

React Native: A truly Native Experience?

Performance comparison of React Native and Swift

Dilan Zibari

Degree Thesis

Information Technology

2023

Lärdomsprov
Dilan, Zibari

React Native: En riktigt nativ upplevelse? - Prestandajämförelse mellan React Native och Swift

Yrkeshögskolan Arcada: Informationsteknik, 2023.

Identifikationsnummer:
9186

Sammandrag:
Den snabba utvecklingen av smarta enheter påverkar utvecklingen av många applikationer,

som används idag. Många företag visar mer intresse för att utveckla sina egna mobila applika-

tioner för att öka produktiviteten i sina affärsprocesser. Dessa applikationer är plattformsspecif-

ika, vilket innebär att det behövs en separat applikation för varje plattform. Hybridapplika-

tioner, även kallade plattformsöverskridande applikationer, ger en flexibel lösning för denna

fråga. Hybridapplikationer kan användas på alla enheter oavsett vilken plattform det gäller.

Tekniker som React Native lovar en lösning där utvecklare kan använda samma verktyg och

teknologier på olika plattformar. Denna avhandling betonar vikten av högkvalitativa mobila

applikationer med tanke på utmaningen med mobil utveckling. Denna avhandling fokuserar på

att undersöka om React Native-lösningen är något för företag att överväga. Den tekniska ex-

perimentmetodiken som används för att uppnå forskningsmålen innebär att skapa två speglade

applikationer, en React Native-baserad och den andra Swift-baserad. Uppsatsen diskuterar

också de mått som används för att utvärdera prestandan för en iOS-applikation. Resultatet av

experimentet analyseras sedan och presenteras i grafer. Den sista delen presenterar slutsatserna

från denna avhandling inklusive resultaten som hittades under experimentet.

Nyckelord:
React Native, Swift, Mobil applikation, iOS, Xcode

Degree Thesis
Dilan, Zibari

React Native: A truly native experience? - Performance comparison of React Native and Swift

Arcada University of Applied Sciences: Information Technology, 2023.

Identification number:
9186

Abstract:
The rapid development of smart devices affects the development of many applications, which

are used today. Many corporations are showing more interest in developing their mobile appli-

cations to increase their business process productivity. These applications are platform-spe-

cific, which means a separate application is needed for each platform. Hybrid applications, also

called cross-platform applications provide a flexible solution for this matter. Hybrid applica-

tions can be used on all devices regardless of the platform in question. Technologies like React

Native promise a solution where developers can use the same tools and technologies across

different platforms. This thesis emphasizes the importance of high-quality mobile applications

considering the challenge of mobile development. This thesis focuses on investigating whether

the React Native solution is something for corporations to consider. The technical experiment

methodology used to accomplish the research objectives involves creating two mirrored appli-

cations, one React Native based and the other Swift based. The paper discusses also the metrics

used to evaluate the performance of an iOS application. The result of the experiment is then

analyzed and displayed in graphs. The last part iterates the conclusions of this thesis including

the results that were found during the experiment.

Keywords:
React Native, Swift, Mobile application, iOS, Xcode

Opinnäyte
Dilan, Zibari

React Native: Todellinen natiivi käyttökokemus? - React Nativen ja Swiftin suorituskykyver-

tailu

Arcada Ammattikorkeakoulu: Tietotekniikka, 2023.

Tunnistenumero:
9186

Tiivistelmä:
Älylaitteiden nopea kehitys vaikuttaa monien nykyään käytössä olevien sovellusten

kehitykseen. Monet yritykset ovat kiinnostuneita kehittämään omia mobiilisovelluksiaan

liiketoimintaprosessiensa tuottavuuden lisäämiseksi. Nämä sovellukset ovat alustakohtaisia,

mikä tarkoittaa, että jokaiselle alustalle tarvitaan erillinen sovellus. Hybridisovellukset, joita

kutsutaan myös monialustaisiksi sovelluksiksi, tarjoavat joustavan ratkaisun tähän asiaan.

Hybridisovelluksia voidaan käyttää kaikilla laitteilla alustasta riippumatta. Re-act Nativen

kaltaiset tekniikat lupaavat ratkaisun, jossa kehittäjät voivat käyttää samoja työkaluja ja

tekniikoita eri alustoilla. Tämä opinnäytetyö korostaa laadukkaiden mobiilisovellusten

merkitystä mobiilikehityksen haasteessa. Tämä opinnäytetyö keskittyy sen selvittämiseen,

onko React Native -ratkaisu yritysten harkinnan arvoinen asia. Tutkimustavoitteiden

saavuttamiseksi käytetty tekninen kokeilumenetelmä sisältää kahden peilatun sovelluksen

luomisen, joista toinen perustuu React Native -pohjaiseen ja toinen Swift-pohjaiseen.

Artikkelissa käsitellään myös iOS-sovelluksen suorituskyvyn arvioinnissa käytettyjä

mittareita. Sitten kokeen tulos analysoidaan ja esitetään kaavioina. Viimeisessä osassa

toistetaan tämän opinnäytetyön johtopäätökset mukaan lukien kokeen aikana löydetyt tulokset.

Avainsanat:

React Native, Swift, Mobiilisovellus, iOS, Xcode

Content

List of abbreviations and symbols ... 4

Figures .. 5

1 Introduction ... 6
1.1 Structure ... 7

2 Background ... 8
2.1 Motivation .. 8
2.2 Related popular cross-platform tools ... 8
2.3 What are mobile applications? ... 9

2.3.1 Native Applications .. 9
2.3.2 Web Applications ... 11
2.3.3 Hybrid Applications .. 11

2.4 Cross-Platform Tools ... 12
2.4.1 React Native programming language ... 12
2.4.2 Swift programming language ... 13

3 Problem .. 14
3.1 The complexity of native applications .. 14
3.2 Research Questions .. 14
3.3 Related Research .. 15

4 Methodology .. 16
4.1 Views for the experiment ... 18

5 Implementation .. 20
5.1 Development process ... 20

5.1.1 React Native Development .. 20
5.1.2 Native iOS Development .. 21
5.1.3 Measurement environment ... 22
5.1.4 Result of the built mobile applications .. 22

6 Evaluation .. 24
6.1 Results in a graph presentation .. 25
6.2 Results of application launch time .. 29
6.3 Application size difference .. 30

7 Proposal for future work ... 31

8 Conclusions ... 32
8.1 Summary ... 32
8.2 Discussion ... 32

9 References ... 34

Appendix. Summary in Swedish .. 36

4

List of abbreviations and symbols

ARC Automatic Reference Counting is a way to track and manage the applica-

tion’s memory usage.

Android Mobile operating system developed by Google. The name comes from

the word “androids” which means a robot with a human-like appearance.

CPU Central Processing Unit is the primary component of a computer system.

Often referred to as the brain of the computer.

CPT Cross-Platform Tools are software development tools for building appli-

cations that can run on multiple operating systems with a single code-
base.

CSS Cascading Style Sheets, a language for describing the style of a docu-

ment written in HTML.

HTML HyperText Markup Language, a markup language for creating websites

and web applications.

IDE Integrated Development Environment is a software application that pro-

vides a set of tools and features for software development.

iOS iPhone Operating System, a mobile operating system developed by Ap-

ple.

MVC Model-View-Controller is an architectural pattern commonly used for

developing user interfaces. Divides the application into three intercon-
nected parts.

MS Milliseconds, a unit of time measurement.

OS Operating System is a software program that allows the computer hard-

ware and the software applications to communicate with each other.

5

Figures
Figure 1. The layer hierarchy in the iOS architecture .. 10

Figure 2. The architecture in web applications ... 11

Figure 3. The architecture in hybrid applications ... 12

Figure 4. Measurement tools for the performance of an iOS application 16

Figure 5. Instrument tools in XCode .. 17

Figure 6. Profiling templates in XCode .. 18

Figure 7. The first displaying view of the experiment ... 19

Figure 8. The second view of the experiment .. 19

Figure 9. The last view ... 20

Figure 10. The application in React Native .. 23

Figure 11. The application in Swift .. 23

Figure 12. Graph presentation of the results 2 elements .. 25

Figure 13. Graph presentation of the results with 5 elements .. 26

Figure 14. Graph presentation of the results with 10 elements 26

Figure 15. Graph presentation of the results with 100 elements 27

Figure 16. Graph presentation of the results with 500 elements 28

Figure 17. Presenting all result data in one final table ... 29

Figure 18. Application launch time results ... 29

6

1 Introduction
Mobile applications, or as we say "apps”, have become a ubiquitous part of our daily

lives. Allowing us to perform a wide range of tasks from anywhere at any time.

Whether we want to check the news, order food, or monitor our fitness goals, mobile

apps have transformed the way we interact with technology. Irrespective of what you

want or need to do; everything is simply at your fingertips.

It’s usually required that a mobile application is available and distributed in both the

AppStore and the Google Play Store. To achieve this, two different applications need to

be developed natively with the same design and functions but in two different program-

ming languages. Due to this demand, companies must hire two different developer

teams, one for each platform to reach the required audiences.

As a response to the complexity of native development, cross-platform development has

emerged. Cross-platform makes it possible to reuse the same codebase which means

that only one implementation of the code is required. Over the years, different frame-

works have been used but studies indicate that the end-users are not as satisfied with

cross-platform applications as they are with the native application. Studies indicate that

cross-platform applications are more prone to complaints due to the performance being

worse compared to their native peer. (Nitze, Rösler & Schmietendorf, 2014)

However, new technologies and frameworks are constantly being created. One of these

frameworks is called React Native. In the thesis a technical experiment will be con-

ducted, aiming to elaborate further on the performance of React Native. Based on the

results of the experiment we will try to assess if a React Native application could be rec-

ommended as a viable option for developers who consider using it.

7

1.1 Structure

The rest of the thesis is structured as follows: Some background information is pre-

sented in chapter 2, including the motivation for the study and the popular cross-plat-

form frameworks. The chapter also discusses the different types of mobile applications

in the market today and introduces the React Native and Swift programming languages.

In Chapter 3 the problem is explained, including the complexity of native applications,

the research question, and some related work that has previously been done. Chapter 4

focuses on the methodology used in the study, including the functionalities to be tested

and the environment. In chapter 5 the implementation of the research is presented. As

well as discussing the development process of both applications, conducting the experi-

ment, and presenting the results. Chapter 6 evaluates the research results with a graph

presentation.

In chapter 7 proposals for future work are iterated and explained. Chapter 8 presents the

conclusion of the thesis by summarizing the key findings and further discussing the sub-

ject.

8

2 Background

2.1 Motivation

The global app market is rapidly changing in today’s industry and one of the biggest

factors to consider is the user experience when it comes to using mobile applications.

Around 92% of mobile users spend time with apps and social media, and only 8% use

web browsers (Fireart Studio, 2022). Looking back at only 3 years ago the global mo-

bile app market was valued at $154 billion, and it is expected to continually grow in the

coming years (Linn, 2023).

Taking this into consideration it’s now more important than ever for companies to de-

liver high-quality mobile applications. Increasing their revenues requires being available

on all platforms so that they won’t miss the chance of attracting clients via all the vari-

ous channels.

However, one of the unique challenges that mobile development brings to the market is

the efficiency of rapidly developing and maintaining them. Unfortunately making the

service accessible on all platforms is very costly due to differences in syntax, language,

test suites, and packages in the different platforms. Furthermore, developing native mo-

bile applications for each platform drastically increases the development costs of the

project.

2.2 Related popular cross-platform tools

In January 2022 the Stack Overflow community conducted its yearly survey of over

100,000 of their professional developers. The survey consists of many questions regard-

ing their everyday job. Looking at the most interesting matter, namely the most popular

frameworks. In that list, we can observe that Flutter places 6th, right after React Native.

(Stack Overflow, 2022)

Flutter is an open-source framework by Google that uses the Dart programming lan-

guage. It is today the second most popular framework which has been gaining

9

popularity since 2021, mainly known for its fast development cycle. It is said to be

overtaking React Native and is today used by already 39% of developers globally. (Fire-

art Studio, 2022)

It is also interesting to note that Cordova and Xamarin were popular enough to be in-

cluded in the list. Xamarin is one of the oldest cross-platform frameworks available,

founded in 2011. Allowing developers to create native applications for Android, iOS,

and Windows platforms, with one single codebase. Cordova on the other hand, is a hy-

brid open-source framework that enables web developers to use their HTML, CSS, and

JavaScript knowledge to build applications. However, Cordova and Xamarin are among

the most dreaded frameworks that were included in the survey meaning that developers

who have used the frameworks, do not wish to continue using them in the future.

(Madeshvaran, 2019)

2.3 What are mobile applications?

There are three types of architectures used in mobile application development: web, na-

tive and hybrid applications.

2.3.1 Native Applications

Native Application development is one of the traditional ways to develop an applica-

tion. They are based on a specifically targeted platform language, which makes them

bound to the platform they’re designed for. This means that if you write Android apps it

will only function on that operating system. If you then eventually decide to target Ap-

ple devices as well, your team will have to write completely new code from scratch.

The development IDEs are limited to specific tools as well, Android Studio for the An-

droid developing platform and XCode for the iOS developing platform.

The iOS architecture is made up of four layers that, from bottom to top, provide increas-

ingly important services to help the application communicate with the device hardware.

Each layer has its own set of responsibilities, where the higher levels contain more so-

phisticated types of services, while the lower layers contain the necessary technologies.

10

Figure 1. The layer hierarchy in the iOS architecture

The Cocoa Touch layer, which is the highest-level component in the iOS component hi-

erarchy, acts as the service in-between the user application. This layer provides all the

essential infrastructure that is needed for iOS development. It controls how the applica-

tions look and how they respond when we interact with them.

The Media Layer component contains the information for multimedia features such as

audio, video, and other graphics of the device. It is the layer that makes the picture on

the iOS device crisp and the song we’re listening to sound clear. (Besant Technologies)

The Core Service layer includes all the fundamental system tools and services that an

application use directly or indirectly. It could be such as accessing or storing data on a

smartphone device.

The last component, the OS Layer, provides the underlying system services for iOS,

that the other component on the device relies upon. It handles for instance the CPU,

memory management, files, and drivers. (GeeksforGeeks 2023)

11

2.3.2 Web Applications

Web applications mainly focus on Internet technology which is built using web technol-

ogies like HTML, CSS, and JavaScript. Businesses running on a budget often stick to

web applications, due to the minimal cost of production.

Figure 2. The architecture in web applications

Web applications can be processed in a web browser, making them accessible on most

devices with a consistent look and feel. The major drawback of these applications is the

intense graphics and the problems that occur when the applications need to be adjusted

to that graphics. These applications cannot be used without an Internet connection.

(TechTarget, 2023)

2.3.3 Hybrid Applications

The hybrid applications combine the technologies of both a web and native-developed

application. The applications are built with web-based technologies but embedded

within a native container. The native container allows the OS on the mobile phone to

handle the application and can thereby be distributed and installed through the app

store. (TechTarget 2023)

12

Figure 3. The architecture in hybrid applications

2.4 Cross-Platform Tools

Mobile Cross-Platform tools aim to share a significant part of the codebase between dif-

ferent platforms. This kind of technique can drastically reduce both the time and devel-

opment costs. The first cross-platform framework for mobile application development

was PhoneGap, released in early 2008. Since then, numerous frameworks have

emerged, with React Native being the most popular one today. (Manchanda, 2023)

2.4.1 React Native programming language

React Native is an open-source JavaScript programming language for creating cross-

platform applications with a mobile native feel to it. It is based on React, which is Face-

book’s JavaScript library for building user interfaces, but instead of targeting the

browser, it targets mobile platforms. One of React’s biggest strengths lies in splitting up

the codebase into different kinds of components. Each specific component can be up-

dated and rendered whenever there is a need for it, without having to update the whole

view of the page. React Native builds on the same concepts as React but does not render

HTML elements. Instead, React Native uses the fundamental UI building blocks of the

13

native platform. The result of this is that the React Native codebase can work between

several platforms. (Budziński, 2022)

2.4.2 Swift programming language

The Swift programming language has quickly become one of the fastest-growing lan-

guages. The language was introduced by Apple Inc in 2014 and is intended to be used

for developing software for iOS, macOS, watchOS, and tvOS. (SlashData, 2022)

One of the main objectives of Swift is to simplify programming, and it does so by incor-

porating modern programming concepts and syntaxes to make it easy to learn, read and

write. Swift being designed to be easy to learn and easy to use, has attracted a lot of new

coders. (Reshetnikov, 2021)

14

3 Problem

3.1 The complexity of native applications

The complex nature of native mobile application development makes it simply not eco-

nomically sustainable to replicate an app code, testing, and debugging across two major

platforms. Therefore, there is an essential need to sophisticate the steps and be able to

reuse the codebase across different platforms.

A promising alternative for native mobile development is mobile Cross-Platform Tools.

Cross-platform tools allow a significant part of the codebase to be shared between dif-

ferent platforms. Cross-Platform Tools use mostly web-based programming languages

to implement the logic of the application, therefore allowing developers with a back-

ground in web development to start developing mobile applications as well. (Lagerberg,

2017)

Surveys today are showing that there is some skepticism when it comes to cross-plat-

form tools’ performance compared to their native counterpart. It is therefore relevant

and of special interest to analyze if the most popular cross-platform tool today can be

the solution. The solution is to achieve a well-established type of user experience that

resembles the quality and feel of a native-developed iOS mobile application. (Kozi-

elecki, 2022)

3.2 Research Questions

The main goal of this thesis is to explore two solutions for developing mobile applica-

tions:

Swift, the native solution that works only on iOS.

React Native, a cross-platform solution that works on both iOS and Android.

15

Aiming to investigate whether there is any significant difference in the performance and

user experience between the two different approaches. This thesis will mainly aim to ex-

plore if there will be enough difference in the performance of the two applications, for

companies to justify the costs of having to create two different applications.

3.3 Related Research

There has been research comparing the performance of natively developed applications

to web-based, hybrid, or cross-platform applications. In a 2016 study, Willocx, Vos-

saert, and Naessens compared a hybrid application to a native-developed application.

Findings like longer launch times and heavier CPU consumption in the hybrid applica-

tion were found. In the study, it is stated that the hybrid application was more easily

produced and maintained, but the price to pay was the performance. However, this study

was conducted in 2016 and may not reflect the status of React Native today. (Willocx,

Vossaert & Naessens, 2016)

There have also been studies that have investigated how users perceive cross-platform

applications. In 2015 there was a study conducted by Andrade and Albuquerque, where

they asked a group of users to provide feedback on their experience using either their

native or hybrid version of the application for two weeks. After the two-week period

ended, there was a second two-week period, but in this period half of the users had their

applications switched to a different version. Only 8 out of 60 testers noticed a perfor-

mance difference between the two versions, suggesting that the performance differences

between the hybrid and native versions are not too noticeable in everyday usage. (An-

drade & Albuquerque, 2015)

16

4 Methodology

The method used to accomplish the objectives of this thesis is a technical experiment.

The experiment will be in the design of creating two mirrored applications, one React

Native-based and the other Swift based. The applications will strive to be as identical as

possible with the same design and functionality.

The applications will be built in the same development environment, using XCode as

the IDE tool. To further ensure the fairness of the result, I will not rely on any third-

party solution and try to write the same codebase.

According to Apple, there are several metrics to consider when it comes to evaluating

the performance and user experience of an iOS application. These metrics are listed in

the table below. However, CPU usage is also an important factor to take into considera-

tion when evaluating performance. The CPU usage indicates the total percentage of the

CPU capacity that we’re using at any given time. (Apple Inc, 2023)

Figure 4. Measurement tools for the performance of an iOS application

However, for this experiment, I will have a primary focus on the execution time,

whether it’s about launching the application or performing any other task within the ap-

plication. I have decided to focus on the execution time mainly because it is in direct re-

lation to the overall user experience. If a task takes too long to complete, it will harm

17

the overall user experience. It is thus also one of the most important factors when

choosing the correct approach and programming language.

To reach a valid conclusion and to analyze the scalability of the two different imple-

mentations, the initial phase of the implementation will also be crucial. Therefore, the

applications will be tested from the very start when there is minimal functionality until

the very end when all the functionalities have been implemented.

To measure the execution time, a stopwatch will be used as they allow for a precise

measurement. The stopwatch iteration can be started when the code execution begins

and stopped when the code execution ends. A stopwatch in this context is an UI auto-

mated test found inside of the instrument tools in XCode (Figure 16).

Figure 5. Instrument tools in XCode

After that, you’ll choose the profiling template you wish to use, in this case for measur-

ing the execution time I went ahead with the Time Profiler. The Time Profiler instru-

ment tool allows for collecting data on the execution time and displays the results in

graph format.

18

Figure 6. Profiling templates in XCode

This makes it possible to get an accurate measurement of the time it takes for that spe-

cific code to be executed, without being affected by any external factors like the boot

time of the operating system.

4.1 Views for the experiment

The first view to be tested will display a list of items that only contain written text. The

text will be generated from an array that consists of both images and string values.

When the user clicks on a specific element, they will be directed to a new view that will

display more information about the selected element.

19

Figure 7. The first displaying view of the experiment

The second view will display a list of views that contain both a thumbnail of the image

and text values. By rendering the thumbnail of the image, the performance of the Media

Layer can be tested. By clicking on one of the images, the user will further advance to

the last view.

Figure 8. The second view of the experiment

20

The last view will include the full resolution of the image with a string value of the text.

This view will allow the testing of the OS layer, which is the last layer in the iOS hierar-

chy.

Figure 9. The last view

5 Implementation

5.1 Development process

In this section, we will delve deeper into the development process. The development of

the applications in Swift and React Native will be presented in each separate category.

These applications built during the process will be available on my GitHub account for

easy access (Zibari, 2023).

5.1.1 React Native Development

React Native offers two methods for building apps. The first is Expo Go, which is rec-

ommended for beginners. The second is with React CLI, which is intended for those

who are more familiar with mobile development. In this case, I went ahead with the Re-

act CLI, mainly because Expo adds some additional overhead to the app's size and per-

formance.

21

A requirement for iOS development in general is a Mac computer with XCode installed.

XCode is an IDE for developing iOS applications, which can be easily installed via the

Mac App Store. Installing XCode will also install the iOS Simulator and all the neces-

sary tools to build the iOS application.

To begin setting up a React Native project, the first step is to install Homebrew. Home-

brew is a package manager that makes it possible to download and install dependencies

from the internet via the terminal of macOS. Once Homebrew is installed, you can con-

tinue to install the following dependencies: Node and Watchman. Although Watchman

is not strictly necessary for React Native development, you may experience slower re-

load times without it. Node, on the other hand, is a critical component in React Native

development. It serves as the JavaScript runtime, making it possible to run JavaScript

code outside of a web browser.

The following step is to install the React Native CLI which is a command-line interface

that allows creating and managing React Native projects.

Ø npm install -g react-native-cli

Once the React Native CLI is installed, the last step is to finally create the React Native

project with the react-native init command followed by the name of the app. This com-

mand will automatically set up the basic file structure and the remaining dependencies

required for a React Native project. (React Native, 2023)

Ø npx react native init RNapp

5.1.2 Native iOS Development

Swift offers a relatively easy setup. The IDE used here is XCode as well, where you can

easily click to create a new project and then continue to select the App option under the

iOS heading. There you can choose the type of application that you have in mind to cre-

ate, in this case, I created the “Single View App” which is the basic iOS application.

22

After that, you’ll select Swift as the programming language of the project, and you can

proceed to click the Create option. Once the project has been created, you’re ready to

start building the application. (Apple Inc, 2023)

5.1.3 Measurement environment

To ensure fairness, all tests will be performed using the same testing device. The physi-

cal device for the experiment is an iPhone 11 running on iOS version 16.4.1.

To test the application on my physical device, the developer trusted mode needs to be

enabled. This can be achieved by connecting the device via a USB cable to the com-

puter and then enabling the “Developer mode” found in the settings of the device. This

step is also necessary for debugging the application.

5.1.4 Result of the built mobile applications

The result of the two different projects, React Native and Swift can be seen in the fig-

ures below (Figures 8 & 9). The main goal was to create a service that provides the core

functionalities that a user demands by today’s standards. The graphical interface repre-

sents an application where the user can scroll through the destinations and choose one

of their choices.

23

Figure 10. The application in React Native

Figure 11. The application in Swift

24

At first glance, the services may appear like each other but the implementation of the

two is vastly different. The two applications have different approaches to structuring

and implementing their projects. Swift uses the MVC model and has the data, views,

and models organized into separate files and folders. React Native on the other hand

uses a function-based approach, it divides everything into separate screens and compo-

nents.

The React Native project is structured with a main file that imports all the necessary

files to initialize them all. React Native does not use a Controller that controls the navi-

gation and memory flow as Swift does. This requires on the other hand that everything

is divided into different kinds of functions, and one example is the navigation part.

Whenever a screen is clicked, the function “this.props.navigation.navigate” is invoked,

it then continues to search for the location of that specific prop, to know which props

should be triggered.

6 Evaluation
Two artifacts have been created for this experiment, one of them being the natively built

for the iOS system using Swift while the other artifact is created using the cross-plat-

form solution React Native. An artifact in this context is the output created during the

development process.

The main purpose of the experiment was to investigate if React Native gives a native

experience, by comparing the two mirrored applications. The experiment was done by

testing the code execution for both services and comparing the results to each other, to

evaluate their performance.

Every test was performed through the XCode instrument tools, using the UI automated

tests. The workflow involved cold booting the application, followed by selecting each

item one by one. Upon entering an item, I would back out again to the main list view

before continuing to select the next item. This process was repeated until all the ele-

ments were selected twice.

25

Each test consisted of 10 runs that were performed on the cold-booted application. An

average of these 10 runs was then calculated. The first test would load 2 elements, the

second 5 elements, the third 10 elements, the fourth 50, the fifth 100 elements, and the

last 500 elements.

6.1 Results in a graph presentation

In this section, we’ll delve into results and display them in graphs. The blue bar will

represent React Native while the green bar will represent Swift.

In the first test run where we only had 2 elements, we can observe that the end user

won’t notice any performance difference. In this case, React Native performs slightly

faster than the Swift application.

Figure 12. Graph presentation of the results 2 elements

In the next run where we have 5 elements, we can see the same result as we saw above.

React Native still wins the execution time compared to Swift.

26

Figure 13. Graph presentation of the results with 5 elements

In the next case where we have 10 elements, we start to see a bigger difference in the re-

sults. There is a 374 MS difference, with React Native being the slower application

now. However, the difference is still not that big for the user to explicitly notice a differ-

ence using the applications.

Figure 14. Graph presentation of the results with 10 elements

However, in the next test run with 100 elements, we start to see a difference that the

user is most probably going to notice. Swift performs 1764 MS and React Native 3723

27

MS, a total difference of 1959 MS. This does suggest that Swift’s performance ad-

vantage over React Native becomes more clear. We can see that the bigger and more

complex the application becomes, the more Swift is winning in this competition.

Figure 15. Graph presentation of the results with 100 elements

In the next test run with 500 elements, we see an even bigger difference. The applica-

tion with React Native had an execution time of 18615 MS while the Swift application

only took 8820 MS, a total difference of 9795. To get a better grasp of these execution

times, I went ahead and calculated the percentage difference. In percentage React Na-

tive took up to 52.64% longer to execute compared to the Swift application.

28

Figure 16. Graph presentation of the results with 500 elements

The data presented in the graphs above, reveals that React Native outperforms Swift in

certain cases. In the first graph (Figure 9) where we only used 2 elements, we can see

that there is not a big difference that the end user would notice. We can observe that this

continues also in the next step, with 5 elements, where the difference is only around 70

MS (Figure 10). However, in the graph that follows, where we have 10 elements, we

can see a difference of 373 MS with Swift performing better. This continues in the next

graph as well where we have 100 elements, and the difference is 1962 MS with Swift

performing a lot better. In the last view with 500 elements, we can see an enormous dif-

ference. These results mean in other words that the cross-platform solution loses to the

native application when it comes to performance and speed. (Osadchuk, 2023)

29

Figure 17. Presenting all result data in one final table

React Native proved to perform better in some instances when compared to Swift. How-

ever, we can see from the results that when extending the elements, the Swift applica-

tion performs better. The most significant difference can be observed in the last testing

step with 500 elements, where Swift outperformed React Native.

6.2 Results of application launch time

The application launch time tests showed us that the React Native application did load

significantly slower than the native iOS application. The initial render time can be up to

three times slower. The React Native application had load times up to 700 MS while the

Swift application went only up to 220 MS.

Figure 18. Application launch time results

30

While the native application only needs to load the native runtime, the React Native ap-

plication must start a JavaScript engine and run a JavaScript application within it to

know what to initially render. We can see the impact of this in the results presented

above. However, there are some ways to alleviate a longer application launch, for in-

stance, to show a splash screen in the beginning while performing the initializations.

This can give reassurance to the user that the application is working as intended and is

only loading the content. However, these applications are also quite easy in functional-

ity. The difference in the launch times between the two applications becomes less sig-

nificant the more complex the applications. More modern devices with better perfor-

mance also improve the launch times, further reducing the impact React Native has in

this category.

6.3 Application size difference

When comparing the two applications, I noticed that there was a significant difference

in the size of the frameworks as well in the very initial phase. The Swift application

took up 16 MB, while the React Native only required 8 MB.

Swift 16 MB

React Native 8 MB

The reason for this discrepancy is not entirely clear. One possibility could be because of

the model view controller in the Swift project is handled by the memory allocation by

default (Swift, 2023). React Native on the other hand uses a garbage collector which is

highly effective (Ahmed, 2020). Memory allocation affects the size of the application

because it determines how much memory will be used while running the application.

However, it’s noted that the size of the application does not necessarily reveal the per-

formance of the application.

31

7 Proposal for future work

There are quite a few additional Cross-Platform tools that are not covered in this thesis

but would be interesting for future work to investigate. Such tools are Flutter, Cordova,

Xamarin, Ionic, and PhoneGap. Mainly to investigate whether any of these tools would

perform any better than React Native. Would they in other words give a more native

feel than what React Native can provide?

It would also be very beneficial to improve the functionalities of the prototypes, this

would allow the prototype to be more comprehensive. Two more comprehensive appli-

cations would further help evaluate React Native as a solution to native development. It

is also important to mention that there is a lack of focus on the Android side of the de-

velopment. This thesis does mention that React Native works as a cross-platform solu-

tion where the once-written codebase can function on both the iOS and Android sys-

tems. However, there’s not any further investigation on the Android side. Any further

work on extending the testing into the Android environment would be very beneficial to

thoroughly evaluate React Native. This would require some research into testing on An-

droid devices since XCode is only accessible for iOS applications.

There are several potential options for further work on this subject. To further evaluate

React Native, one could consider this work and further develop it. It could be in the

form of implementing a more advanced architecture in the applications, shifting the fo-

cus to Android development, or comparing React Native to one of the other cross-plat-

form tools.

32

8 Conclusions

8.1 Summary

The main goal of the thesis was to answer the question of whether React Native truly

gives a native experience. A native experience where the end user won’t notice a differ-

ence in performance in comparison to a real natively developed application. The experi-

ment is conducted by creating two applications, one developed with a cross-platform so-

lution React Native, and the other developed natively with Swift. These two different

applications had the same design and functionality. They were then evaluated from an

experiment using XCode’s Instrument Tools. In the experiment, the focus was the exe-

cution time, which is a critical factor in evaluating the performance of applications.

Throughout this study we found that React Native has some limitations in providing a

truly native experience, considering the longer execution times when rendering many

elements compared to Swift. However, it’s noted that there’s no perfect way to compare

cross-platform solutions to native solutions. The “native experience” varies depending

on the context and it’s therefore important to consider all the factors when choosing be-

tween cross-platform and native solutions. React Native has on the other hand proven to

be a viable solution when developing smaller applications, for its fast development.

While Swift would be a better solution when developing larger and more complex ap-

plications.

8.2 Discussion

I think that it is essential to evaluate different approaches for mobile application devel-

opment, that could reduce the time and costs for companies. On the other hand, if cross-

platform applications result in reducing the development team from two to one, it could

translate to fewer job opportunities for mobile developers, a potential downside from

another perspective. However, I do think that if two development teams are replaced by

one, then the team is going to be larger than the previous ones. Having a bigger team

with React Native developers specializing in different platforms, such as iOS and An-

droid, may not necessarily then lead to cost savings. While cross-platform applications

33

do allow around 70-90% of the codebase to be shared between the platforms, certain ar-

eas of the code may require a significant modification. This could require React Native

developers that specialize in different platforms.

The choice of Swift and React Native depends heavily on the specific need of the com-

pany. In my opinion, if a company requires a quick and affordable solution to produc-

tion as soon as possible, then React Native would be the approach to take. On the other

hand, if the application is more complex, I would suggest a Swift approach to it, taking

into consideration the speed and performance tests conducted above.

Comparing the programming languages, both were quite easy to take grasp of. React

Native does remind a lot of React and JavaScript, while Swift has similarities to the C

programming languages. Coming from a background with no previous experience in

Swift, it did require a learning curve.

34

9 References
Apple Inc. (2023). Improving Your App's Performance. https://developer.ap-
ple.com/documentation/metrickit/improving_your_app_s_performance

Apple Inc. (2023). Creating and Combining Views. https://developer.apple.com/tutori-
als/swiftui/creating-and-combining-views

Ahmed. A., (9 November 2020). Keeping Memory Leaks in Mind to Program Better.
https://medium.com/swlh/keeping-memory-leaks-in-mind-to-program-better-
25f3acf4ba90

Besant Technologies. (n.d.). What is iOS? https://www.besanttechnologies.com/what-
is-ios

Budziński. M., (2022). What Is React Native? Complex Guide for 2022.
https://www.netguru.com/glossary/react-native

Fireart Studio. (26 April 2022). Flutter vs React Native: Which one is better for 2023?.
https://fireart.studio/blog/flutter-vs-react-native-what-app-developers-should-know-
about-cross-platform-mobile-development/

GeeksforGeeks - Jagroopofficial. (23 January 2023). Architecture of iOS Operating
System. https://www.geeksforgeeks.org/architecture-of-ios-operating-system/

Kozielecki. P., (11 May 2022). Cross-Platform vs Native App Development: What’s the
Difference? https://www.netguru.com/blog/cross-platform-vs-native-app-development

Lagerberg. M., (4 October 2017). Why we are not cross-platform developers.
https://medium.com/pixplicity/why-we-are-not-cross-platform-developers-
fd7ef70e976d

Linn. S., (20 March 2023) The 10 Largest Mobile App Companies In The World, And
What They Do. https://history-computer.com/the-largest-mobile-app-companies-in-the-
world-and-what-they-do/

Manchanda, A., (7 April 2023). The Ultimate Guide to Cross Platform App Develop-
ment Frameworks in 2023. https://www.netsolutions.com/insights/cross-platform-app-
frameworks-in-2019/

Madeshvaran. S., (2 December 2019). Everything You Need To Know Before Starting
Xamarin Development [2020 Edition].https://medium.com/a-developer-in-making/eve-
rything-you-need-to-know-before-starting-xamarin-development-2019-edition-
49744616196e

Nitze. A., Rösler. F., Schmietendorf . A., (March 2014). Performance Evaluation of
Cross-Platform Mobile Applications. https://www.researchgate.net/publica-
tion/296700470_Performance_Evaluation_of_Cross-Platform_Mobile_Applications

35

Osadchuk. S., (4 February 2023). React Native vs Swift in 2023: Which One is Better
for Your Project?.https://doit.software/blog/react-native-vs-swift#screen2

Paulo R. M. de Andrade, Adriano B. Albuquerque. (February 2015). Cross Platform
App – a comparative study. https://arxiv.org/pdf/1503.03511.pdf

React Native. (2023). Environment Setup. https://reactnative.dev/docs/environment-
setup?guide=native

Reshetnikov. D., (13 September 2021). The Good and the Bad of Swift Programming
Language. https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-swift-
programming-language/

Swift, (2023). Automatic Reference Counting. https://docs.swift.org/swift-book/docu-
mentation/the-swift-programming-language/automaticreferencecounting/

SlashData. (July 2022). Most used programming languages among developers world-
wide as of 2022. https://www.statista.com/statistics/793628/worldwide-developer-sur-
vey-most-used-languages/

Stack Overflow. (2022). Developer Survey.https://survey.stackoverflow.co/2022/#most-
popular-technologies-misc-tech-prof

TechTarget Contributor. (January 2023) Hybrid application. https://www.tech-
target.com/searchsoftwarequality/definition/hybrid-application-hybrid-app

TechTarget. (2023). Web Application. https://www.techtarget.com/searchsoftwarequal-
ity/definition/Web-application-Web-app

Willocx. M., Vossaert. J., Naessens. V., (2016). Comparing performance parameters of
mobile app development strategies. https://msec.be/crossmos/onderzoeksresultaten/per-
formancePaper2.pdf

Zibari. D., (5 May 2023) Swift app.https://github.com/dilanzib/swift-app

Zibari. D., (5 May 2023). React Native app. https://github.com/dilanzib/reactnative-app

36

Appendix. Summary in Swedish

Introduktion

Mobilapplikationer har blivit en vanlig del av våra dagliga liv och har förändrat sättet vi

integrerar med teknologi. För att nå de största publikgrupperna krävs däremot två nativa

applikationer, en för iOS och en för Android. Dessa måste utvecklas med olika pro-

grammeringsspråk vilket kräver en högre komplexitet och kostnad som företagen måste

stå för. Cross-plattformutvecklingen har kommit som en lösning till det, men det har vi-

sat sig att användarna inte är lika nöjda med prestandan som de är med de nativa (Nitze,

Rösler & Schmietendorf, 2014).

Det här arbetet behandlar en teknisk undersökning som utförs för att utvärdera prestan-

dan hos React Native. Syftet är att bedöma om React Native kan rekommenderas som

ett alternativ mot dess nativa applikation i Swift.

Bakgrund

Bakgrunden i arbetet diskuterar betydelsen av mobilapplikationer i dagens bransch. Mo-

bilapplikationernas betydelse medför samtidigt ett krav för företagen att leverera hög-

kvalitativa mobilapplikationer på alla plattformar, för att helt enkelt kunna öka sina in-

täkter. Men för att utveckla mobilapplikationer för varje plattform är kostsamt.

Artikeln belyser också de andra populära plattformsoberoende verktygen, som till ex-

empel Flutter, Xamarin och Cordova. Dessutom förklaras även de tre olika arkitekturen

som används i mobilutveckling, vilka är nativa, webb och hybridapplikationer. Var och

en av dem har sina egna fördelar men därpå också begränsningar. Nativa applikationer

är begränsade till specifika verktyg och webbapplikationer kräver internetanslutning för

att kunna nås. Hybrid applikationer kombinerar både webb och nativa applikationer.

37

Problem

I problem avsnittet diskuteras komplexiteten i att utveckla nativa applikationer för di-

verse plattformar. Vi ser ett behov av plattformsoberoendeverktyg för att kunna återan-

vända samma kod över olika plattformar.

Denna studie syftar på att utforska skillnaderna i prestandan mellan Swift och React Na-

tive, den nativa lösningen som endast fungerar på iOS och den plattformsoberoendelös-

ningen som fungerar på både iOS och Android.

I stycket nämns också relaterad forskning som visat att de plattformsoberoende appli-

kationerna har haft en grad sämre prestanda. Det kom bland annat fram att de plattform-

soberoende verktygen kan ha längre lanseringstid och tyngre CPU-förbrukning. Men i

den dagliga användningen är dessa prestandaskillnader inte alltför märkbara. (Andrade

& Albuquerque, 2015)

Metod

Avhandlingens metod innebär att skapa två identiska applikationer med olika program-

meringsspråk, React Native och Swift. Därefter testa deras prestanda med fokus på exe-

kveringstiden. Exekveringstiden kommer att mätas med hjälp av ett Time Profiler verk-

tyg som finns i XCode programmet. Experimentet kommer att testa tre vyer med olika

typer av funktion och olika mängd innehåll.

Genomförande

Detta avsnitt diskuterar utvecklingsprocessen för de två mobilapplikationerna, varav den

ena är utvecklad med React Native och den andra med Swift. Nödvändiga verktyg för

React Native utvecklingen är Homebrew, Node, Watchman och React Native CLI.

Swift kräver endast XCode programmet installerat.

Avsnittet presenterar också resultaten från de två olika mobilapplikationerna och belyser

skillnaderna i deras inställning när det gäller att strukturera och koda. React Native

38

använder ett funktionsbaserat tillvägagångssätt och organiserar allt i separata skärmar

och komponenter. Swift applikationen använder MVC-modellen och separerar data,

vyer och modeller i olika filer och mappar.

Utvärdering

Avsnittet utvärderar resultaten som experimentet gav. Experimentet syftade på att av-

göra om React Native ger en nativ upplevelse och hur den presterar jämfört med Swift

applikationen.

Testerna genomfördes med XCode instrumentverktyget. Resultaten presenterades sedan

i grafer som visade att React Native presterade bättre än Swift i visa fall, men då man

utökade mängden innehåll presterade Swift applikationen bättre. Dessutom nämndes

även applikationernas lanseringstid, och där visade sig att React Native applikationen

tog betydligt längre tid att lanseras.

Förslag till framtida arbeten

Avsnittet föreslår framtida arbeten som att undersöka ytterligare plattformsoberoende-

verktyg, till exempel Flutter, Cordova och Xamarin. För att närmare se om de presterar

bättre än React Native när det gäller att erbjuda en mera nativ känsla.

Ytterligare arbete för studien kan innebära att implementera en mer avancerad arkitektur

i applikationerna, flytta all fokus till Android-utveckling eller jämföra React Native med

andra plattformsoberoende verktyg.

Slutledning

Avhandlingen syftade på att svara frågan om React Native ger en verklig nativ upple-

velse. Detta åstadkoms genom att utföra ett experiment. Experimentet jämförde två ap-

plikationer med samma design och funktion som utvecklats med hjälp av React Native

och Swift. React Native visade sig ha vissa begränsningar, en längre exekveringstid, och

anses därför som en gångbar lösning för mindre applikationer på grund av dess snabba

39

utveckling. Studien anser Swift som en lösning för större och mer komplexa applikat-

ioner. Studien kom fram till att valet mellan de två språken beror i slutändan på företa-

gets specifika behov.

