W ARCADA

Making TanStack Query feel more like
the Cloud Firestore client-side SDK

Daniel Giljam

Degree Thesis
Information Technology
2023



Degree Thesis

(Author) Daniel, Giljam

Making TanStack Query feel more like the Cloud Firestore client-side SDK.
Arcada University of Applied Sciences: Information Technology, 2023.

Identification number;
8801

Commissioned by:
N/A

Abstract:

The goal of this thesis is to come up with a solution which can take care of query cache updating
in a generic and robust way in web applications which use TanStack Query. Query cache is an
abstraction in TanStack Query, which is a JavaScript library for handling asynchronous read
and write operations and representing their state in a user interface. After examining various
open-source technologies, it is the conclusion of this thesis that Orbit.js is the solution to the
problem. Orbit.js is a composable data framework for ambitious web applications. An

accompanying result of this thesis is the publicly available GitHub project, https://github.com/

DanielGiljam/tanstack-query-with-orbitjs, which contains a library for using TanStack Query

together with Orbit.js as well as two example applications, one which demonstrates the
problems with query cache updating when using TanStack Query and another one which
demonstrates the solution of using TanStack Query together with Orbit.js with the help of the
library for integrating the two. A web page edition of the thesis is also available at

https://danielgiljam.com/degree-thesis. It provides the best reading experience for this thesis.

Keywords:

TanStack Query Plugins

React Query Integrations
Orbit.js Extensions
Ambitious web applications NPM packages
ORM (Object-Relational Mapping) Cloud Firestore
React.js Firebase
TypeScript Real-time data

JavaScript


https://github.com/DanielGiljam/tanstack-query-with-orbitjs
https://github.com/DanielGiljam/tanstack-query-with-orbitjs
https://danielgiljam.com/degree-thesis

Lardomsprov

(Forfattare) Daniel, Giljam
Making TanStack Query feel more the Cloud Firestore client-side SDK.
Yrkeshogskolan Arcada: Informationsteknik, 2023.

Identifikationsnummer:
8801

Uppdragsgivare:
N/A

Sammandrag:

Malet med det har arbetet &r att ta fram en lsning som kan hantera query cache uppdatering
pa ett generellt och robust satt i webbapplikationer som anvander TanStack Query. Query cache
ar en abstraktion som forekommer i TanStack Query som é&r ett JavaScript-bibliotek for att
hantera asynkrona las- och skrivoperationer och aterge deras tillstdnd i ett anvandargranssnitt.
Efter att ha undersokt olika open-source teknologier &r slutsatsen i detta arbete att Orbit.js ar
I6sningen. Orbit.js &r ett komponerbart dataramverk for ambitidsa webbapplikationer. Ett

ackompanjerande resultat till detta arbete &r GitHub-projektet, https://github.com/Daniel

Giljam/tanstack-guery-with-orbitjs, som innehaller ett bibliotek for att anvanda TanStack

Query tillsammans med Orbit.js samt tva exempelapplikationer, en som demonstrerar
problemen med query cache uppdatering da man anvander TanStack Query och en annan som
demonstrerar l6sningen att anvanda TanStack Query tillsammans med Orbit.js med hjalp av
biblioteket for att integrera de tva. En webbsideutgava av arbetet finns ocksa tillganglig pa

https://danielgiljam.com/degree-thesis. Den erbjuder bésta lasupplevelsen for arbetet.

Nyckelord:

TanStack Query Plugins

React Query Integrations
Orbit.js Extensions
Ambitious web applications NPM packages
ORM (Object-Relational Mapping) Cloud Firestore
React.js Firebase
TypeScript Real-time data

JavaScript


https://github.com/DanielGiljam/tanstack-query-with-orbitjs
https://github.com/DanielGiljam/tanstack-query-with-orbitjs
https://danielgiljam.com/degree-thesis

Contents

1

Tl Ao To LU To3 T o] o PSPPSR 4
11 PrEI@OQUISITES ..eeei ettt ettt ettt e e e e e e st e e e s e s b et e e e e s s b ae e e e e s nneneeeesennnaeeeeesnnreeeas 4
1.2 BT 113 V1 7 1T PP URUPTRPRPRRP 5

0 R 0 1= 113 V1 7 4o - 1 U RP PSP 5

0 N 0 11113 V1 7 14 To ] T - 2 S RP PSP 5

S F=Tod (o 1 01U 1 o Lo H TP UPPUTUR R UUPUPPRRPT 6
2.1 LI TN 7= 1o O LU =T Y SRS 6
2.2 The Cloud Firestore client-side SDK.......cooiiiiiiiiiiee ettt ste e st e e sbr e e saaeessabeeenaes 7

P20 A 6 (o TU e [ T =T o o SO PP T PRSPPI 7

2.2.2  “Real-time” databases .......ccccceeriiiiiienieiiee st et ste st se e st e e et e s te et e e st e et e e e e e beeeae e beesaeenreenns 8

[ 0] o] 1= o ¢ [ 9
3.1 What are qUEry CaChe UPUaterS ... i ittt et e e tre e e e e et e e e e e s bbae e e e sennnaaeeeeeennees 10
3.2 Why do we need query cache UPdaters? ........cceoviiiiiiiieiiieeeee et 10

3.2.1  How TanStack Query achieves almost always-up-to-date auto-managed queries with its default

CONTIGUIATION .ttt ettt et e s et e e s bt e e ae e e bt e ease e b e e sabeebeesabeenneesabeesnnesnseenee 11

RESEAICH QUESTIONS ...ttt et e e et e e e e st e e e e snbbee e 12

GO et a e e e e e e e e e e e e aaaaaaaaaaaaaas 13

HY P OTNESIS ..ttt e e et e e s ek bt e e st e e e e s abb e e e e anbe e e e abreee e 14

Y11 Lo Yo £SO 15
7.1 RESEAICN ...ttt ettt e e s bt e e s bt e e s aba e e s bt e e e ate e sate e e s abeeeeateesaaras 15

7.1.1  FINAING related WOTK ...ooviiieieeee et et s 15

7.1.2  Comparing related WOTK .......coceeiiiiiieeti ettt st sbe e st esae e s e saneenee e 15

7.1.3  ASSESSING rlat@ad WOTK.....eiiiieiieieiieieeete ettt ettt st st sae e sab e saeeene e 17
7.2 Taa o] (=T o qT=T ol =1 4 o] o NSRRI 18

7.2.1 Developing an eXxample apPliCatioN ......ieiieeieiiie et sre e e rae e e 18

7.2.2  SOIVING the ProBIEM c.ceiiiiie ettt ettt st e sae e st e saeeene e 19

7.2.3 Packaging the solution as @ lIDrary ... e 20

=1 E= LC=To IRV ] OO SO SRR 21
8.1 OVEBIVIEW .ttt ettt ettt et e et e sttt et e s s bt e s s e e e e san e e e s se e e e st et s nne e e sa s et e samse e e sanneesaneeesanreeennnneesaneeenan 21

8.1 1 CUSIIONDB ...ttt ettt ettt st e s e e bt st e s bt e s at e e bt e sate e beesabeebeesabeenaeesateenbeesnneenee 21

8.1.2 (DL (=N 1S SPRSSPPPRINE 21

<30 T O 1 o o1 25 - OO OO TP PP RUPPRRPPRTOPPRRPIOt 21

8.1.4  SQLite as @a WebASSEMbBIY MOTUIE......cccuiiiiiiieeii ettt st e sbaesee e 22
8.2 (6] aaT o =1 o] [ PO PO PP PPPTPP NN 22

S0 R |V, T Yo U] = 1 YRS 23

8.2.2 DLV o] oY= g b o 1Y 1] o Lol IR USSR 24

8.2.3 Ul framework iNtEEIratioNS .......cccuiie ettt ettt e e et e e e e ta e e saae e e stbeeeessaeesanaeeessreeenes 24

A R 0120V oF- T o T=1 o 11 ] £ =Ty USSR 26

8.2.5  Consideration of asynchronicity and CONCUITENCY ......cccueeeiiiieeiiiie ettt e 26

8.2.6  OffliNG SUPPOIT ettt e ettt e e et e e et e e e etb e e e eabeeeebaeeetaeeeasbeseensaeeeasseeeanteseesseessseas 27
8.3 F N T A2 RSP UUPIRE 27



9 LT U] = 29

9.1 A concrete example of the ProblemM ... e e 29
L0 0 A 1 11 4 =1 I oo Lo L= OO PP U USSP PRRUPPRRIOt 29
9.1.2  Updating the Ul when new chat MeSSages arfiVe ........ccceeeeieeeeciieeeiiee e e e erree st e e eae e e 33
9.1.3 Handling the case where the chat rooms doesn’t exist in the [ "chat-rooms"] query’s cached
data 36
9.1.4  Dealing With CONCUITENCY ....oeiiiieeeiee ettt et e e et e e e bt e e e eaaeeesabeeeeneeeenneas 38
9.1.5 SUMIMINE L U teeiiiiiiiiii i e et e e e e e e s e e s e s e s e a bt e e e aeeaeetaeaaeeaaasesesassnsessnsssssssseranananens 40
9.2 THE SOIULION <.ttt e et sttt e s sttt e st e e s bt e e e sabe e e sasbeesbaaeesabeeesasaeesnsaas 40
9.2.1 @tanstack-query-with-0rbitjs/Core ..ot 40
9.2.2 @tanstack-query-with-orbitjs/react ... 42
O o T o] U =3 Lo 1 o SRS SRPPURRR 43
10.1 FUrther develOPMENT .......oo ittt st st e s b saeesabe e sbaesanee e 43
B o L= =T =T o [ T USRS PUPPUPRRP 45
R N o o 1= g Lo [T oT L SO PP ST P PP PPPPPRTP 50

12.1 Appendix #1: SUMMArY in SWeiSN.........uiiiiie e e e e e e e anees 50



1 Introduction

This thesis is about coming up with a way to make TanStack Query (TanStack Query, n.d.) feel

more like the Cloud Firestore (Cloud Firestore | Store and Sync App Data at Global Scale,
n.d.) client-side SDK.

The Cloud Firestore client-side SDK provides an unparalleled interface, in terms of elegance,

for dealing with "real-time™ data in the client-side code. Combining the positive traits of the

Cloud Firestore client-side SDK with TanStack Query could hypothetically solve the most

prominent problem | face when developing with TanStack Query.

The most prominent problem | face when developing with TanStack Query is that if | opt-out

of revalidation, then | have to write huge amounts of boilerplate-heavy fragile query cache
updating code which is tightly coupled with both the data model and the Ul of the app. I identify
that there’s a missing piece here — a need for a solution which can take care of the query cache
updating in a generic and robust way. My hypothesis is that the recipe for that solution can be

derived from the Cloud Firestore client-side SDK.

NOTE: Do not waste expensive ink and the nature’s resources on printing this paper. The
digital version provides a much better reading experience thanks to hyperlinks and cross-
references, which this paper makes extensive use of. In fact, you might want to check out the

web page edition of this thesis: https://danielgiljam.com/degree-thesis. It provides the ultimate

reading experience with responsive screen width (mobile support) and dark theme support.

The source code for the web page edition of this thesis, as well as the examples and libraries

produced as results of this thesis can be found on GitHub: https://github.com/DanielGiljam/

tanstack-query-with-orbitjs.

1.1 Prerequisites

| assume that the reader is familiar with current web application development practices,
patterns, frameworks, libraries, and tooling, and that the reader has some experience working
with TanStack Query or similar libraries, such as SWR by Vercel (React Hooks for Data
Fetching — SWR, 2023).



https://tanstack.com/query
https://firebase.google.com/products/firestore
https://firebase.google.com/products/firestore
https://firebase.google.com/products/firestore
https://tanstack.com/query
https://tanstack.com/query
https://tanstack.com/query
https://firebase.google.com/products/firestore
https://danielgiljam.com/degree-thesis
https://github.com/DanielGiljam/tanstack-query-with-orbitjs
https://github.com/DanielGiljam/tanstack-query-with-orbitjs
https://tanstack.com/query
https://swr.vercel.app/

1.2 Delimitations

1.2.1 Delimitation #1

In this thesis, the underlying assumption is that TanStack Query is part of our frontend stack,

and that is not going to change.

1.2.2 Delimitation #2

In this thesis, the underlying assumption is that we cannot use Cloud Firestore as part of our

stack.


https://tanstack.com/query
https://firebase.google.com/products/firestore

2 Background

2.1 TanStack Query

TanStack Query (formerly known as React Query) by Tanner Linsley (Tannerlinsley.Com,
n.d.) has 33,984 stars on GitHub as of 11th of April 2023 (TanStack/Query on GitHub,
2019/2023). In the State of JS Survey 2022, 28% of respondents said that had used it as a data
fetching library (State of JavaScript 2022: Other Tools, n.d.). It is part of the increasingly

popular open-source full stack solution T3 Stack. TanStack Query is trusted by numerous big

companies in production (TanStack Query, n.d.).

I’ve used TanStack Query for a while now in several projects that | work on, and I think it’s a

great library which elegantly solves many problems and challenges commonly faced when
developing web applications. | hope it becomes even more popular and widely adopted. | think
it’s a positive technology with a positive impact on the web development community and

industry.

It provides the following value:

e Solution for managing the state of async read and writes and accurately reflecting it in
the UL.
o Very complex wheel to try and re-invent yourself.
e Separation of concerns.
o Ul components can be written in a truly declarative fashion thanks to its great
API design.
e Good developer experience.
o Well-designed API which provides both high-level access and low-level access.
o Good documentation (Overview | TanStack Query Docs, n.d.).
o Fully-fledged type definitions (TypeScript (TypeScript: JavaScript With Syntax
For Types., n.d.) support).

o Graphical “devtools” (Devtools | TanStack Query Docs, n.d.), which is great for

debugging while developing.


https://tanstack.com/query
https://tannerlinsley.com/
https://tanstack.com/query
https://tanstack.com/query
https://tanstack.com/query/latest/docs
https://typescriptlang.org/
https://tanstack.com/query/v4/docs/devtools

But while it solves many problems and challenges commonly faced when developing web
applications, it does not solve all of them. Or by solving some problems and challenges, it takes
you to the next level and "unlocks™ some new problems and challenges.

In this thesis, | will address what | found to be the most prominent problem which TanStack
Query does not solve.

2.2 The Cloud Firestore client-side SDK

The Cloud Firestore client-side SDK is — as the name suggests — a SDK for interacting with

Cloud Firestore from a client application. Cloud Firestore is a “real-time” database. The

downside of Cloud Firestore is that it’s part of Google’s (Google - About Google, Our Culture

& Company News, n.d.) proprietary and closed-source backend-as-a-service platform Firebase
(Firebase, n.d.), which disqualifies its use in a lot of projects, due to reasons such as costs, the

risk of vendor lock-in, to name a few.

The upside is that it provides an unparalleled interface, in terms of elegance, for dealing with

“real-time” data in the client-side code. Combining the positive traits of the Cloud Firestore

client-side SDK with TanStack Query could hypothetically solve the most prominent problem

| face when developing with TanStack Query.

2.2.1 Cloud Firestore

Cloud Firestore is a NoSQL document database which is hosted in the cloud and part of

Firebase, an app development platform provided by Google. Its counterparts in AWS (Cloud
Computing Services - Amazon Web Services (AWS), n.d.) land and Azure (Cloud Computing
Services | Microsoft Azure, n.d.) land are commonly viewed as being DynamoDB (Fast NoSQL
Key-Value Database — Amazon DynamoDB — Amazon Web Services, n.d.) and CosmosDB
(Azure Cosmos DB, n.d.), respectively, although there are significant differences between the

databases in terms of their design and functionality.

What in my opinion mostly distinguishes Cloud Firestore from similar solutions is its “real-

time” functionality — a set of capabilities inherited from its predecessor / sibling product

Firebase Realtime Database (Firebase Realtime Database | Store and Sync Data in Real Time,

n.d.), for which the “real-time” functionality was the main selling point back in the day.


https://tanstack.com/query
https://tanstack.com/query
https://firebase.google.com/products/firestore
https://firebase.google.com/products/firestore
https://firebase.google.com/products/firestore
https://firebase.google.com/products/firestore
https://about.google/
https://firebase.google.com/
https://firebase.google.com/products/firestore
https://tanstack.com/query
https://tanstack.com/query
https://firebase.google.com/products/firestore
https://firebase.google.com/
https://about.google/
https://aws.amazon.com/
https://azure.microsoft.com/
https://aws.amazon.com/dynamodb
https://cosmos.azure.com/
https://firebase.google.com/products/firestore
https://firebase.google.com/products/realtime-database

2.2.2 “Real-time” databases

A “real-time” database — such as Firebase Realtime Database — is a database which provides

a mechanism for clients to subscribe to be notified about changes to the data in the database.

In the case of Firebase Realtime Database as well as Cloud Firestore, the implementation of

this mechanism is by design hidden to the consumer of the service(s). Google’s backend and

the client-side SDK work in tandem to provide a high-level way of consuming "real-time" data.

In Cloud Firestore’s client-side SDK, this is done by using the onsnapshot API (Get Realtime

Updates with Cloud Firestore, n.d.). It lets you listen to when the result of a database query

changes.


https://firebase.google.com/products/realtime-database
https://firebase.google.com/products/realtime-database
https://firebase.google.com/products/firestore
https://about.google/
https://firebase.google.com/products/firestore
https://firebase.google.com/docs/firestore/query-data/listen

3 Problem

The most prominent problem | face when developing with TanStack Query is that if | opt-out

of revalidation, then | have to write huge amounts of boilerplate-heavy fragile query cache
updating code which is tightly coupled with both the data model and the Ul of the app. I identify
that there’s a missing piece here — a need for a solution which can take care of the query cache

updating in a generic and robust way.

Query cache updaters — when implemented as suggested in TanStack Query’s documentation

— are bad because:

e They are difficult to write.

o Writing a bug-free query cache updater requires the developer to take into
consideration all permutations of what the state of the query could be when the
query cache updater is being run.

» The developer must have a profound understanding of how TanStack
Query works to know what cases to consider and how to consider them.
= This results in a lot of boilerplate code.

o The complexity of writing a bug-free (robust) real-life-use-case query cache

updater isn’t clearly conveyed in TanStack Query’s documentation.

= Perhaps a very intelligent and experienced developer could pick it up
from between the lines in the documentation, but for most developers,
it’s something that they must discover for themselves through trial and
error.
e They are difficult to maintain for the same reasons that they are difficult to write.
e They are tightly coupled with the data model AND with the Ul in the application, so
they need to be updated whenever the data model or the Ul changes — which is another

way of saying they need to be updated very frequently.

This prevents TanStack Query from scaling well in larger, more complex applications.

See chapter 9.1 Results: A concrete example of the problem for a concrete example of the

problem.


https://tanstack.com/query
https://tanstack.com/query/v4/docs
https://tanstack.com/query
https://tanstack.com/query
https://tanstack.com/query/v4/docs
https://tanstack.com/query

3.1 What are query cache updaters?

“Query cache updaters” is the term | use to refer to functions that update the QueryCache
(QueryCache | TanStack Query Docs, n.d.). Query cache updaters are needed when you want

to update the result of a query without having to re-fetch the query. See Updates from Mutation

Responses (Updates from Mutation Responses | TanStack Query Docs, n.d.) for more
information. Note that a query cache updater doesn’t always have to be used in conjunction
with a mutation. A query cache updater can be used anywhere where you have access to the
QuerycClient (QueryClient | TanStack Query Docs, n.d.) object. For example, in a chat
application, you could use a query cache updater in conjunction with a webSocket (WebSocket
- Web APIs | MDN, 2023) message handler to update the query which holds the list of chat

messages whenever a new chat message arrives.

3.2 Why do we need query cache updaters?

It may seem counter-intuitive that we need query cache updaters, especially as TanStack Query

describes itself on its home page as giving us “always-up-to-date auto-managed queries”. This

is half-true, in that out-of-the-box, TanStack Query is configured in a way where it will

constantly revalidate our queries (Important Defaults | TanStack Query Docs, n.d.), effectively

resulting in them being almost "always-up-to-date".

You will most likely opt-out of revalidation — in other words, tweak your configuration so
that queries are not revalidated automatically — in order to avoid that the app is making too
many unnecessary network requests. Instead, you will manually update the query cache when
something has changed. For manually updating the query cache when something has changed,

you need to write query cache updaters.


https://tanstack.com/query/v4/docs/reference/QueryCache
https://tanstack.com/query/v4/docs/guides/updates-from-mutation-responses
https://tanstack.com/query/v4/docs/guides/updates-from-mutation-responses
https://tanstack.com/query/v4/docs/reference/QueryClient
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://tanstack.com/query
https://tanstack.com/query

3.2.1 How TanStack Query achieves almost always-up-to-date auto-managed
gueries with its default configuration

It achieves almost always-up-to-date auto-managed queries through frequent revalidation of

the queries. By default (Important Defaults | TanStack Query Docs, n.d.), TanStack Query will

revalidate a query when:

e An observer is added.
e The window is refocused.

e The network is reconnected.

This results in queries being revalidated very often. For bandwidth and performance reasons,
it may not be desirable to be hitting the backend with network requests (or whatever data source

with whatever way they’re being queried in the query functions) that often.

Thus, in real-word use-cases, the configuration is usually tweaked so that queries are not
invalidated automatically and instead they’re manually invalidated when the developer knows
something has changed (e.g., upon receiving a socket message or when a mutation has been

successfully executed).

However, even when controlling when queries are invalidated, a lot of unnecessary and
expensive network requests can still incur. For example, if all the relevant data regarding a
change was provided in the socket message informing the client about the change, then, in

theory, no network requests need to be made — only the query cache needs to be updated.


https://tanstack.com/query

4 Research questions

RQ1: How can we take care of the query cache updating in a generic and robust way?



5 Goal

Come up with a solution which can take care of the query cache updating in a generic and

robust way.

Generic as in decoupled and deduplicated (reducing the amount of boilerplate needed for each
query cache updater). Robust as in hiding the complexity and writing it only once with

meticulous care and precision.



6 Hypothesis

The Cloud Firestore client-side SDK provides an unparalleled interface, in terms of elegance,

for dealing with “real-time” data in the client-side code. Combining the positive traits of the

Cloud Firestore client-side SDK with TanStack Query could hypothetically solve the most

prominent problem | face when developing with TanStack Query.

The most prominent problem | face when developing with TanStack Query is that if | opt-out
of revalidation, then | have to write huge amounts of boilerplate-heavy fragile query cache
updating code which is tightly coupled with both the data model and the Ul of the app. I identify
that there’s a missing piece here — a need for a solution which can take care of the query cache
updating in a generic and robust way. My hypothesis is that the recipe for that solution can be

derived from the Cloud Firestore client-side SDK.



https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://tanstack.com/query
https://tanstack.com/query
https://tanstack.com/query
https://firebase.google.com/products/firestore

7 Methods

In brief, my method can be broken into two parts of which each part can further be broken into

steps:

1. Research
a. Find related work.
b. Review related work.
c. Assess related work.
2. Implementation
a. Develop an example application which demonstrates the problem.
b. Develop the solution to the problem in the example application.

c. Extract the solution from the example application into a library.

7.1 Research

| explore related work to gain a greater insight into potential ways of solving the problem and
to find pre-existing solutions to potentially draw from, use in, integrate into, or embed into my

solution.

7.1.1 Finding related work

| search for related work with the initial search terms:

e “cloud firestore client-side sdk features but open-source and not google”
e “open-source, non-google solutions for listening to queries like in cloud firestore client-
side sdk”

7.1.2 Comparing related work

| compare related work based on the following items:

e Modularity
o Full stack
The solution is full stack, meaning it comes with both a server-side component

and a client-side component.



o Backend-agnostic
The solution is backend-agnostic, meaning it can be used with any kind of
backend.
o Modular
The solution is modular, meaning it can be incrementally adopted or used in a
partial manner. The solution is shipped more like a toolkit where you can pick
and use the tools you like and discard the rest and less like a solution that you
either must buy into entirely or not use at all.
e Developer experience
o 1%t-class TypeScript support
The solution is written in TypeScript and it ships with detailed type
definitions.
o Graphical developer tools
There are official graphical developer tools to be used with the solution.
e Ul framework integrations
o 1%-class React support
The solution has an official React.js (React, n.d.) adapter.
o 1%t-class Solid support
The solution has an official SolidJS (SolidJS, n.d.) adapter.

o 1%t-class Vue support
The solution has an official VVue.js (Vue.Js - The Progressive JavaScript
Framework | Vue.Js, n.d.) adapter.

o 1st-class Svelte support

The solution has an official Svelte (Svelte » Cybernetically Enhanced Web

Apps, n.d.) adapter.
e ORM (Object-Relation Mapping) capabilities
o Relationship tracking
The solution “understands” relationships in your data.
o Live queries
The solution provides a mechanism to listen for when the result of a query for

data changes.


https://www.typescriptlang.org/
https://react.dev/
https://www.solidjs.com/
https://vuejs.org/
https://svelte.dev/

e Consideration of asynchronicity and concurrency
o Optimistic updates
The solution provides a dedicated mechanism for optimistic updates and the
use-case of optimistic updates was taken into consideration in the design of the
solution.
o Browser tab sync
The solution provides a way to synchronize the state between browser tabs.
e Offline support
o Offline-first
The solution embraces the offline-first use-case and can be used to power
offline-first web experiences.
o Data persistence
The solution provides a mechanism to persist data.
o Create when offline, publish when online
The solution provides a mechanism to create data when offline, persist it
locally, and publish it to any potential remote data source once the client’s

network is reconnected (the remote data source becomes available again).

TanStack Query and the Cloud Firestore client-side SDK are included in the comparison for

the sake of reference.

The items are a union of key features of the solutions being compared.

The purpose of the comparison is to map out where each solution predominantly exists in the

problem space and how much territory it covers.

7.1.3 Assessing related work

| decide on how to proceed with my solution which can take care of the query cache updating

in a generic and robust way.

| assess if and to what degree related work can be utilized in my solution. | want to avoid
reinventing the wheel, so, if possible, my solution should be an integration of pre-existing

solution and not an entirely new solution.


https://tanstack.com/query
https://firebase.google.com/docs/firestore

7.2 Implementation

| first solve the problem in an example application which uses TanStack Query. | then extract

the solution into a separate library.

7.2.1 Developing an example application

| develop an example application which uses TanStack Query, and which acts as a sandbox for

developing the solution to the problem as well as a practical example of the problem, prior to

the solution being developed in it.

The application should resemble a typical chat application, the likes of

e Slack (Slack Is Your Productivity Platform, n.d.),

e Discord (Discord | Your Place to Talk and Hang Out, n.d.),
e Telegram (Telegram — a New Era of Messaging, n.d.),

e or WhatsApp (WhatsApp, n.d.).

The Ul is expected to look like this:

Chat rooms Joyful pike
Joyful pike 20:54 Carlee79 1 day ago
Rey66: Accusamus quidem Reprehenden‘t laboriosam laborum.
Pointless travel 20:54 Heloise.Hammes 1 dzay ago
eslie_Flatley75: Pariatur placeat Officia tenetur at incidunt quos voluptates eaque at.
Sudden ordination 20:54 Crystal.Nicolas 1 day 290
Celestinc16: Hic aliquam itaque, Voluptatem pariatur modi voluptatum necessitatibus facilis quis laboriosam.
Honorable executor 20:54 Crystal.Nicolas 1 day ago
Celestino16: Ab est maxime sunt haque corrupti enim.
Burdensome wake 20:54 Celestino16 1 day ago
Crystal.Nicolas: Sed beatae illum Ad magni quasi laboriosam error aliquam nesciunt rem ab.
Trustworthy crowd 20:54 Leslie_Flatley75 1 day ago
Leslie_Flatley75: Culpa reiciend Nostrum delectus recusandae neque officia.
Third liquidity 20:54 Crystal.Nicolas 1 day ago
Coralie.Mante22: Aspernatur Eaque porro doloremque.
Bouncy mask 20:54 Coralie.Mante22 1 day ago
eslie_Flatley75: Eaque sint Aspernatur aperiam delectus sint deserunt.
Small sting 20:54 Crystal.Nicolas 1 day ago
Crystal.Nicolas: Sequi expedits Dolor quisquam molestiae aut accusantium et enim ducimus.
Elastic praise 20:53 Celestino16 20:53
Crystal.Nicolas: Enim officia... Exercitationem minima facere natus praesentium tempore commodi dolores sapiente provident.
Potable skating 20:53 Rey66 20:54
Coralie.Mante22: Enim. Accusamus quidem voluptas velit amet excepturi dolorum est est.
Joint newsletter 20:53
Carlee79: Tempore unde ipsum [I J

Stale orior

Figure 1. Example chat application Ul


https://tanstack.com/query
https://tanstack.com/query
https://slack.com/
https://discord.com/
https://telegram.org/
https://whatsapp.com/

On the left-hand side, you have a list of chat rooms. On the right-hand side, you have a list of

messages in the currently selected chat room.

Detailed requirements

e It should be able to fetch and display a list of chat rooms.
o Ordered by when the latest chat message was sent, descending.
o A preview of the latest chat message should be displayed in the chat room list
item.
o The list should be an “infinite scroll” list, meaning it should load more chat
rooms as the user scrolls down.
e Itshould let the user select a chat room to view the messages in that room and send new
messages to that room.
e It should be able to fetch and display a list of chat messages in the currently selected
chat room.
o Ordered by when the chat message was sent, descending.
o The list should be an “infinite scroll” list, meaning it should load more chat
messages as the user scrolls to the end of the list.
e Itshould let the user send a new chat message to the currently selected room.
e It should automatically and as quickly as possible update the Ul to reflect changes to

the data when new chat messages arrive or when the user has sent a new chat message.

7.2.2 Solving the problem

| solve the problem in the example application.

This method was chosen due to its agile attributes. Carving out the solution this way benefits
from quick iteration and a tight feedback loop and you stay close to reality as your development
server provides you with real-time feedback on whether your solution works in practice or not

and whether it actually solves the problem or not.



7.2.3 Packaging the solution as a library

| extract the solution from the example application into a separate library, and package it in a

way which allows it to be consumed and used in any application that uses TanStack Query,

with minimal additional configuration.


https://tanstack.com/query

8 Related work

8.1 Overview

8.1.1 CushionDB

CushionDB (CushionDB, n.d.) is a small open-source project created by three software
developers: Avshar Kirksall (Avshrk on GitHub, n.d.), Daniel Rote (Drote on GitHub, n.d.) and

Jaron Truman (Jtruman88 on GitHub, n.d.). It describes itself as an “open-source database for

progressive web applications”. It especially focuses on offline-first data management and

synchronization.

8.1.2 Dexie.js

Dexie.js (Dexie.Js - Minimalistic IndexedDB Wrapper, n.d.) is one of the most popular open-
source libraries for interacting with IndexedDB (IndexedDB API - Web APIs | MDN, 2023),
the web browser’s built-in database for storing and retrieving large amounts of structured data.

The author of Dexie.js is David Fahlander (Dfahlander on GitHub, n.d.). It describes itself as

a “Minimalistic Wrapper for IndexedDB”. Arguably, it isn’t that minimalistic. But it has a lot

of neat features such as live queries (LiveQuery(), n.d.) and browser tab sync

(Dexie.on.Storagemutated, n.d.), to name a few.

8.1.3 Orbit.js

Orbit.js (Orbit.Js - The Universal Data Layer | Orbit.Js, n.d.) is an open-source project from

Cerebris Corporation (Cerebris :: Developers of Ambitious Web Applications, n.d.), a “small

company with a BIG open source presence” (Cerebris :: Projects, n.d.). It describes itself as

e “The Universal Data Layer” (website tagline),

e “Composable data framework for ambitious web applications” (description on GitHub
(Orbitjs/Orbit on GitHub, 2013/2023)),

e and “Orbit is a composable data framework for managing the complex needs of today’s

web applications” (first sentence in the README . md).


https://cushiondb.github.io/
https://github.com/avshrk
https://github.com/drote
https://github.com/jtruman88
https://dexie.org/
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://dexie.org/
https://github.com/dfahlander
https://dexie.org/docs/liveQuery()
https://dexie.org/docs/Dexie/Dexie.on.storagemutated
https://orbitjs.com/
https://www.cerebris.com/
https://orbitjs.com/
https://github.com/orbitjs/orbit
https://github.com/orbitjs/orbit

The author and core maintainer of Orbit.js is Dan Gebhardt (Cerebris :: Projects, n.d.; Dgeb

on GitHub, n.d.), Principal Software Engineer at and Co-Founder of Cerebris Corporation (Dan

Gebhardt | LinkedIn, n.d.). He’s also a core maintainer of Ember.js (Ember.Js - A Framework
for Ambitious Web Developers, n.d.) and Glimmer.js (Glimmer, n.d.) and the JSON:API
(JSON:API — A Specification for Building APIs in JSON, n.d.) specification.

8.1.4 SQLite as a WebAssembly module

wa-sglite (Hashimoto, 2021/2023) by Ryo Hashimoto (Rhashimoto on GitHub, n.d.) is a
WebAssembly (WebAssembly, n.d.) build of SQLite (SQLite Home Page, n.d.) which

effectively brings a fully-fledged relational database to the web platform.

8.2 Comparison

Table 1. Related work: Comparison: Modularity

Query | Firestore | CushionDB | Dexie.js | Orbit.js | SQLite
Full stack v v
Backend-agnostic |/ V4 V4 v
Modular V4

Table 2. Related work: Comparison: Developer experience

Query | Firestore | CushionDB | Dexie.js | Orbit.js | SQLite

15-class v Vv v v v
TypeScript
support

Graphical V4
developer tools

Table 3. Related work: Comparison: Ul framework integrations

Query | Firestore | CushionDB | Dexie.js | Orbit.js | SQLite

1%-class React V4 v

support

1%t-class Solid V4

support

15t-class Vue V4 v

support

1t-class Svelte N4 v

support



https://orbitjs.com/
https://github.com/dgeb
https://www.cerebris.com/
https://emberjs.com/
https://glimmerjs.com/
https://jsonapi.org/
https://github.com/rhashimoto/wa-sqlite
https://github.com/rhashimoto
https://webassembly.org/
https://sqlite.org/index.html

Table 4. Related work: Comparison: ORM capabilities

Query | Firestore | CushionDB | Dexie.js | Orbit.js | SQLite
Relationship v v
tracking
Live queries Vv v v

Table 5. Related work: Comparison: Consideration of asynchronicity and concurrency

Query | Firestore | CushionDB | Dexie.js | Orbit.js | SQLite

Optimistic v v v
updates
Browser tab sync | V4 V4

Table 6. Related work: Comparison: Offline support

Query | Firestore | CushionDB | Dexie.js | Orbit.js | SQLite
Offline-first v v Vv
Data persistence | v v N4 v v
Creating when V4 v v
offline, publish
when online

Query stands for TanStack Query.

Firestore stands for the Cloud Firestore client-side SDK.
SQL.ite stands for SQL.ite as a WebAssembly module.

8.2.1 Modularity

Full stack

Firestore and CushionDB are both entirely full stack solutions. TanStack Query, Orbit.js and

SQLite are entirely client-side solutions. Dexie.js is a client-side solution, but on Dexie.|s’

home page, as of writing this, you can find a link to Dexie Cloud®c™ (Dexie Cloud, n.d.), a

cloud-hosted sync service for Dexie.|s.


https://tanstack.com/query
https://firebase.google.com/products/firestore
https://firebase.google.com/docs/firestore
https://tanstack.com/query
https://dexie.org/cloud/

Backend-agnostic

Firestore and CushionDB are not backend-agnostic solutions. TanStack Query, Dexie.js,

Orbit.js and SQL.ite are backend-agnostic solutions.

Modular
Orbit.js is the only solution out of the bunch that is truly modular in the sense that it’s shipped

as a toolkit where you can pick and use the tools you like and discard the rest and less like a

solution that you either must buy into entirely or not at all.

8.2.2 Developer experience

15t-class TypeScript support

TanStack Query, Firestore, Dexie.js and Orbit.js are all written in TypeScript. The source for

the JavaScript bindings in wa-sqglite is written in JavaScript, but the library ships with its own
TypeScript type definition declaration files. CushionDB is written in JavaScript.

Graphical developer tools

TanStack Query is the only solution out of the bunch that has graphical developer tools.

8.2.3 Ul framework integrations

15t-class React support

TanStack Query and Dexie.js both have 1%-class support for React:

e React Query | TanStack Query Docs (React Query | TanStack Query Docs, n.d.)

e Get started with Dexie in React (Get Started with Dexie in React, n.d.)


https://firebase.google.com/docs/firestore
https://tanstack.com/query
https://tanstack.com/query
https://firebase.google.com/docs/firestore
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://tanstack.com/query
https://tanstack.com/query
https://react.dev/
https://tanstack.com/query/v4/docs/react/overview
https://dexie.org/docs/Tutorial/React

The GitHub organization Orbit.js (Orbit.Js, n.d.) has a small package called react-orbit
(Orbitjs/React-Orbit on GitHub, 2019/2023), but it’s very minimal, So | would categorize it as

an example of how to use Orbit.js with React instead of viewing it as Orbit.js having 1%-class

React support.

Firestore, CushionDB and SQLite don’t have 1%t-class support for React.

15t-class Solid support

TanStack Query is the only solution out of the bunch which has 1%-class support for Solid:

e Solid Query | TanStack Query Docs (Solid Query | TanStack Query Docs, n.d.)

15t-class Vue support

TanStack Query and Dexie.js both have 1%-class support for VVue:

e Vue Query | TanStack Query Docs (Vue Query | TanStack Query Docs, n.d.)

e (Get started with Dexie in Vue (Get Started with Dexie in Vue, n.d.)

Firestore, CushionDB, Orbit.js and SQL.ite don’t have 1%-class support for VVue.

15t-class Svelte support

TanStack Query and Dexie.js both have 1%-class support for Svelte:

e Svelte Query | TanStack Query Docs (Svelte Query | TanStack Query Docs, n.d.)

e Get started with Dexie in Svelte (Get Started with Dexie in Svelte, n.d.)

Firestore, CushionDB, Orbit.js and SQL.ite don’t have 1%-class support for Svelte.



https://github.com/orbitjs
https://github.com/orbitjs/react-orbit
https://react.dev/
https://react.dev/
https://firebase.google.com/docs/firestore
https://react.dev/
https://tanstack.com/query
https://www.solidjs.com/
https://tanstack.com/query/v4/docs/solid/overview
https://tanstack.com/query
https://vuejs.org/
https://tanstack.com/query/v4/docs/vue/overview
https://dexie.org/docs/Tutorial/Vue
https://firebase.google.com/docs/firestore
https://vuejs.org/
https://tanstack.com/query
https://svelte.dev/
https://tanstack.com/query/v4/docs/svelte/overview
https://dexie.org/docs/Tutorial/Svelte
https://firebase.google.com/docs/firestore
https://svelte.dev/

8.2.4 ORM capabilities

Relationship tracking

Orbit.js is aware of relationships in your data. SQLite is naturally aware of relationships in
your data as it’s a fully-fledged relational database which lets you interact with it using SQL

(Structured Query Language). TanStack Query, Firestore, CushionDB and Dexie.js are not

aware of relationships in your data.

Live gueries

Firestore has live queries in the form of the onSnapshot API. Dexie.js and Orbit.js have live

queries:

e liveQuery() | dexie.org

e Live Queries | Orbit.js (Live Queries | Orbit.Js, n.d.)

TanStack Query, CushionDB and SQL.ite don’t have live queries.

8.2.5 Consideration of asynchronicity and concurrency

Optimistic updates

TanStack Query, Firestore and Orbit.js provide mechanisms for doing optimistic updates.

CushionDB, Dexie.js and SQL.ite don’t provide any mechanisms for doing optimistic updates.

Browser tab sync

Firestore and Dexie.js synchronize their states across browser tabs. TanStack Query has a

plugin (BroadcastQueryClient (Experimental) | TanStack Query Docs, n.d.), which is as of
writing this annotated as “experimental”, which synchronizes the QueryClient’s state across
browser tabs. CushionDB, Orbit.js and SQLite don’t synchronize their states across browser
tabs.



https://tanstack.com/query
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore/query-data/listen
https://dexie.org/docs/liveQuery()
https://orbitjs.com/docs/querying-data#live-queries
https://tanstack.com/query
https://tanstack.com/query
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://tanstack.com/query
https://tanstack.com/query/v4/docs/plugins/broadcastQueryClient
https://tanstack.com/query/v4/docs/reference/QueryClient

8.2.6 Offline support

Offline-first

Firestore, CushionDB, and Orbit.js were designed with the enablement of offline-first web

experiences in mind. TanStack Query, Dexie.js and SQLite were not designed with the

enablement of offline-first web experiences in mind.

Data persistence

All the solutions provide mechanisms to persist data.

Creating when offline, publish when online

Firestore, CushionDB, and Orbit.js provide mechanisms for creating data when offline and

publishing it when online. TanStack Query, Dexie.js and SQLite don’t provide mechanisms

for creating data when offline and publishing it when online, the exception being Dexie.js, if

you use it with Dexie Cloud®E™,

8.3 Analysis

Let’s take a closer look at my hypothesis that a recipe for the solution can be derived from the

Cloud Firestore client-side SDK. I initially asked myself the question: “What enables the Cloud

Firestore client-side SDK to have an API such as the onsnapshot API, which lets you listen to

when the result of a query changes?”. But that is not the right question to ask, because the

framework-agnostic core of TanStack Query has a very similar API to the Cloud Firestore

client-side SDK’s onsnapshot API in that you can subscribe to be notified when the result of

query changes. So, the answer to that question is simply: “The same thing that enables it in

TanStack Query: observables and observers.”.

What is then the difference between TanStack Query and the Cloud Firestore client-side SDK?

Both have queries and both let you listen to when the result of a query changes.


https://firebase.google.com/docs/firestore
https://tanstack.com/query
https://firebase.google.com/docs/firestore
https://tanstack.com/query
https://dexie.org/cloud/
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/firestore/query-data/listen
https://tanstack.com/query
https://firebase.google.com/products/firestore
https://firebase.google.com/docs/firestore/query-data/listen
https://tanstack.com/query
https://tanstack.com/query
https://firebase.google.com/products/firestore

Let’s explore the meaning of the word query in the different libraries. In general, query is, in

the context of software development, a request for specific information from a database or other

data storage system. In TanStack Query, a query can be more specifically described as an
abstraction for an asynchronous read operation, its state, and its cached result. In the Cloud
Firestore client-side SDK, a query can be more specifically described as an abstraction which
describes the request for specific information itself, meaning the request itself, in a structured

way, which the library understands. The Cloud Firestore client-side SDK has a query language,

while TanStack Query does not.

In TanStack Query, the meaning of the key that identifies a query is of no interest to the library.

It only sees the key as a pointer to some value in the QueryCache, which is essentially a key-

value store. Similarly, the data stored as the result of a query is opaque to TanStack Query. In

contrast, the Cloud Firestore client-side SDK understands the data that flows through the

library. This is what allows the Cloud Firestore client-side SDK to know based on a socket

message informing about a change, how the in-memory data should be mutated to reflect the

change and which query listeners should be notified.

| have decided that Orbit.js is the solution to taking care of the query cache updating in a generic
and robust way. | will implement a solution for using the solution (Orbit.js) together with
TanStack Query.

Orbit.js is the solution because:

e It’s modular/composable. It can be used in a way where it just solves the query cache
updating problem, but changes little else about the application, or you can go all in, and
use it to power offline-first web experiences.

e It has a query language, and it understands the data that flows through it, and it lets you

listen to when the result of query changes, like the Cloud Firestore client-side SDK.

Additionally, it lets you describe relationships in your data, which the Cloud Firestore

client-side SDK doesn’t let you do to the same degree.
e It’s an entirely client-side solution and it’s backend-agnostic. The solution doesn’t

require the entire stack to change.


https://tanstack.com/query
https://firebase.google.com/products/firestore
https://firebase.google.com/products/firestore
https://firebase.google.com/products/firestore
https://tanstack.com/query
https://tanstack.com/query
https://tanstack.com/query/v4/docs/reference/QueryCache
https://tanstack.com/query
https://firebase.google.com/products/firestore
https://firebase.google.com/products/firestore
https://tanstack.com/query
https://firebase.google.com/products/firestore
https://firebase.google.com/products/firestore

9 Results

9.1 A concrete example of the problem

Thanks to the method I chose when implementing the solution, there's now a concrete example
of the problem, which can be used to demonstrate the problem in a practical step-by-step
manner.

A practical step-by-step demonstration of the problem follows below.

Imagine you’re building the chat application described in 7.2.1 Methods: Implementation:

Developing an example application, using React.js and TanStack Query.

9.1.1 Initial code

You would probably start out by creating an App component that looks something like this:

export const App = () => {
const [
selectedChatRoomId,
setSelectedChatRoomId,
] = React.useState<string | null>(null);
return (
<div>
<ChatRoomList
selectedChatRoomId={selectedChatRoomId}
setSelectedChatRoomId={setSelectedChatRoomId}
/>
<ChatRoom chatRoomId={selectedChatRoomId} />
<div/>
);
¥

Figure 2. src/components/App.tsx (initial)

Note: for the sake of brevity only the most relevant source code for this example is shown. For

the full source code, see the GitHub repository.



https://react.dev/
https://tanstack.com/query
https://github.com/DanielGiljam/tanstack-query-with-orbitjs

Then you would go on to implement the chatRoomList component...

const queryFn = async () => {
const response = await fetch("/api/chat-rooms?count=10");
return response.json();

+;

export const ChatRoomList = ({
selectedChatRoomId,
setSelectedChatRoomId
}: ChatRoomListProps) => {
const {data: chatRooms} = useQuery({
queryKey: ["chat-rooms"],

queryFn,
1)
return (
<ul>
{chatRooms?.map((chatRoom) => (
// Assumed stateless component,
// implementation not of interest in this example
<ChatRoomListItem
key={chatRoom. id}
chatRoom={chatRoom}
selected={chatRoom.id === selectedChatRoomId}
onClick={() => setSelectedChatRoomId(chatRoom.id)}
/>
)}
<ul/>

+;

Figure 3. src/components/ChatRoomList.tsx

...and the chatRoom component.

export const ChatRoom = ({chatRoomId}: ChatRoomProps) => {
return (
<div>
<ChatMessagelList chatRoomId={chatRoomId} />
<ChatMessageInput chatRoomId={chatRoomId} />
<div/>
);
I

Figure 4. src/components/ChatRoom.tsx



Now, there are two more components to implement.

The chatMessagelList component...

const queryFn = async (
ctx: QueryFunctionContext<["chat-messages", string]>,
) = {
const response = await fetch(
*/api/chat-room/${ctx.queryKey[1]}/chat-messages?count=10",
);
return response.json();

+;

export const ChatMessagelList = ({chatRoomId}: ChatMessagelListProps) => {
const {data: chatMessages} = useQuery({
queryKey: ["chat-messages", chatRoomIdl],
queryFn,
3
return (
<ul>
{chatMessages?.map((chatMessage) => (
// Assumed stateless component,
// implementation not of interest in this example
<ChatMessagelListItem
key={chatMessage.id}
chatMessage={chatMessage}

Figure 5. src/components/ChatMessageList.tsx



...and the ChatMessageInput component.

const mutationFn = async (
{chatRoomId, text}: {chatRoomId: string; text: string},
) = {
const response = await fetch(
*/api/chat-room/${chatRoomId}/chat-message",

{
method: "POST",
headers: {
"Content-Type": "application/json",
I
body: JSON.stringify({text}),
H

);
return response.json();

¥

export const ChatMessageInput = ({chatRoomId}: ChatMessageInputProps) => {

const [text, setText] = React.useState("");

const {mutate: sendChatMessage, isLoading} = useMutation({
mutationFn,
onSuccess: () => setText(""),

1)

const onChange = (event: React.ChangeEvent<HTMLInputElement>) => {
setText(event.target.value);

I
const onKeyDown = (event: React.KeyboardEvent<HTMLInputElement>) => {
if (event.key === "Enter") {
sendChatMessage({chatRoomId, text});
¥
b
return (
<input
value={text}
disabled={isLoading}
onChange={onChange}
onKeyDown={onKeyDown}
/>

);
+;

Figure 6. src/components/ChatMessagelnput.tsx



9.1.2 Updating the Ul when new chat messages arrive

You now have a chat application that works to a certain extent but is limited in its functionality
in that it doesn’t update the Ul when new chat messages arrive or when the user sends new chat
messages, which is something users have come to expect from modern day chat applications.

Updating the Ul when new chat messages arrive can be implemented fairly easily.

In the App component, a useEffect hook (UseEffect — React, n.d.) can be added that subscribes

to awebSocket connection that receives a message whenever there is a new chat message. Then,

using the gueryClient, we can invalidate the queries (Query Invalidation | TanStack Query

Docs, n.d.), causing the queries to be re-fetched and the Ul to be updated.

export const App = () => {
const queryClient = useQueryClient();
const [
selectedChatRoomId,
setSelectedChatRoomId,
] = React.useState<string | null>(null);
React.useEffect(() => {
const socket = getSocket();
socket.on("new-chat-message", () => {
void queryClient.invalidateQueries();
1)
return () => socket.disconnect();
}, [queryClient]);
return (
<div>
<ChatRoomList
selectedChatRoomId={selectedChatRoomId}
setSelectedChatRoomId={setSelectedChatRoomId}
/>
<ChatRoom chatRoomId={selectedChatRoomId} />
<div/>
);
¥

Figure 7. src/components/App.tsx (with socket connection)

However, this is very inefficient. Calling QueryClient#invalidateQueries

(QueryClient#invalidateQueries | TanStack Query Docs, n.d.) is effectively causing the app to
redo all the API requests that it has done so far, which is a lot of unnecessary work.


https://react.dev/reference/react/useEffect
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://tanstack.com/query/v4/docs/reference/QueryClient
https://tanstack.com/query/v4/docs/guides/query-invalidation
https://tanstack.com/query/v4/docs/reference/QueryClient#queryclientinvalidatequeries

A Dbetter alternative would be to only invalidate the queries that are affected by the new chat

message. That is:

e The ["chat-messages"] query for the chat room that the new message arrived in.
e The ["chat-rooms"] query, because the chat rooms are sorted according to when the
latest message arrived in the room, and a preview of the latest message is shown in the

chat room list item.

Let’s assume that the new chat message is included in the socket message, so the information

about the chat room that the new message arrived in can be retrieved from the socket message.

socket.on('"new-chat-message", (chatMessage: ChatMessage) => {
void queryClient.invalidateQuery(
["chat-messages", chatMessage.chatRoomId],
);
void queryClient.invalidateQuery(
["chat-rooms"],
);
});

Figure 8. Invalidating specific queries

Frankly, this is still inefficient. As the new chat message in included in the socket message, in
most cases, all the information necessary is already present in the app’s memory in some shape

or another, and there is theoretically no need to make any additional API requests.

“In most cases”, because no assumption was made that the chat room itself would be included
in the socket message, and in case it doesn’t exist in cache from before, it would have to be

fetched separately before the update can be applied.



QueryClient#setQueryData (QueryClient#setQueryData | TanStack Query Docs, n.d.) can be

used to manually update the queries’ cached data and avoid doing any network requests.

socket.on("new-chat-message", (chatMessage: ChatMessage) => {
queryClient.setQueryData(
["chat-messages", chatMessage.chatRoomId],
(data) => [
chatMessage,
// data might be undefined if the query
// doesn't exist from before
...(data ?? [1),
]l
);
queryClient.setQueryData(['"chat-rooms"], (data) => {
// data might be undefined if the query
// doesn't exist from before
if (data == null) {
return;
¥
// make a copy of the array which we are allowed to mutate
const newData = [...datal;
const chatRoomIndex = newData.findIndex(
(chatRoom) => chatRoom.id === chatMessage.chatRoomId,
);
// remove the chat room from the array
const [chatRoom] = newData.splice(chatRoomIndex, 1);
// prepend the a clone of chat room object to the array
// where latestChatMessage is set to the new chat message
newData.unshift({
... chatRoom,
latestChatMessage: chatMessage,
});
return newData;
1)
1)

Figure 9. Using QueryClient#setQueryData

As hinted earlier in the text, this only works in most cases. The case where the chat room
doesn't exist in the ["chat-rooms"] query's cached data is not accounted for. It cannot be
assumed that the ["chat-rooms"] query's cached data contains all chat rooms. In the example
implementation of the chatRoomList component (Figure 3.) the ["chat-rooms"] query's cached

data will contain the 10 most recently active chat rooms if the query resolved successfully.

In the real implementation which can be found in the GitHub repository and which meets the

requirements listed in 7.2.1 Methods: Implementation: Developing an example application,

“infinite scrolling” has been implemented, which allows the user to view rooms past the 10


https://tanstack.com/query/v4/docs/reference/QueryClient#queryclientsetquerydata
https://github.com/DanielGiljam/tanstack-query-with-orbitjs

first. But even though more than 10 chat rooms may exist in cache, we cannot assume that it’s

all chat rooms.

There are several ways to address this. Ignoring the case where the chat room doesn’t exist in
the ["chat-rooms"] query’s cached data isn’t one of those ways. Even if the new chat message
belongs to a room which wasn’t among the 10 first rooms, that room is now among the 10 first

rooms, since the order of the rooms is determined by when chat messages last arrived in them.

In the example app, reverting to calling queryClient.invalidateQuery(["chat-rooms"])
won’t do much harm. Arguably, the added complexity of manually trying to update the cached

data isn't worth it in this case.

But for real chat apps that implement pagination, the situation is arguably different. It might
then be a question of potentially re-fetching hundreds of chat rooms just because one chat room

got a new message.

9.1.3 Handling the case where the chat rooms doesn’t exist in
the ["chat-rooms"] query’s cached data

The easiest solution from the point of view of a frontend developer is probably if the backend
makes a change to include the chat room object as well as the chat message object in the socket

message which informs the client about the new chat message.

But the socket service adapting this way to accommodate to very specific frontend needs is a
luxury which cannot be expected every time a case like this is encountered. The socket service
has performance and efficiency considerations of its own that it needs to care about, and

bundling more data in the socket messages goes strictly against those considerations.

So, as a frontend developer, you might as well accept that you need to be able to handle this in

the frontend.

The first step is to go asynchronous.



export const onNewChatMessage = async (

queryClient: QueryClient,
chatMessage: ChatMessage,

) = A

+;

queryClient.setQueryData(
["chat-messages", chatMessage.chatRoomId],
(data) => [
chatMessage,
// data might be undefined if the query
// doesn't exist from before
...(data ?? [1),
1,
);
const data = queryClient.getQueryData(["chat-rooms"]);
// make a copy of the array which we are allowed to mutate
const newData = [...(data ?? [1)];
const chatRoomIndex = newData.findIndex(
(chatRoom) => chatRoom.id === chatMessage.chatRoomId,
);
let chatRoom: ChatRoom;
// if chat room doesn't exist, fetch it

if (chatRoomIndex === -1) {
try {
chatRoom = await fetchChatRoom(chatMessage.chatRoomId);
} catch {
// if fetching the chat room fails, we surrender (for now)
return;
}
}
// else remove it from the array
else {

const staleChatRoom = newData.splice(chatRoomIndex, 1)I[0];
chatRoom = {
...staleChatRoom,
latestChatMessage: chatMessage,
};
¥
// prepend chat room to the array
newData.unshift(chatRoom);
queryClient.setQueryData(['"chat-rooms"], newData);

Figure 10. src/socket-message-handlers/onNewChatMessage.ts (initial)

socket.on("new—-chat-message", (chatMessage: ChatMessage) => {

1)

queryClient.setQueryData(
["chat-messages", chatMessage.chatRoomId],
.. (6 hidden lines)

)i

queryClient.setQueryData(["chat-rooms"], (data) => {
.. (19 hidden lines)

1

void onNewChatMessage(queryClient, chatMessage);

Figure 11. Going asynchronous



9.1.4 Dealing with concurrency

The onNewChatMessage function (Figure 10.) does not take into consideration if any of the
queries whose cached data it’s modifying are currently in-flight. This could affect the outcome

in different unwanted ways.

To dodge this potential bullet, the query which the function is currently operating on must be

cancelled if it’s currently in-flight. It can be done by using QueryClient#cancelQueries

(QueryClient#cancelQueries | TanStack Query Docs, n.d.). Then after doing the synchronous
query cache update, if the query was being fetched prior to the update, the function must call

QueryClient#refetchQueries (QueryClient#refetchQueries | TanStack Query Docs, n.d.) to

make sure that whatever was being fetched prior to the update still gets fetched in the end.

export const onNewChatMessage = async (..) => {
const wasFetchingChatMessages =
queryClient.isFetching(["chat-messages", chatMessage.chatRoomId]) > 0;
if (wasFetchingChatMessages) {
await queryClient.cancelQueries([
""chat-messages",
chatMessage.chatRoomId,
1);
}
queryClient.setQueryDatal(
["chat-messages", chatMessage.chatRoomId],
. (6 hidden lines)
);
if (wasFetchingChatMessages) {
void queryClient.refetchQueries([
""chat-messages",
chatMessage.chatRoomId,
1);
¥
const wasFetchingChatRooms = queryClient.isFetching(["chat-rooms"]) > @;
if (wasFetchingChatRooms) {
await queryClient.cancelQueries(["chat-rooms"]);
}
const data = queryClient.getQueryData(["chat-rooms"]);
// make a copy of the array which we are allowed to mutate
const newData = [...(data ?? [1)];
. (22 hidden lines)
queryClient.setQueryData(["chat-rooms"], newData);
if (wasFetchingChatMessages) {
void queryClient.refetchQueries(["chat-rooms"]);
¥
};

Figure 12. Dealing with concurrency — Part 1

Since fetchChatRoom is asynchronous, by the time it’s finished, the cached data for the ["chat-

rooms"] query might already have changed and differ from what’s in newData.


https://tanstack.com/query/v4/docs/reference/QueryClient#queryclientcancelqueries
https://tanstack.com/query/v4/docs/reference/QueryClient#queryclientrefetchqueries

export const onNewChatMessage = async (..) => {
. (24 hidden lines)
constlet data = queryClient.getQueryData(["chat-rooms"]);
// make a copy of the array which we are allowed to mutate
constlet newData = [...(data ?? [1)];
constlet chatRoomIndex = newData.findIndex(
(chatRoom) => chatRoom.id === chatMessage.chatRoomld,
)i
let chatRoom: ChatRoom;
// if chat room doesn't exist, fetch it
if (chatRoomIndex === -1) {
try {
// synchronous handling of socket message ends here
chatRoom = await fetchChatRoom(chatMessage.chatRoomId);

} catch {
// if fetching the chat room fails, we surrender (for now)
return;

}

// we need to check for in-flight queries and cancel them again
// since we "left" the synchronous execution context
wasFetchingChatRooms = queryClient.isFetching(["chat-rooms"]) > 0;
if (wasFetchingChatRooms) {
await queryClient.cancelQueries(["chat-rooms"]);
¥
data = queryClient.getQueryData(["chat-rooms"]);
newData = [...(data ?? [])];
chatRoomIndex = newData.findIndex(
(chatRoom) => chatRoom.id === chatMessage.chatRoomlId,
);
if (chatRoomIndex !== -1) {
// we can assume that the chat room we just fetched
// 1is as up—-to-date or more up-to-date than the one
// that was added to the cache while we were fetching
newData[chatRoomIndex] = chatRoom;
} else {
// prepend chat room to the array
newData.unshift(chatRoom);
b
// we cannot assume that the chat room we just fetched
// should still go to the top of the list
newData.sort(latestChatMessageCreatedAtDescendingCompareFn);
¥
// else remove it from the array
else {
w (4 hidden lines)
// prepend chat room to the array
newData.unshift(chatRoom);
¥
// prepend chat room to the array
newData.unshift(chatRoom);
queryClient.setQueryData(["chat-rooms"], newData);
if (wasFetchingChatMessages) {
void queryClient.refetchQueries(["chat-rooms"]);
¥
};

Figure 13. Dealing with concurrency — Part 2



Now that concurrency has been taken into consideration, this particular query cache updater is
finished.

9.1.5 Summing it up

The onNewChatMessage function was just one query cache updater. As the app grows, the need
to create more of these updaters will arise, and while the code can be organized into neat file
structures and parts of it can be extracted into helper functions that can be reused across those

files, there will still no doubt be a lot of query cache updating code to maintain.

A single forgotten conditional statement or unhandled edge-case in any of these query cache

updaters can lead to a cascade of bugs that are hard to track down and fix.

Whenever there are changes to the data model or the Ul of the application, it’s likely that some
changes need to be made to the query cache updaters as well, since they are tightly coupled

with both the data model and the Ul of the application.

This code is not something you should have to write and maintain yourself, especially since

there are other solutions (such as Orbit.js and the Cloud Firestore client-side SDK) that prove

that the desired functionality can be achieved in other ways which eliminate the need for you

to write this kind of code and — in addition to that — work more reliably.

9.2 The solution

The solution comprises of two libraries:

e @tanstack-query-with-orbitjs/core

e @tanstack-query-with-orbitjs/react

9.2.1 @tanstack-query-with-orbitjs/core

@tanstack-query-with-orbitis/core is effectively an extension of, a wrapper of, a flavor of

or a preset for @tanstack/query-core; the Ul framework agnostic core of TanStack Query
(@tanstack/Query-Core on GitHub, n.d.).



https://orbitjs.com/
https://firebase.google.com/products/firestore
https://github.com/DanielGiljam/tanstack-query-with-orbitjs/tree/main/libs/core
https://github.com/DanielGiljam/tanstack-query-with-orbitjs/tree/main/libs/react
https://github.com/DanielGiljam/tanstack-query-with-orbitjs/tree/main/libs/core
https://github.com/TanStack/query/tree/v4.16.1/packages/query-core
https://tanstack.com/query

@tanstack-query-with-orbitjis/core is also Ul framework agnostic. As the hame suggests,

it’s a library for using TanStack Query together with Orbit.js. It exports the following items:

e LiveQueryClient
Replacement for QueryClient. (Extends QueryClient class.)

® LiveQueryClientConfig
Type  definition.  (Extends  QueryClientConfig  (QueryClientConfig  in
@tanstack/Query-Core on GitHub, n.d.) interface.)

® QueryMeta
Module augmented, and declaration merged more specific version of the QueryMeta
(QueryMeta in @tanstack/Query-Core on GitHub, n.d.) interface.
e GetQueryOrExpressions
Type definition for a function signature which has a central role when using the library.
® LiveQueryObserver
Replacement for Queryobserver (QueryObserver | TanStack Query Docs, n.d.).
(Extends Queryobserver class.)
e LiveInfiniteQueryObserver

Replacement for InfiniteQueryobserver (InfiniteQueryObserver | TanStack Query

Docs, n.d.). (Extends InfiniteQueryObserver class.)

Using @tanstack-query-with-orbitis/core differs from using @tanstack/query-core in that

the LiveQueryClient constructor requires that you pass it a reference to an Orbit.js
MemorySource (Class: MemorySource<QO, TO, QB, TB, QRD, TRD> | Orbit.Js, n.d.) and in
that you don’t pass gueryFns (Query Functions | TanStack Query Docs, n.d.) to observers when

instantiating them. Instead, the library makes use of the meta object that @tanstack/query-core

associates with each query. In the meta object, you specify a getQueryorExpressions function

which returns the query or expression which the default queryfn (Default Query Function |

TanStack Query Docs, n.d.) uses to query the memory source and which is used to create an

Orbit.js live query which automatically keeps your query up to date.

For more information, check out the library’s README.md, Where how to use the library is

covered in greater detail, or check out the source code for the example chat application which

uses this solution.


https://github.com/DanielGiljam/tanstack-query-with-orbitjs/tree/main/libs/core
https://tanstack.com/query
https://orbitjs.com/
https://tanstack.com/query/v4/docs/reference/QueryClient
https://tanstack.com/query/v4/docs/reference/QueryClient
https://github.com/TanStack/query/blob/v4.16.1/packages/query-core/src/types.ts#L708-L713
https://github.com/TanStack/query/blob/v4.16.1/packages/query-core/src/types.ts#L51-L53
https://tanstack.com/query/v4/docs/reference/QueryObserver
https://tanstack.com/query/v4/docs/reference/QueryObserver
https://tanstack.com/query/v4/docs/reference/InfiniteQueryObserver
https://tanstack.com/query/v4/docs/reference/InfiniteQueryObserver
https://github.com/DanielGiljam/tanstack-query-with-orbitjs/tree/main/libs/core
https://github.com/TanStack/query/tree/v4.16.1/packages/query-core
https://orbitjs.com/docs/api/memory/classes/MemorySource
https://orbitjs.com/docs/api/memory/classes/MemorySource
https://tanstack.com/query/v4/docs/guides/query-functions
https://github.com/TanStack/query/tree/v4.16.1/packages/query-core
https://tanstack.com/query/v4/docs/guides/default-query-function
https://orbitjs.com/docs/querying-data#live-queries
https://github.com/DanielGiljam/tanstack-query-with-orbitjs/tree/main/libs/core
https://github.com/DanielGiljam/tanstack-query-with-orbitjs/tree/main/apps/example-chat-app-with-tanstack-query-and-orbitjs

9.2.2 @tanstack-query-with-orbitjs/react

@tanstack-query-with-orbitis/react contains React bindings for using @tanstack-query-

with-orbitis/core in a React application. It exports:

e uselLiveQuery
Same as useQuery (UseQuery | TanStack Query Docs, n.d.), but for when using

@tanstack-query-with-orbitjs/core.

e uselivelInfiniteQuery

Same as useInfiniteQuery (UselnfiniteQuery | TanStack Query Daocs, n.d.), but for

when using @tanstack-query-with-orbitjs/core.

® uselLiveQueryClient

Same as useQueryClient (UseQueryClient | TanStack Query Docs, n.d.), but for when

using @tanstack-query-with-orbitjs/core.

For more information, check out the library’s README.md, Where how to use the library is

covered in greater detail, or check out the source code for the example chat application which

uses this solution.


https://github.com/DanielGiljam/tanstack-query-with-orbitjs/tree/main/libs/react
https://react.dev/
https://github.com/DanielGiljam/tanstack-query-with-orbitjs/tree/main/libs/core
https://github.com/DanielGiljam/tanstack-query-with-orbitjs/tree/main/libs/core
https://react.dev/
https://tanstack.com/query/v4/docs/react/reference/useQuery
https://github.com/DanielGiljam/tanstack-query-with-orbitjs/tree/main/libs/core
https://tanstack.com/query/v4/docs/react/reference/useInfiniteQuery
https://github.com/DanielGiljam/tanstack-query-with-orbitjs/tree/main/libs/core
https://tanstack.com/query/v4/docs/react/reference/useQueryClient
https://github.com/DanielGiljam/tanstack-query-with-orbitjs/tree/main/libs/core
https://github.com/DanielGiljam/tanstack-query-with-orbitjs/tree/main/libs/react
https://github.com/DanielGiljam/tanstack-query-with-orbitjs/tree/main/apps/example-chat-app-with-tanstack-query-and-orbitjs

10 Conclusion

| reached my goal of coming up with a solution that can take of the query cache updating in a

generic and robust way.

The solution is to use Orbit.js. | additionally developed a library for using Orbit.js together

with TanStack Query which combines the best of both worlds:

e The excellent Ul framework integrations and asynchronous state management of
TanStack Query

e The amazing data orchestration capabilities of Orbit.js

Orbit.js eliminates the need for writing query cache updaters. However, you still need to write
updaters, where you tell Orbit about changes to data. While these updaters aren’t as concise as
| had expected and the number of lines of code might not differ all too much from the number
of lines of code of a query cache updater, the code in an updater is significantly more expressive
than the code in a query cache updater and the code in an updater is also more static and

decoupled, especially from the Ul of the application.

10.1Further development

Orbit.js is an exciting library in many ways and I feel like its potential hasn’t been fully tapped
into by the web development and industry. Orbit.js is designed in a way which screams “extend
me!”, with hooks and slots to be found in every corner, that can be used for customizing it and
adding features and functionality on top of its already super powerful and solid core. I could
potentially see an entire ecosystem of solutions forming around Orbit.js, which would greatly

benefit developers who work on large-scale, complex web applications.

At a certain point, however, Orbit.js won’t be enough. For really complex web applications
this might be the case. | predict the query language and the data model is where Orbit.js would
first fall short. Not in the data orchestration features. In that department I’ve yet to imagine a
better solution. But while Orbit.js lets you describe relationships in your data and query based
on relationships, it comes with some limitations and its nowhere close to being as good as fully-
fledged SQL.


https://orbitjs.com/
https://orbitjs.com/
https://tanstack.com/query
https://tanstack.com/query
https://orbitjs.com/
https://orbitjs.com/
https://orbitjs.com/
https://orbitjs.com/
https://orbitjs.com/
https://orbitjs.com/
https://orbitjs.com/
https://orbitjs.com/
https://orbitjs.com/

For really complex web applications, | think it would be worthwhile investigating SQL.ite as a
WebAssembly module.



https://github.com/rhashimoto/wa-sqlite
https://github.com/rhashimoto/wa-sqlite

11 References
Avshrk on GitHub. (n.d.). GitHub. Retrieved May 22, 2023, from https://github.com/avshrk
Azure Cosmos DB. (n.d.). Retrieved May 22, 2023, from https://cosmos.azure.com/

BroadcastQueryClient (Experimental) | TanStack Query Docs. (n.d.). Retrieved May 22,
2023, from https://tanstack.com/query/v4/docs/plugins/broadcastQueryClient

Cerebris: Developers of Ambitious Web Applications. (n.d.). Retrieved May 22, 2023, from
https://www.cerebris.com/

Cerebris: Projects. (n.d.). Retrieved May 5, 2023, from https://www.cerebris.com/projects/

Class: MemorySource<QO, TO, QB, TB, QRD, TRD> | Orbit.js. (n.d.). Retrieved May 22,
2023, from https://orbitjs.com/docs/api/memory/classes/MemorySource

Cloud Computing Services | Microsoft Azure. (n.d.). Retrieved May 22, 2023, from
https://azure.microsoft.com/

Cloud Computing Services—Amazon Web Services (AWS). (n.d.). Amazon Web Services,
Inc. Retrieved May 22, 2023, from https://aws.amazon.com/

Cloud Firestore | Store and sync app data at global scale. (n.d.). Firebase. Retrieved May 22,
2023, from https://firebase.google.com/products/firestore

CushionDB. (n.d.). Retrieved May 22, 2023, from https://cushiondb.github.io/

Dan Gebhardt | LinkedIn. (n.d.). Retrieved May 5, 2023, from
https://www.linkedin.com/in/dgeb/

Default Query Function | TanStack Query Docs. (n.d.). Retrieved May 22, 2023, from
https://tanstack.com/query/v4/docs/guides/default-query-function

Devtools | TanStack Query Docs. (n.d.). Retrieved May 4, 2023, from
https://tanstack.com/query/v4/docs/devtools

Dexie Cloud. (n.d.). Retrieved May 22, 2023, from https://dexie.org/cloud/

Dexie.js—Minimalistic IndexedDB Wrapper. (n.d.). Retrieved May 22, 2023, from
https://dexie.org/

Dexie.on.storagemutated. (n.d.). Retrieved May 22, 2023, from
https://dexie.org/docs/Dexie/Dexie.on.storagemutated

Dfahlander on GitHub. (n.d.). GitHub. Retrieved May 22, 2023, from
https://github.com/dfahlander

Dgeb on GitHub. (n.d.). GitHub. Retrieved May 22, 2023, from https://github.com/dgeb

Discord | Your Place to Talk and Hang Out. (n.d.). Discord. Retrieved May 26, 2023, from
https://discord.com/



Drote on GitHub. (n.d.). GitHub. Retrieved May 22, 2023, from https://github.com/drote

Ember.js—A framework for ambitious web developers. (n.d.). Retrieved May 22, 2023, from
https://emberjs.com/

Fast NoSQL Key-Value Database — Amazon DynamoDB — Amazon Web Services. (n.d.).
Amazon Web Services, Inc. Retrieved May 22, 2023, from
https://aws.amazon.com/dynamodb/

Firebase. (n.d.). Firebase. Retrieved May 22, 2023, from https://firebase.google.com/

Firebase Realtime Database | Store and sync data in real time. (n.d.). Firebase. Retrieved
May 22, 2023, from https://firebase.google.com/products/realtime-database

Get realtime updates with Cloud Firestore. (n.d.). Firebase. Retrieved May 22, 2023, from
https://firebase.google.com/docs/firestore/query-data/listen

Get started with Dexie in React. (n.d.). Retrieved May 26, 2023, from
https://dexie.org/docs/Tutorial/React

Get started with Dexie in Svelte. (n.d.). Retrieved May 26, 2023, from
https://dexie.org/docs/Tutorial/Svelte

Get started with Dexie in Vue. (n.d.). Retrieved May 26, 2023, from
https://dexie.org/docs/Tutorial/\Vue

Glimmer. (n.d.). Retrieved May 22, 2023, from https://glimmerjs.com/

Google—About Google, Our Culture & Company News. (n.d.). Retrieved May 22, 2023,
from https://about.google/

Hashimoto, R. (2023). Wa-sglite on GitHub [JavaScript]. https://github.com/rhashimoto/wa-
sglite (Original work published 2021)

Important Defaults | TanStack Query Docs. (n.d.). Retrieved May 4, 2023, from
https://tanstack.com/query/v4/docs/guides/important-defaults

IndexedDB API - Web APIs | MDN. (2023, March 21). https://developer.mozilla.org/en-
US/docs/Web/AP1/IndexedDB_API

InfiniteQueryObserver | TanStack Query Docs. (n.d.). Retrieved May 26, 2023, from
https://tanstack.com/query/v4/docs/reference/InfiniteQueryObserver

JSON:API — A specification for building APIs in JSON. (n.d.). Retrieved May 22, 2023,
from https://jsonapi.org/

Jtruman88 on GitHub. (n.d.). GitHub. Retrieved May 22, 2023, from
https://github.com/jtruman88

Live queries | Orbit.js. (n.d.). Retrieved May 22, 2023, from
https://orbitjs.com/docs/querying-data#live-queries



LiveQuery(). (n.d.). Retrieved May 22, 2023, from https://dexie.org/docs/liveQuery()
Orbit.js. (n.d.). GitHub. Retrieved May 22, 2023, from https://github.com/orbitjs

Orbitjs/orbit on GitHub. (2023). [TypeScript]. Orbit.js. https://github.com/orbitjs/orbit
(Original work published 2013)

Orbitjs/react-orbit on GitHub. (2023). [JavaScript]. Orbit.js. https://github.com/orbitjs/react-
orbit (Original work published 2019)

Orbit.js—The Universal Data Layer | Orbit.js. (n.d.). Retrieved May 22, 2023, from
https://orbitjs.com/

Overview | TanStack Query Docs. (n.d.). Retrieved May 22, 2023, from
https://tanstack.com/query/v4/docs/overview

Query Functions | TanStack Query Docs. (n.d.). Retrieved May 22, 2023, from
https://tanstack.com/query/v4/docs/guides/query-functions

Query Invalidation | TanStack Query Docs. (n.d.). Retrieved May 22, 2023, from
https://tanstack.com/query/v4/docs/guides/query-invalidation

QueryCache | TanStack Query Docs. (n.d.). Retrieved May 22, 2023, from
https://tanstack.com/query/v4/docs/reference/QueryCache

QueryClient | TanStack Query Docs. (n.d.). Retrieved May 22, 2023, from
https://tanstack.com/query/v4/docs/reference/QueryClient

QueryClient#cancelQueries | TanStack Query Docs. (n.d.). Retrieved May 22, 2023, from
https://tanstack.com/query/v4/docs/reference/QueryClient#queryclientcancelqueries

QueryClientConfig in @tanstack/query-core on GitHub. (n.d.). GitHub. Retrieved May 22,
2023, from https://github.com/TanStack/query/tree/v4.16.1/packages/query-
corehttps://github.com/TanStack/query/tree/v4.16.1/packages/query-
core/src/types.ts#L.708-L713

QueryClient#invalidateQueries | TanStack Query Docs. (n.d.). Retrieved May 22, 2023, from
https://tanstack.com/query/v4/docs/reference/QueryClient#queryclientinvalidatequeries

QueryClient#refetchQueries | TanStack Query Docs. (n.d.). Retrieved May 22, 2023, from
https://tanstack.com/query/v4/docs/reference/QueryClient#queryclientrefetchqueries

QueryClient#setQueryData | TanStack Query Docs. (n.d.). Retrieved May 22, 2023, from
https://tanstack.com/query/v4/docs/reference/QueryClient#queryclientsetquerydata

QueryMeta in @tanstack/query-core on GitHub. (n.d.). GitHub. Retrieved May 22, 2023,
from https://github.com/TanStack/query/tree/v4.16.1/packages/query-
corehttps://github.com/TanStack/query/tree/v4.16.1/packages/query-
core/src/types.ts#L.51-1.53

QueryObserver | TanStack Query Docs. (n.d.). Retrieved May 26, 2023, from
https://tanstack.com/query/v4/docs/reference/QueryObserver



React. (n.d.). Retrieved May 22, 2023, from https://react.dev/
React Hooks for Data Fetching — SWR. (2023, May 9). https://swr.vercel.app/

React Query | TanStack Query Docs. (n.d.). Retrieved May 26, 2023, from
https://tanstack.com/query/v4/docs/react/overview

Rhashimoto on GitHub. (n.d.). GitHub. Retrieved May 22, 2023, from
https://github.com/rhashimoto

Slack is your productivity platform. (n.d.). Slack. Retrieved May 26, 2023, from
https://slack.com

Solid Query | TanStack Query Docs. (n.d.). Retrieved May 26, 2023, from
https://tanstack.com/query/v4/docs/solid/overview

SolidJS. (n.d.). Retrieved May 22, 2023, from https://www.solidjs.com
SQLite Home Page. (n.d.). Retrieved May 22, 2023, from https://sqlite.org/index.html

State of JavaScript 2022: Other Tools. (n.d.). Retrieved May 4, 2023, from
https://2022.stateofjs.com/en-US/other-tools/

Svelte » Cybernetically enhanced web apps. (n.d.). Retrieved May 22, 2023, from
https://svelte.dev/

Svelte Query | TanStack Query Docs. (n.d.). Retrieved May 26, 2023, from
https://tanstack.com/query/v4/docs/svelte/overview

Tannerlinsley.com. (n.d.). Retrieved May 22, 2023, from https://tannerlinsley.com/
TanStack Query. (n.d.). Retrieved May 4, 2023, from https://tanstack.com/query

TanStack/query on GitHub. (2023). [TypeScript]. TanStack.
https://github.com/TanStack/query (Original work published 2019)

@tanstack/query-core on GitHub. (n.d.). GitHub. Retrieved May 22, 2023, from
https://github.com/TanStack/query/tree/v4.16.1/packages/query-core

Telegram — a new era of messaging. (n.d.). Telegram. Retrieved May 26, 2023, from
https://telegram.org/

TypeScript: JavaScript With Syntax For Types. (n.d.). Retrieved May 22, 2023, from
https://www.typescriptlang.org/

Updates from Mutation Responses | TanStack Query Docs. (n.d.). Retrieved May 22, 2023,
from https://tanstack.com/query/v4/docs/guides/updates-from-mutation-responses

UseEffect — React. (n.d.). Retrieved May 22, 2023, from
https://react.dev/reference/react/useEffect

UselnfiniteQuery | TanStack Query Docs. (n.d.). Retrieved May 26, 2023, from
https://tanstack.com/query/v4/docs/react/reference/uselnfiniteQuery



UseQuery | TanStack Query Docs. (n.d.). Retrieved May 26, 2023, from
https://tanstack.com/query/v4/docs/react/reference/useQuery

UseQueryClient | TanStack Query Docs. (n.d.). Retrieved May 26, 2023, from
https://tanstack.com/query/v4/docs/react/reference/useQueryClient

Vue Query | TanStack Query Docs. (n.d.). Retrieved May 26, 2023, from
https://tanstack.com/query/v4/docs/vue/overview

Vue.js—The Progressive JavaScript Framework | Vue.js. (n.d.). Retrieved May 22, 2023,
from https://vuejs.org/

WebAssembly. (n.d.). Retrieved May 22, 2023, from https://webassembly.org/

WebSocket—Web APIs | MDN. (2023, March 16). https://developer.mozilla.org/en-
US/docs/Web/AP1/WebSocket

WhatsApp. (n.d.). WhatsApp.Com. Retrieved May 26, 2023, from https://www.whatsapp.com



12 Appendices

12.1Appendix #1: Summary in Swedish

Introduktion

Det har examensarbetet handlar om att komma pa ett satt att fa TanStack Query att kdnnas mera

som Cloud Firestore:s client-side SDK.

Cloud Firestore:s client-side SDK erbjuder ett odvertraffat granssnitt, i man om elegans, for att
hantera “realtidsdata” i client-side kod. Att kombinera Cloud Firestore:s client-side SDK:s
positiva egenskaper med TanStack Query kunde hypotetiskt l16sa det stérsta problemet jag

stoter pa da jag utvecklar med TanStack Query.

Det storsta problemet jag stoter pa da jag utvecklar med TanStack Query &r att om jag valjer
bort revalidering, sa maste jag skriva stora méangder bracklig query cache uppdateringskod som
ar starkt kopplad till bade applikationens datamodell samt dess anvandargranssnitt. Jag inser
att en pusselbit saknas har — det behdvs en losning som kan ta hand om query cache
uppdatering pa ett generellt och robust satt. Min hypotes ar att receptet for en sadan lésning

kunde harledas fran Cloud Firestore:s client-side SDK.

En webbsideutgdva av examensarbetet finns pa https://danielgiljam.com/degree-thesis. Den

erbjuder bésta lasupplevelsen.

Kallkoden for webbsideutgdvan av examensarbetet, samt exemplen och biblioteken som

producerats som resultat av examensarbetet, finns tillgangligt pa GitHub: https://github.com/

DanielGiljam/tanstack-query-with-orbitjs.

Forutsattningar och avgrénsningar

Jag utgar fran att lasaren ar bekant med samtida webbapplikationsutvecklingspraxis, -maonster,
-ramverk, -bibliotek, och -verktyg, och att lasaren har erfarenhet med att anvédnda TanStack

Query eller liknande bibliotek, som till exempel SWR fran Vercel.


https://danielgiljam.com/degree-thesis
https://github.com/%0bDanielGiljam/tanstack-query-with-orbitjs
https://github.com/%0bDanielGiljam/tanstack-query-with-orbitjs

Avgransning #1

En utgangspunkt i detta examensarbete ar att TanStack Query ar en orubblig del av frontend
stack:en, sa losningen kan inte vara att inte anvanda TanStack Query 6verhuvudtaget. Orsaken
till detta &r att TanStack Query 6verlag har flera fordelar &n nackdelar och att biblioteket tillfor
mera varde till utvecklare &n vad det stjal varde fran dem i form av vassa kanter, sdsom query
cache uppdatering. Men att redogora for for- och nackdelar med TanStack Query ér ett helt
skilt arbete i sig och utanfér ramen for det hér arbetet och definitivt inte syftet med det har

arbetet.

Avgransning #2

En utgangspunkt i det har examensarbetet att man inte far anvanda Cloud Firestore som del av
stack:en. Lika som med utgangspunkten gallande TanStack Query, ar det inte syftet med det
hér arbetet att motivera varfor Cloud Firestore inte far vara del av stack:en — den motiveringen
kunde vara ett helt skilt arbete i sig — men kort sagt ar orsaken att Cloud Firestore ar en icke-
standard, proprietar molndatabasldsning fran Google och detta satter kappar i hjulet da det
kommer till budget-, regelverk- och kompatibilitetskrav i manga projekt eller att Cloud
Firestores proprietara natur gar i konflikt med véarden som projektet star bakom, om projektet

till exempel star bakom varden som 6ppna teknologistandarder och 6ppen kallkod.

Bakgrund

TanStack Query
TanStack Query (tidigare kant som React Query) &r ett populért open-source JavaScript-
bibliotek fran Tanner Linsley. Bibliotekets funktion ar att hantera asynkrona las- och

skrivoperationer och aterge deras tillstand i ett anvandargranssnitt.

Cloud Firestore:s client-side SDK

Cloud Firestore ar en “realtidsdatabas” som ar en del av Googles “backend-as-a-service”
plattform Firebase. Cloud Firestore, liksom dess foregangare Firebase Realtime Database, har
ett mycket elegant grinssnitt for att hantera realtidsdata”, ndmligen onsnapshot API, som later

en lyssna till nar resultatet pa en query andras.



Problem och forskningsfraga

Det storsta problemet jag stoter pa da jag utvecklar med TanStack Query ar att om jag valjer
bort revalidering, sa maste jag skriva stora mangder bréacklig query cache uppdateringskod som
ar starkt kopplad till bade applikationens datamodell samt dess anvéandargranssnitt. Jag inser
att en pusselbit saknas har — det behdvs en l6sning som kan ta hand om query cache

uppdatering pa ett generellt och robust sétt.

Query cache uppdaterare &r jobbiga, svara och farliga att skriva. Jobbiga, for att de kraver
mycket boilerplate kod och de &r starkt kopplade med bade applikationens datamodell och dess
anvéndargranssnitt. Svéra, for att man maste beakta samtidighet (“concurrency”) da man
skriver dem och for att man maste ha en djup forstaelse av hur TanStack Query fungerar for att
kunna beakta alla permutationer av vad omgivande tillstand potentiellt ar da query cache
uppdateraren kors. Farliga, for att sannolikheten att man introducerar buggar da man skriver
dem &r hog och utvecklingstakten lider som foljd av mangden underhall som query cache

uppdaterare kraver.

Query cache uppdaterare dr termen jag anvander for att hanvisa till funktioner som uppdaterar
QueryCache. Query cache uppdaterare behvs da man vill uppdatera resultatet av en query utan
att den underliggande asynkrona lasoperationen som producerade query:ns resultat i forsta
fallet kors igen. Med andra ord, man vill modifiera det cache:ade query resultatet. Till exempel,
i en chattapplikation, &r det logiskt att anvanda query cache uppdaterare i samband med
hantering av WebSocket meddelanden, till exempel for att uppdatera resultatet for query:n pa
listan pa chattmeddelanden, for att lagga till ett nytt chattmeddelande, da det anlander ett

WebSocket meddelande som informerar klienten om ett nytt chattmeddelande.

Att revalidera query:s, det vill séga att kéra den underliggande asynkrona lasoperationen igen
for att fa ett uppdaterat query resultat, &r inte hallbart monster i stérre och mer komplicerade
webbapplikationer. All onddig berdkning och bandbreddsanvéndning som detta tillvéga-
gangssatt innebar leder till allvarliga prestandaproblem som i hogsta grad ar synliga for
slutanvandaren. Darfor behdvs query cache uppdaterare, speciellt i storre och mer

komplicerade webbapplikationer.



Forskningsfragor

FF1: Hur kan man hantera query cache uppdatering pa ett generellt och robust satt?

Mal

Ta fram en losning som kan hantera query cache uppdatering pa ett generellt och robust sétt.

Generellt som i att koppla loss (minska pa starka kopplingar) och minska pa mangden boiler-
plate som varje utvecklare behdver skriva. Robust som i att ggmma komplexiteten och skriva

det en gang valdigt noggrant och korrekt.

Hypotes

Receptet for 16sningen kan harledas fran Cloud Firestore:s client-side SDK.

Metod

Min metod bestar av tva delar varav varje del kan brytas ner i tre delsteg.

1. Forskning
a. Hitta existerande losningar
b. Jamfor existerande l6sningar
c. Besluta till vilken man lésningen pa problemet jag forsoker 16sa kan bygga pa
existerande l6sningar
2. Implementation
a. Utveckla en exempelapplikation som demonstrerar problemet
b. Utveckla I6sningen i exempelapplikationen

c. Extrahera losningen fran exempelapplikationen till ett separat bibliotek

Resultat

Losningen som jag kommer fram till och valjer att foreskriva i mitt arbete, ar att anvénda
Orbit.js, ett komponerbart dataramverk for ambitiosa webbapplikationer. Anledningen till att
I6sningen ar att anvanda Orbit.js ar att Orbit.js i princip ar ett ORM-bibliotek. ORM star for



Object Relational Mapping vilket ar en teknik dar man gor relationsdata tillgangligt i ett
objektorienterat programmeringssprak. Jag harledde pa basen av min hypotes att ett potentiellt
satt att hantera query cache uppdatering pa ett generellt och robust satt ar med hjalp av ett
ORM-bibliotek.

Andra resultat av mitt arbete ar:

- @tanstack-query-with-orbitjs/core och @tanstack-query-with-orbitjs/react
Bibliotek som jag utvecklat for att anvédnda TanStack Query tillsammans med
Orbit.js.

- example-chat-application-with-tanstack-query
Exempelapplikation som demonstrerar problemet med query cache uppdaterare.

- example-chat-application-with-tanstack-query-and-orbitjs
Exempelapplikation som demonstrerar 16sningen att anvanda TanStack Query och

Orbit.js tillsammans med hjalp av mitt bibliotek for att integrera de tva.

Slutsats

Koden for query cache uppdaterare blev mera expressiv an innan.

Koden for query cache uppdaterare blev inte s mycket kortare &n innan som jag hade forvantat

mig att den skulle ha blivit.

Ambitiésa webbapplikationer behover en lokal backend, det vill sdga, i ambitiGsa
webbapplikationer kan det I6na sig att fordela ansvaret till den grad att frontendutvecklarens
mentala modell inte &r att anvandargranssnittskoden kallar pa backenden direkt, utan istallet

att anvandargranssnittskoden kallar pa en lokal backend som i sin tur kallar pa backenden.

Vidare utveckling kunde vara att utforska hur SQLite som WebAssembly modul kunde vara

en hornsten i en lokal backend.



	1 Introduction
	1.1 Prerequisites
	1.2 Delimitations
	1.2.1 Delimitation #1
	1.2.2 Delimitation #2


	2 Background
	2.1 TanStack Query
	2.2 The Cloud Firestore client-side SDK
	2.2.1 Cloud Firestore
	2.2.2 “Real-time” databases


	3 Problem
	3.1 What are query cache updaters?
	3.2 Why do we need query cache updaters?
	3.2.1 How TanStack Query achieves almost always-up-to-date auto-managed queries with its default configuration


	4 Research questions
	5 Goal
	6 Hypothesis
	7 Methods
	7.1 Research
	7.1.1 Finding related work
	7.1.2 Comparing related work
	7.1.3 Assessing related work

	7.2 Implementation
	7.2.1 Developing an example application
	7.2.2 Solving the problem
	7.2.3 Packaging the solution as a library


	8 Related work
	8.1 Overview
	8.1.1 CushionDB
	8.1.2 Dexie.js
	8.1.3 Orbit.js
	8.1.4 SQLite as a WebAssembly module

	8.2 Comparison
	8.2.1 Modularity
	8.2.2 Developer experience
	8.2.3 UI framework integrations
	8.2.4 ORM capabilities
	8.2.5 Consideration of asynchronicity and concurrency
	8.2.6 Offline support

	8.3 Analysis

	9 Results
	9.1 A concrete example of the problem
	9.1.1 Initial code
	9.1.2 Updating the UI when new chat messages arrive
	9.1.3 Handling the case where the chat rooms doesn’t exist in the ["chat-rooms"] query’s cached data
	9.1.4 Dealing with concurrency
	9.1.5 Summing it up

	9.2 The solution
	9.2.1 @tanstack-query-with-orbitjs/core
	9.2.2 @tanstack-query-with-orbitjs/react


	10 Conclusion
	10.1 Further development

	11 References
	12 Appendices
	12.1 Appendix #1: Summary in Swedish


