages 38
Name of Supervisor Mikael Jakas

In the modern era of web development, monolithic frontend applications are of-
ten challenged by issues of scale, maintainability, and efficiency. This thesis in-
vestigates the innovative approach of using micro frontends, a design pattern
which breaks down a frontend monolith into manageable, independent compo-
nents, thereby improving scalability in the software development process. The
primary aim of this thesis is to evaluate the efficiency of micro frontends in im-
proving scalability and efficiency of large-scale web applications.

The methodology employed to explore this paradigm comprises an in-depth
study of the core principles of micro frontends, examination of various imple-
mentation strategies, and a comprehensive analysis of technical challenges and
solutions. A practical case of an industrial automation platform was undertaken
to provide practical insights into the application of micro frontends.

The research successfully evaluated the efficiency of micro frontends in improv-
ing the scalability of large-scale web applications, resulting in the development of
a demo application. This was substantiated by a case study on an industrial auto-
mation platform and an in-depth analysis of various implementation strategies
and challenges.

Keywords Web programming, software architecture, and JavaScript

CONTENTS

ABSTRACT

1 INTRODUCTION .. 6

1.1 Motivation .. 6

1.2 Scope .. 7

1.3 Objective ... 7

2 MICRO FRONTENDS .. 8

2.1 What are Micro Frontends? .. 8

2.2 Micro Frontend Architecture .. 9

2.3 Upsides of Micro Frontends .. 9

2.4 Downsides of Micro Frontends ... 10

2.5 When Micro Frontends are Beneficial? .. 12

3 TECHNICAL IMPLEMENTATIONS OF MICRO FRONTENDS 14

3.1 Composition via Ajax .. 14

3.1.1 Overview ... 14

3.1.2 Benefits ... 14

3.1.3 Drawbacks ... 15

3.2 Server-Side Composition .. 15

3.2.1 Overview ... 15

3.2.2 Benefits ... 16

3.2.3 Drawbacks ... 16

3.3 Composition via Webpacks’s Module Federation 17

3.3.1 Overview ... 17

3.3.2 Benefits ... 17

3.3.3 Drawbacks ... 18

3.4 Communication Patterns .. 18

4 MIGRATING TO MICRO FRONTENDS .. 21

4.1 Concepts ... 21

4.2 Common Strategies .. 22

4.2.1 Strangler Pattern ... 22

4.2.2 Parallel Run ... 24

4.2.3 Iterative Replacement ... 24

5 WEBPACK MODULE FEDERATION .. 26

6 DEMO APPLICATION ... 29

6.1 Notes on the Initial Application .. 30

6.2 Transition .. 32

6.3 Micro frontends as Web Components .. 37

1. Wrap the micro frontend in a Web Component 37

2. Expose the module using Module Federation 38

3. Load Custom Elements into the shell application. 40

6.1 Using other frameworks ... 41

7 CONCLUSION .. 43

REFERENCES .. 44

5

 FIGURES AND TABLES

Figure 1. Relationships between Web Components (Geers, 2020). 8

Figure 2. Diagram showing Strangler Pattern ... 23

Figure 3. Diagram showing Iterative Replacement Pattern 25

Figure 4. Compile-time and Runtime Dependencies .. 26

Figure 5. Example usage of BroadcastChannel API ... 29

Figure 6. The main page of the monolithic Demo application 31

Figure 7. The file structure of the monolithic Demo application 32

Figure 8. Shell application's webpack.config.ts .. 33

Figure 9. Initial state of the Shell application ... 34

Figure 10. Real-time monitoring micro frontend ... 35

Figure 11. Micro frontend's webpack.config.ts .. 36

Figure 12. Exposing standalone Angular application as a Web Component 38

Figure 13. Exposing a Web Component using Webpack 39

Figure 14. Wrapping an external Web Component .. 40

Figure 15. Angular 15 running inside Angular 16 .. 41

Figure 16. Exposing React component as a Web Component 42

Figure 17. React running inside Angular. .. 42

1 INTRODUCTION

1.1 Motivation

The concept of "micro frontends" is a recent innovation in the field of software

architecture that aims to tackle the challenges faced by traditional monolithic ap-

plications. Similar to microservices, micro frontends promote scalability, availabil-

ity, and flexibility by breaking down a monolithic application into smaller, inde-

pendent components.

In the past, monolithic applications were developed as a single entity, but as the

codebase grew and new features were added, the development and maintenance

of the code became increasingly difficult and time-consuming. This resulted in a

rise in software maintenance costs for businesses and made the system increas-

ingly complex to manage (Gilbert, 2021).

Micro frontends aim to solve these challenges by dividing the monolithic applica-

tion into smaller, self-contained components that are constructed along business

capabilities. This provides a clearer view of the functionality and allows for multi-

ple teams to work on different components simultaneously, increasing flexibility

and speed of development. The independent deployability of micro frontends also

allows for faster and easier updates and maintenance of the system.

However, just like microservices, the use of micro frontends is not always the best

solution for every project. Before deciding on this architecture, it is important to

consider the benefits and potential drawbacks to ensure that it aligns with the

project goals and requirements. Micro frontends can bring advantages such as im-

proved scalability, availability, and flexibility, but also come with trade-offs such

as increased complexity and higher development costs.

Micro frontends are a promising solution for addressing the challenges faced by

monolithic applications, but it is crucial to carefully weigh the benefits and poten-

tial drawbacks before deciding if it is the right architecture for a project. The use

7

of micro frontends can bring numerous benefits, but it's essential to consider if it

aligns with the goals and requirements of the project.

1.2 Scope

The scope of this thesis focuses on the process of transitioning a monolithic Angu-

lar application to micro frontends. The transition from a monolithic architecture

to micro frontends presents a significant challenge for many organizations. It in-

volves breaking down a large, complex system into smaller, independent compo-

nents that can be developed and maintained separately. This requires a deep un-

derstanding of the existing system, its dependencies, and the business require-

ments.

1.3 Objective

The objective of this thesis is to provide a comprehensive guide for organizations

looking to transition their monolithic Angular applications to micro frontends. This

will include an analysis of the current system, identification of suitable micro

frontend architecture patterns, and a step-by-step guide for implementing the

transition. The thesis will also highlight the benefits and challenges of transitioning

to micro frontends, as well as provide recommendations for overcoming these

challenges. The end goal is to provide organizations with a clear understanding of

the process and the tools required to successfully transition their monolithic An-

gular applications to micro frontends.

2 MICRO FRONTENDS

2.1 Understanding Micro Frontends

Micro frontends refer to a software development pattern that involves dividing a

monolithic frontend application into smaller, self-contained components, thereby

breaking down the complexities and dependencies typically associated with large-

scale applications. This design approach emphasizes modularity and reusability,

enabling developers to create and maintain discrete sections of the user interface

with greater ease and efficiency. Each micro frontend is responsible for a specific

aspect of the application's user interface, from handling user interactions and dis-

playing content to managing data and providing visual feedback and operates as

an independent unit with its own lifecycle, technologies, and deployment strate-

gies (Flower, 2019)

Figure 1. Relationships between Web Components (Geers, 2020).

These components are then combined in the customer's browser to form the final

page, offering greater flexibility, scalability, and availability in frontend develop-

ment by allowing teams to work on different parts of the application simultane-

ously and with minimal impact on one another. This decoupling of responsibilities

also fosters better testing and deployment practices, as each micro frontend can

be tested and deployed independently, reducing the risk of failures and bottle-

necks associated with monolithic systems. Moreover, the micro frontend architec-

ture promotes innovation and experimentation by giving developers the freedom

to choose the best tools and frameworks for each individual component, ulti-

mately leading to a more robust, adaptable, and future-proof frontend ecosystem.

9

2.2 Micro Frontend Architecture

Micro frontend architecture pattern is similar to the microservices approach, but

with a focus on frontend components and their integration with the user interface.

Micro frontends provide a new way of developing frontend applications, allowing

for faster and more efficient updates, improved collaboration between develop-

ment teams, and reduced maintenance costs. By breaking down a monolithic

frontend application into smaller, manageable components, micro frontends offer

a solution to the challenges faced in traditional frontend development (Rappl,

2021).

2.3 Upsides of Micro Frontends

Micro frontends offer several advantages, which make them an attractive choice

for organizations looking to enhance their software development process:

1. Faster development: Micro frontends streamline the development pro-

cess by dividing the frontend into smaller, more manageable pieces. This

modular approach allows teams to focus on specific features or compo-

nents and work in parallel, leading to more efficient development and de-

ployment. By breaking down complex tasks into smaller units, teams can

achieve a quicker turnaround time for feature releases and bug fixes.

2. Improved team autonomy: In a micro frontend architecture, each team

works on a distinct portion of the frontend, granting them increased au-

tonomy and control over their work. This independence allows teams to

make decisions and implement changes without relying heavily on other

teams, fostering creativity and innovation. The self-sufficient nature of

these teams enhances overall productivity and reduces bottlenecks in the

development process.

3. Easier scalability: Micro frontends make it more straightforward to scale

applications as they grow. By dividing the frontend into smaller compo-

nents, each part can be scaled individually, depending on its requirements

and usage patterns. This targeted scaling approach helps manage resource

allocation more effectively, resulting in better performance and a more

robust application (Geers, 2020).

4. Incremental upgrades: Adopting a micro frontend architecture allows or-

ganizations to update or replace individual components without affecting

the entire application. This granular approach to upgrades facilitates a

smoother transition when updating technologies, libraries, or frame-

works. As a result, teams can keep their applications up to date without

experiencing significant disruptions or downtime.

5. Better code organization: Micro frontends promote modular, reusable

code and encourage the separation of concerns. By organizing code into

smaller, self-contained components, the overall codebase becomes more

maintainable, testable, and easier to understand. This improved organiza-

tion helps minimize technical debt and enhances the long-term stability of

the application.

6. Flexibility in technology choices: Micro frontends provide the opportunity

to utilize different technology stacks for specific components or features.

This flexibility allows teams to experiment with new technologies, adopt

best practices, and tailor their tools and frameworks to unique require-

ments of each component. By decoupling technology choices, organiza-

tions can innovate more rapidly and adapt to evolving industry trends

(Grijzen, 2019).

2.4 Downsides of Micro Frontends

While micro frontends offer various advantages, they also come with potential

downsides that organizations must consider before adopting this architectural ap-

proach:

1. Increased complexity: Micro frontends can introduce additional complex-

ity to the overall system due to the need for managing multiple independ-

11

ent components, communication between them, and handling deploy-

ment and integration. This complexity may require extra effort in planning,

coordination, and monitoring.

2. Performance overhead: Depending on the implementation, micro

frontends can sometimes introduce performance overhead, such as in-

creased latency due to additional network requests or resource loading.

Careful attention to performance optimization and resource bundling is

necessary to mitigate these issues (Lemon, 2020).

3. Integration challenges: Ensuring seamless integration between different

micro frontends can be challenging, especially when they are developed by

separate teams using different technology stacks. This may result in in-

creased efforts to maintain consistency and compatibility between compo-

nents.

4. Duplicate code and dependencies: With each micro frontend potentially

using its own set of libraries and frameworks, there might be duplicate

code or dependencies across components. This can increase the overall ap-

plication size and maintenance burden, making it crucial to manage shared

resources effectively.

5. Testing complexity: As micro frontends involve numerous independent

components, testing the application as a whole can be more complicated.

Comprehensive testing strategies, including end-to-end testing and inte-

gration testing, must be established to ensure the overall system functions

correctly.

6. Team collaboration challenges: Micro frontend teams often work autono-

mously, which can lead to silos and poor communication between teams.

To avoid this, organizations need to establish clear communication chan-

nels and processes that foster collaboration and knowledge sharing across

teams (Geers, 2020).

7. Learning curve: Implementing a micro frontend architecture may require

team members to learn new technologies or approaches, which can ini-

tially slow down development. It is important to provide adequate training

and support to ensure a smooth transition. (Geers, 2020).

2.5 When Micro Frontends are Beneficial?

Micro frontends make sense in a variety of situations, particularly when develop-

ing large-scale, complex web applications. Some key scenarios in which micro

frontends are beneficial include:

1. Large teams or multiple teams working on the same application: When

multiple teams or developers work on different parts of the application

simultaneously, micro frontends allow them to develop and deploy their

components independently without affecting the work of others.

2. Diverse technology stacks: If the application uses different technologies,

frameworks, or libraries across its various components, micro frontends

enable individual teams to choose the most suitable tools for their specific

tasks without imposing constraints on other teams.

3. Scalability and maintainability: Micro frontends can help improve scala-

bility and maintainability of an application by breaking it down into smaller,

manageable units. This allows for easier updates, more efficient bug fixes,

and streamlined performance optimization.

4. Incremental migration or modernization: If there’s a need to gradually mi-

grate or modernize an existing monolithic frontend application, adopting a

micro frontend approach can make the process more manageable. Parts of

the application can be replaced incrementally with new micro frontends

without affecting the entire system.

5. Faster deployment and continuous delivery: Since micro frontends can be

developed, tested, and deployed independently, they facilitate faster de-

ployment cycles and support continuous delivery practices. This enables

teams to release new features or updates more frequently and with less

risk.

13

However, micro frontends might not be the best fit for every project. For small

applications or projects with a single, small team, the added complexity of man-

aging micro frontends could outweigh their benefits. It is essential to evaluate the

specific needs of the project before deciding whether to adopt a micro frontend

architecture. (Mezzalira, 2021)

3 TECHNICAL IMPLEMENTATIONS OF MICRO FRONTENDS

3.1 Composition via Ajax

In this approach, the main application (also known as the "app shell" or "con-

tainer") loads individual micro frontends asynchronously using Ajax requests

(Geers, 2020).

3.1.1 Overview

The main application (container) is responsible for managing the overall layout

and coordinating the loading of micro frontends. When the container app loads, it

sends Ajax requests to fetch the necessary micro frontends' content, which could

be HTML, CSS, and JavaScript.

The micro frontends are developed and deployed independently, each with its

own endpoint or URL from where the container app can fetch the content. As the

Ajax requests complete, the container app injects the fetched content into the ap-

propriate placeholders or sections within the main layout. The micro frontends are

initialized and rendered within the container, and they begin to handle user inter-

actions and other responsibilities (Mezzalira, 2021).

3.1.2 Benefits

Ajax offers several relevant and valuable benefits:

1. Decoupling: Each micro frontend can be developed, deployed, and up-

dated independently, reducing the risk of affecting other parts of the ap-

plication.

2. Flexibility: Teams can choose their preferred frameworks, libraries, and

tools for developing each micro frontend without constraints.

3. Parallel development: Multiple teams can work simultaneously on differ-

ent micro frontends, accelerating the development process.

15

3.1.3 Drawbacks

However, implementing ajax does come with some inherent challenges that have

been identified over the years:

1. Performance: Multiple Ajax requests can increase the initial loading time

of the application, especially if there are many micro frontends or if they

are not optimized. Techniques such as caching, lazy loading, or server-side

rendering can help mitigate these issues.

2. Increased complexity: Managing the composition and communication be-

tween micro frontends can be more complex than working with a mono-

lithic frontend, especially when handling shared states or coordinating

events across components.

3. Potential for inconsistencies: If not managed carefully, different micro

frontends may have inconsistent user experiences, styles, or behavior,

leading to a fragmented UI.

3.2 Server-Side Composition

Server-side composition is another approach to implement micro frontends. In

this method, the assembly of the different micro frontends into a single, cohesive

user interface happens on the server before the content is sent to the client's

browser.

3.2.1 Overview

The main application (container) serves as the entry point and manages the overall

layout, as well as the routing and coordination of micro frontends. When a user

requests a specific page or view, the container app sends requests to each micro

frontend's endpoint on the server-side.

Each micro frontend is developed and deployed independently, with its own

server-side endpoint, which generates and returns the required HTML, CSS, and

JavaScript. The container app receives the content from the micro frontends, com-

poses the final page by combining the content in the appropriate layout, and sends

the resulting HTML, CSS, and JavaScript to the client's browser. The browser ren-

ders the composed page, and the micro frontends handle user interactions and

other responsibilities as needed (Newman, 2015).

3.2.2 Benefits

The server-side composition approach for managing micro frontends delivers nu-

merous key advantages:

1. Improved initial load performance: As the content is composed and deliv-

ered in a single server-side response, there are fewer network requests

and less client-side rendering overhead, leading to faster initial load times.

2. Simplified browser compatibility: Since the composition occurs on the

server, there is less reliance on advanced browser features, which can be

helpful for ensuring compatibility with older browsers.

3. Better SEO: Search engines can more easily crawl and index server-ren-

dered content, which can lead to improved search engine optimization

(SEO).

3.2.3 Drawbacks

However, it's also important to be aware of the inherent challenges associated

with this method, which include:

1. Server-side complexity: Managing the composition and communication

between micro frontends on the server can be complex, especially when

handling shared state or coordinating events across components.

2. Less dynamic behavior: As the composition takes place on the server, up-

dating or modifying the content may require additional server requests,

which can lead to a less dynamic user experience compared to client-side

composition approaches.

3. Scalability: Increased server-side processing can put additional load on the

server infrastructure, which may impact scalability.

17

3.3 Composition via Webpacks’s Module Federation

Webpack's Module Federation is a modern approach to implementing micro

frontends, introduced in Webpack 5. It enables loading and sharing of code across

different JavaScript applications at runtime, making it a powerful tool for compos-

ing micro frontends (Manfred, 2020).

3.3.1 Overview

The main application (container) is responsible for managing the overall layout,

routing, and coordination of micro frontends. Each micro frontend is developed

and deployed independently as a separate application, exposing specific parts of

its code (components, functions, etc.) as "federated modules."

The container application is configured with Webpack to consume these federated

modules from the micro frontends. This includes specifying the remote entry

points, module names, and other necessary configuration details. When the con-

tainer app loads, it fetches and combines the micro frontends' federated modules

dynamically at runtime, integrating them into the main application. The micro

frontends are initialized, rendered within the container, and begin handling user

interactions and other responsibilities (Manfred, 2020).

3.3.2 Benefits

Embracing the Module Federation approach in managing micro frontends pro-

vides a variety of distinct benefits that can significantly enhance the development

process and the quality of the end product:

1. Decoupling: Each micro frontend can be developed, deployed, and up-

dated independently, allowing for better separation of concerns and re-

duced risk of affecting other parts of the application.

2. Code sharing: Module Federation enables efficient sharing of common de-

pendencies and libraries across micro frontends, reducing the overall ap-

plication size and improving performance.

3. Flexibility: Teams can choose their preferred frameworks, libraries, and

tools for developing each micro frontend without constraints.

3.3.3 Drawbacks

However, it is crucial to take into account the potential challenges associated with

Module Federation, as outlined below:

1. Complexity: Managing the composition and communication between mi-

cro frontends using Module Federation can be complex, especially when

handling shared state or coordinating events across components.

2. Webpack dependency: This approach relies on Webpack 5 or newer,

which may not be compatible with older applications or projects using dif-

ferent bundlers.

3. Performance: If not optimized properly, loading multiple micro frontends

and their dependencies can impact the initial loading time of the applica-

tion. Techniques such as code splitting, lazy loading, and caching can help

mitigate these issues.

3.4 Communication Patterns

Communication patterns are essential for ensuring that the different components

of a micro frontend architecture can efficiently share data and events. Some com-

mon communication patterns in micro frontends include:

1. Custom Events: Custom events allow micro frontends to communicate

with each other through the browser's native event system. Components

can emit custom events when they need to share information or trigger

actions in other components, and listeners can be set up to react to these

events (Geers, 2020).

2. Shared State: By using a shared state (for example, Redux or MobX), micro

frontends can manage their state in a centralized store. This allows com-

19

ponents to read and update the state, ensuring consistency across the ap-

plication. However, this approach can lead to tight coupling if not imple-

mented carefully.

3. API-based communication: Micro frontends can communicate by consum-

ing and providing APIs. Each component exposes an API to interact with its

functionality, allowing other components to use this interface to request

data or perform actions. This approach promotes loose coupling and ena-

bles easier integration of third-party components.

4. Message Bus / Publish-Subscribe: A message bus or publish-subscribe pat-

tern allows micro frontends to communicate asynchronously by publishing

messages to channels or topics. Components can subscribe to these chan-

nels to receive updates or events. This pattern enables decoupling, as com-

ponents do not need to know about each other directly (Geers, 2020).

5. Local Storage / Session Storage: Components can use browser storage

mechanisms (local or session storage) to share data between them. This

approach can be useful for persisting state between page refreshes or dif-

ferent browser tabs.

6. Web Components: Web Components are a set of browser APIs that allow

the creation of custom, reusable HTML elements. By encapsulating their

functionality, micro frontends can use web components to communicate

with each other, allowing for easy integration and a consistent user expe-

rience.

7. GraphQL: GraphQL is a query language and runtime that enables compo-

nents to request only the data they need from a backend service. This can

help streamline communication between micro frontends, as well as be-

tween the frontends and backend services.

8. Observables: Observables, like those provided by the RxJS library, allow

micro frontends to communicate by subscribing to data streams. This ap-

proach supports reactive programming and enables components to react

to changes in data sources or user input.

Each communication pattern has its benefits and trade-offs, and the choice of pat-

tern depends on the specific requirements of the application. Often, a combina-

tion of these patterns can be used to ensure effective communication between

micro frontends.

21

4 MIGRATING TO MICRO FRONTENDS

4.1 Concepts

Undertaking the migration of a substantial project from one architectural frame-

work to another can be a daunting and often expensive endeavor. Various ap-

proaches exist, each with their advantages and disadvantages. To effectively man-

age expectations and budget, it is crucial to have a clear understanding of the com-

plexity and effort involved in such a migration. However, accurately estimating the

required resources can be challenging when a team lacks experience with the tar-

get architecture. Experimenting with the new technology in a sandbox environ-

ment can help alleviate uncertainties, and the examples in this book can serve as

an excellent foundation for these explorations (Mezzalira, 2021).

Micro frontends and their user interface integration techniques are particularly

useful for facilitating gradual migrations. The micro frontend approach is well-

suited for constructing and incorporating a proof of concept, which can even be

tested within a live production application (Flower, 2019).

Here are the key steps involved in migrating to micro frontends:

1. Analyze the current architecture: Begin by understanding the existing

monolithic frontend application. Identify its strengths, weaknesses, and

dependencies.

2. Define domain boundaries: Break down the application into smaller, logi-

cal, and self-contained components based on business domains or func-

tionality. These smaller components will become the micro frontends.

3. Choose a composition strategy: Decide how micro frontends will be com-

posed and integrated. There are several approaches, such as client-side

composition (using tools like Webpack Module Federation), server-side

composition (using tools like Edge Side Includes), or build-time composi-

tion.

4. Establish communication channels: Determine how micro frontends will

communicate with each other and with backend services. This may involve

setting up APIs, message buses, or using shared state management librar-

ies.

5. Implement a development framework: Choose a development framework

that supports micro frontends or create a custom one. This may involve

adopting component libraries, build tools, and deployment pipelines that

facilitate independent development and deployment of micro frontends.

6. Migrate incrementally: Rather than performing a complete overhaul, mi-

grate parts of the application to micro frontends one by one. This approach

minimizes risk and allows for iterative improvements.

7. Establish team structures: Organize development teams around micro

frontends, empowering them to make decisions related to their specific

domain. This fosters autonomy and enables faster development cycles.

8. Ensure consistency: Create guidelines for UI design, coding practices, and

performance standards to maintain a consistent look, feel, and behavior

across micro frontends.

9. Monitor and optimize: Continuously monitor the performance and user

experience of micro frontends, identifying areas for improvement and op-

timization.

10. Maintain and update: Regularly update and maintain the micro frontends

to ensure they remain secure, performant, and aligned with evolving busi-

ness requirements.

4.2 Common Strategies

4.2.1 Strangler Pattern

In this approach, new features or components are developed as micro frontends

while the existing monolithic application is gradually decommissioned. The new

micro frontends are integrated into the monolith, progressively replacing parts of

the original application (Mezzalira, 2021).

23

Figure 2. Diagram showing Strangler Pattern

Benefits of the strangler pattern include

• Minimizes risk, as changes are incremental and do not disrupt the entire

application.

• Allows teams to work independently on specific micro frontends, improv-

ing development efficiency.

• Simplifies testing and deployment, as only the affected micro frontends

need to be updated.

Risks of the strangler pattern comprise the following

• Demands careful planning and coordination to avoid tight coupling be-

tween micro frontends and the monolith.

• Requires a longer transition period, as the monolith and micro frontends

coexist during the migration process.

• May introduce temporary complexity, as developers need to maintain and

understand both the monolith and the new micro frontends.

4.2.2 Parallel Run

This strategy involves developing the entire micro frontend architecture parallel

to the existing monolithic application. Once the new architecture is complete and

tested, the monolithic application is replaced in its entirety (Mezzalira, 2021).

Benefits of the parallel run pattern include

• Promotes consistency in UI/UX design and code quality across micro

frontends.

• Allows developers to focus on the new architecture without managing the

complexities of integrating with the monolith.

• Facilitates a faster transition once the new architecture is ready for deploy-

ment.

Risks of the parallel run pattern comprise the following

• Requires significant upfront investment in development and testing before

realizing any benefits.

• Introduces the risk of a "big bang" deployment, which may lead to unex-

pected issues and downtime.

• Can be resource-intensive, as teams must develop and maintain two sepa-

rate codebases during the migration process.

4.2.3 Iterative Replacement

 In this approach, the monolithic application is incrementally replaced by micro

frontends, one component or feature at a time. As each micro frontend is com-

pleted, it replaces the corresponding part of the monolith (Mezzalira, 2021).

25

Figure 3. Diagram showing Iterative Replacement Pattern

Benefits of the iterative replacement pattern include

• Reduces risk, as changes are incremental and can be tested and deployed

individually.

• Allows for continuous improvement and adaptation throughout the migra-

tion process.

• Minimizes the impact on end-users, as the application remains functional

during the migration.

Risks of the iterative replacement pattern comprise the following

• Requires careful coordination between teams to ensure smooth integra-

tion and avoid tight coupling.

• May lead to temporary inconsistencies in UI/UX design, as both the mono-

lith and micro frontends coexist during the migration.

• Can be time-consuming, as the migration process involves multiple stages

and iterations.

• When selecting a migration strategy for transitioning from a monolithic ap-

plication to micro frontends, it is essential to consider the unique require-

ments and constraints of the project, as well as the resources and expertise

available within the team.

5 WEBPACK MODULE FEDERATION

Module Federation, a key feature in Webpack 5, plays a crucial role in our practical

case. It makes it simple to transform compile-time dependencies into runtime de-

pendencies. This means that the application treats both remote modules and its

own internal components in the same way.

Figure 4. Compile-time and Runtime Dependencies

By using Module Federation, developers can improve their project's modularity.

They can manage how code is shared between different applications. This is done

using "host" and "remote" applications, where the host app dynamically imports

and uses the functionality provided by the remote app. As a result, there is no

need to include the same code or libraries more than once. This reduces the total

bundle size and improves performance (Manfred, 2020).

27

Incorporating Module Federation is a big step forward in software engineering. It

helps develop complex systems that are connected, while still following principles

of maintainability and reusability. By easily turning compile-time dependencies

into runtime dependencies, Module Federation ensures that the application treats

remote modules and its own components in the same way. This makes collabora-

tion between developers smoother and encourages the creation of scalable, effi-

cient software solutions (Manfred, 2020).

Module Federation is designed with flexibility and adaptability in mind, catering

to a wide range of use cases and environments. The following are some key points

that illustrate the capabilities and features of Module Federation:

1. Module Type Support: Module Federation allows developers to expose

and consume any module type supported by Webpack. This enables seam-

less integration with various technologies and libraries, promoting a versa-

tile development experience.

2. Optimized Chunk Loading: In web environments, chunk loading is de-

signed to fetch all necessary resources in parallel, ensuring a single round-

trip to the server. This approach significantly reduces loading times and

enhances the overall performance of applications.

3. Control from Consumer to Container: Module Federation provides a one-

directional control mechanism, where consumers can override container

modules. However, sibling containers cannot override each other's mod-

ules, preserving the autonomy and isolation of individual modules.

4. Environment-Independent Concept: The Module Federation concept is

not limited to a specific environment; it is usable in web, Node.js, and other

environments, making it a versatile solution for diverse software projects.

5. Relative and Absolute Requests in Shared Modules: Shared modules with

relative and absolute requests will always be provided, even if not used.

These requests will be resolved relative to the config.context and do not

require a requiredVersion by default.

6. Module Requests in Shared Modules: Shared module requests are pro-

vided only when they are used. They will match all used equal module re-

quests in the build, provide all matching modules, and extract the re-

quiredVersion from the package.json at the specified position in the graph.

7. Nested Node Modules: Module Federation can handle multiple different

versions of nested node_modules, allowing developers to provide and con-

sume various versions when required.

8. Module Requests with Trailing Slash: Module requests with a trailing slash

in shared modules will match all module requests with the corresponding

prefix. This feature enhances the flexibility and compatibility of the Module

Federation system, ensuring a more streamlined development experience.

In summary, Module Federation, a powerful feature in Webpack 5, enables the

dynamic and seamless sharing of code between distinct applications or micro-

frontends. It simplifies the transformation of compile-time dependencies into

runtime dependencies, treating remote modules and internal components in the

same manner. This approach promotes a scalable and maintainable architecture,

fostering collaboration among developers and enhancing overall software perfor-

mance.

29

6 DEMO APPLICATION

In order to prevent the disclosure of the company's private information, I built a

demo application. I will explain the process of migrating from a monolithic appli-

cation to micro frontends in this chapter. The demo application is neither based

on nor resembles the actual system, but it does utilize the same or similar under-

lying open-source technologies.

One of the main challenges the real-world apps encounter is ensuring seamless

and secure communication between the micro frontends. This demo simplifies this

part to a primitive message bus, utilizing Broadcast Channel API, a relatively recent

standard, offers another method for communication. Functioning as a pub-

lish/subscribe system, it facilitates communication across tabs, windows, and even

iframes within the same domain.

Figure 5. Example usage of BroadcastChannel API

In our context, each micro frontend could initiate a connection to a central chan-

nel, like 'test_channel', and consequently receive notifications from other micro

frontends. This allowed for more manageable and efficient coordination among

the different micro frontends.

Although the demo application does not exactly mirror the actual Fliq system, the

underlying principles and technologies remain the same. Hence, this step-by-step

walkthrough provides a general blueprint that can be tailored to meet the specific

needs of other similar migrations.

6.1 Notes on the Initial Application

The application in question is a simple modular application designed to monitor

and control various aspects of industrial automation in a factory or industrial pro-

cess. It mocks real-time process monitoring, control panel functionality, notifica-

tions and alerts, historical data analysis, and predictive maintenance capabilities.

However, the mocked data can easily be substituted with actual data provided by

an API.

The application is build using Angular 16 and consist of a shell application and 5

modules:

1. The Real-Time Process Monitoring module displays live data feeds from

different areas of the industrial process, such as production line status,

temperature readings, pressure levels, and machine operation status. It

provides graphical representations such as charts, gauges, and diagrams to

visualize the current operational status effectively.

2. The Control Panel module enables operators to interact with the industrial

process by starting or stopping machines, adjusting settings, and triggering

specific actions. It also supports more complex procedures such as sched-

uling maintenance or changing production parameters.

3. The Notifications and Alerts module generates and displays alerts and no-

tifications based on certain conditions or thresholds in the industrial pro-

cess. The alerts are color-coded or categorized based on severity or type,

allowing operators to quickly identify critical issues and take appropriate

actions.

4. The Historical Data Analysis module allows operators to view and analyze

past operational data. It provides features for generating reports, making

comparisons over time, identifying trends, and gaining insights into the

performance of the industrial process.

31

5. The Predictive Maintenance module utilizes machine learning algorithms

to predict when machines or components might fail based on historical and

real-time data. It presents these predictions graphically and suggests ac-

tions to prevent downtime, enabling proactive maintenance and minimiz-

ing disruptions in the industrial process.

Figure 6. The main page of the monolithic Demo application

Figure 7. The file structure of the monolithic Demo application

In its initial state, the application is monolithic. Now, we review the necessary

steps to convert this application to micro frontends using Webpack Module Fed-

eration.

6.2 Transition

The transition to micro frontends with splitting the monolith into the shell appli-

cation and 5 standalone modules. We will use a monorepo approach, where the

code for the shell application and the individual modules will be organized and

managed within a single repository.

A monorepo, short for monolithic repository, is a software development approach

that involves storing multiple related projects or modules within a single reposi-

tory. In the context of our application, the monorepo will contain the code for both

the shell application and the standalone modules.

33

Using a monorepo offers several advantages. It allows for better code sharing and

reuse between different parts of the application. Developers can easily navigate

and work on different modules within a unified codebase. It simplifies versioning

and dependency management since all the modules share the same version con-

trol and dependency configurations.

In our case, the monorepo will provide a convenient structure for managing and

coordinating the development of the shell application and its modules. It will fa-

cilitate the sharing of common code, utilities, and configurations among the mod-

ules while maintaining their independence.

First, we create a shell app and configure Webpack:

Figure 8. Shell application's webpack.config.ts

Our remotes are not dynamic in nature, which means we can declare them straight

away using their identifiers and URLs, as these identifiers and URLs remain con-

stant.

Figure 9. Initial state of the Shell application

The shell application is currently empty, as we have solely declared the micro

frontends, but they are yet to be built and run within the application. This is the

initial stage of our transition towards a micro frontend architecture.

To bring the micro frontends to life, we need to follow the necessary steps to build

and run each module individually. This involves configuring the development en-

vironment, setting up the appropriate build processes, and establishing communi-

cation channels between the shell application and the micro frontends.

As we are running a monorepo, creating a new application is as easy as running

the following command:

ng generate application app-name

This command will automatically generate a new application within the mon-

orepo, and adjust the necessary configuration files accordingly. The Angular CLI

takes care of scaffolding the required files and directories specific to the new app.

35

By following this approach, all applications within the monorepo share a common

set of configurations and dependencies, making it easier to manage and maintain

multiple applications in a single codebase. Additionally, the monorepo structure

promotes code sharing and reusability among the different applications and librar-

ies within the project.

Figure 10. Real-time monitoring micro frontend

The module can be used either as a standalone application or seamlessly inte-

grated into the shell application. Even more impressive is that it has the flexibility

to be embedded into multiple shells simultaneously. This means that the module

can be utilized in various scenarios, whether it is operating independently, inte-

grated into a single shell, or incorporated into multiple shells at the same time.

In addition to integrating the module into the shell application, we also need to

adjust the Webpack configuration of the micro frontend. This involves declaring

which modules are exposed and can be consumed by other parts of the applica-

tion.

By configuring the Webpack module federation settings, we define the specific

modules and their corresponding entry points that will be made available for con-

sumption. This allows the shell application or other micro frontends to dynamically

import and utilize the exposed modules.

Properly adjusting the Webpack configuration ensures that the necessary depend-

encies and functionality from the micro frontend are accessible to the rest of the

application. It establishes a clear boundary between the exposed modules and en-

capsulates their internal implementation details, promoting modularity and en-

capsulation.

Figure 11. Micro frontend webpack.config.ts

We need to update the shell router to effectively turn the compile-time depend-

encies into dynamic runtime-dependencies. To accomplish this, we will make use

of Angular's router's loadChildren function. This function allows us to dynamically

37

load modules at runtime, which fits perfectly with our micro frontend architec-

ture.

Traditionally, the loadChildren function was used for lazy-loading Angular modules

to improve the initial load time of an application. However, we can repurpose this

function to load our micro frontend modules.

6.3 Micro Frontends as Web Components

One advantage of the microfrontend architecture is the ability to use external

components, or components made by a third party. However, it is important to

understand that modern web frameworks are not designed to operate with mul-

tiple versions of themselves at runtime. This raises the question of isolating these

components. This isolation can be achieved using Web Components.

Web Components, a set of web platform APIs, allow the creation of custom, reus-

able, encapsulated HTML tags for use in web pages and web apps. They are an

integral part of the browser and so they do not need additional libraries or frame-

works to run and can maintain compatibility with all modern frameworks.

In the context of microfrontends, Web Components can encapsulate the imple-

mentation of each micro-app, ensuring they operate independently, without in-

terference. For example, one can load two components using different versions of

the same framework and they will coexist without conflicts, because their imple-

mentation details are scoped within the custom elements.

Let us consider how we can integrate an external micro frontend application built

using different version of Angular into the shell application. The process would

require 3 steps:

1. Wrap the micro frontend in a Web Component

Wrapping can be done using Angular Elements.

Figure 12. Exposing standalone Angular application as a Web Component

This code snippet overrides the default Angular bootstrap process by providing a

custom bootstrapper. Then it registers a new Web Component with the 'angular-

element' tag directly using the browser's API. Consequently, the browser will em-

ploy this element whenever the <angular-element></angular-element> tag is

found in the application.

2. Expose the module using Module Federation

To use the micro frontend in the shell application, we need to expose its Web

Component using Module Federation. An example configuration might look like

this:

39

Figure 13. Exposing a Web Component using Webpack

Unlike previous Webpack configurations, we do not enforce a strict versioning of

the shared modules because, in this example, the goal is to share two different

versions of Angular. The 'auto' parameter obtains the package versions from pack-

age.json and searches for them at runtime. If no match is found, it defaults to its

own version.

3. Load Custom Elements into the shell application.

We can use the same lazy loading mechanism that we use for loading standard

Angular components. In the example, the WebComponentWrapper loads the Web

Component using Module Federation with the provided parameters. This wrapper

also creates a custom HTML element.

Figure 14. Wrapping an external Web Component

Wrapper essentially acts like a module here, rendering the external Web Compo-

nent inside itself.

41

Figure 15. Angular 15 running inside Angular 16

6.1 Using Other Frameworks

It is also possible to load micro frontends based not just on different version of the

same framework, but built using completely different set of technologies, be it

another framework or vanilla JavaScript. For example, the process of integrating a

React-based component into the demo application is essentially the same as inte-

grating an Angular-based Web Component.

The first step in this integration is to expose the React component as a Web Com-

ponent, similar to how we exposed the Angular component previously. The Web

Component then needs to be registered in the host application and made available

for use. Once the React component is registered, it can be loaded dynamically at

runtime just like any other component.

Figure 16. Exposing React component as a Web Component

Figure 17. React running inside Angular.

43

7 CONCLUSION

In conclusion, this thesis has comprehensively explored the concept of micro

frontends and how they can be utilized to effectively scale a software platform.

Throughout the investigation, it has become apparent that the micro frontend ar-

chitecture offers significant advantages in terms of development speed, team au-

tonomy, technology freedom, and overall scalability.

The research has revealed that the use of micro frontends allows for more man-

ageable codebases, as each frontend can be developed, tested, and deployed in-

dependently of others. This structure significantly reduces the risk of conflicts, al-

lows for more efficient code management, and enables teams to work autono-

mously without the need for extensive coordination.

Moreover, the ability to employ different technologies across various frontends

without any interdependencies significantly enhances technological freedom. This

allows individual teams to select the technologies that best suit their specific

needs, enhancing innovation, and expediting delivery.

Most importantly, micro frontends are a key enabler for scalability. The decoupled

nature of micro frontends means that as the software platform grows, additional

frontends can be added with minimal impact on the existing system. This provides

a high degree of scalability, a feature that is particularly important in today's rap-

idly evolving digital landscape.

Despite the many benefits of micro frontends, it is important to note that the ar-

chitecture is not a one-size-fits-all solution. Careful consideration needs to be

given to factors such as team size, project complexity, and specific business re-

quirements. However, for larger, complex projects, where scalability, team auton-

omy, and technological freedom are paramount, micro frontends provide a com-

pelling option.

REFERENCES

Flower, Martin (2019) Micro Frontends. Accessed 23.05.2023. Available at

https://martinfowler.com/articles/micro-frontends.html

Geers, Michael (2020) Micro frontends in Action. Available at https://learn-

ing.oreilly.com/library/view/micro-frontends-in/9781617296871/

Gilbert, John (2021) Software Architecture Patterns for Serverless Systems. Avail-

able at https://learning.oreilly.com/library/view/software-architecture-pat-

terns/9781800207035/

Grijzen, Erik (2019) Micro Frontend Architecture Building an Extensible UI Plat-

form”. Accessed 23.05.2023. Available at

https://www.youtube.com/watch?v=9Xo-rGUq-6E

Lemon, Steven (2020) Problems with Micro-frontends. Accessed 23.05.2023.

Available at https://medium.com/swlh/problems-with-micro-frontends-

8a8fc32a7d58

Mezzalira, Luka (2021) Building Micro-Frontends. Available at https://learn-

ing.oreilly.com/library/view/building-micro-frontends/9781492082989/

Newman, Sam (2015) Building Microservices. Available at

https://www.oreilly.com/library/view/building-microservices/9781491950340/

Schottner, Lothar (2021) The Art of Micro Frontends. Available at https://learn-

ing.oreilly.com/library/view/the-art-of/9781800563568/

Steyer, Manfred (2020) The Microfrontend Revolution: Module Federation with

Angular. Accessed 23.05.2023. Available at https://www.angulararchi-

tects.io/en/aktuelles/the-microfrontend-revolution-part-2-module-federation-

with-angular/

