

1

HUAN DO

EXPENSE TRACKING APPLICATION

School of Technology
2023

2

VAASAN AMMATTIKORKEAKOULU
University of Applied Sciences

ABSTRACT

Author Huan Do
Title Expense Tracking Application
Year 2023
Language English
Pages 37
Supervisor Anna Kaisa Saari

It came from the idea of helping a friend to keep track of expenses and from that
they can manage income and outcome. She wanted to have an application which
can insert shopping receipts from stores. And from that, being able to track
monthly expenses, therefore make better spending decisions.

The objective of this thesis work was to build and deploy a fully responsive
application using modern UI with Angular Framework. The major reason for
choosing Angular is because this Framework is known to be one of the most widely
used and has a sizable library free to use and easy to access to.

The project was fully tested and proved to be working as required. It also achieved
the aim of being responsive to support also mobile users.

Keywords Angular, Expense, Tracker

3

CONTENTS

ABSTRACT

1 INTRODUCTION ...1

1.1 Study Case ..1

1.2 Scope and objectives ...1

2 REQUIREMENTS ...2

2.1 Description ...2

2.2 Use Cases ...2

3 RELEVANT TECHNOLOGIES ..4

3.1 JavaScript, HTML and CSS ..4

3.2 Angular Framework ...4

3.3 UI library PrimeNG ...5

3.4 Bootstrap ...6

3.5 RxJS ..7

3.6 Google Icons ...7

3.7 LightBox ..8

3.8 Ngx-webstorage ...9

4 DATABASE & GUI DESIGN ... 10

4.1 Database Diagram ... 10

4.2 Process Flow.. 10

4.3 Other technologies ... 11

4.3.1 Framework ExpressJS .. 11

4.3.2 Bcrypt .. 12

4.3.3 JSON Web Token ... 12

4.3.4 Dotenv ... 13

4.3.5 Mongoose ... 14

4.3.6 Multer.. 15

4.3.7 GridFS .. 16

4.3.8 CORS .. 16

4.3.9 Http-status .. 17

4

5 IMPLEMENTATION, DEPLOYMENT & TESTING ... 18

5.1 Implementation .. 18

5.2 Heroku Deployment .. 24

5.2.1 Deploy Backend Application ... 24

5.2.2 Front-End Application ... 27

5.3 Testing ... 29

5.3.1 Sign Up .. 29

5.3.2 Log in Test ... 30

5.3.3 Expense with No Amount ... 30

5.3.4 Category without an icon/name ... 31

5.3.5 Some Other Noticeable Features of the Application 32

6 CONCLUSIONS .. 34

REFERENCES .. 35

5

LIST OF FIGURES

Figure 1. Use-case Diagram 3

Figure 2. Angular components 5

Figure 3. PasswordModule is imported from UI library 5

Figure 4. Utilizing properties in “p-password” 5

Figure 5.Ultilizing Spacing in Bootstrap 6

Figure 6. The use of RXJS 7

Figure 7. Adding the target icon in tag 8

Figure 8. Inject Lightbox 8

Figure 9. (click) event & open(i) function 8

Figure 10. Array <IAlbum> is predefined 9

Figure 11. function open() takes 3 parameters 9

Figure 12. LocalStorageServices injection to components 9

Figure 13. Relations between tables 10

Figure 14. Process Flow Diagram 11

Figure 15. Bootstrap the app by PORT 12

Figure 16. Hashing passwords 12

Figure 17. Generate token function 13

Figure 18. Verify token 13

Figure 19. Define environment variable 14

Figure 20. Using PORT variable 14

Figure 21.Connect to database 14

Figure 22. Define a Schema 15

Figure 23.Import Schema 15

Figure 24. Using Schema to fetch data 15

Figure 25. Defining the upload middleware with config 16

Figure 26. Importing the upload middleware 16

Figure 27. Using the upload middleware 16

Figure 28. Define a storage to save photos 16

Figure 29. Creating an error with status 'BAD_REQUEST' 17

6

Figure 30. Sign Up 18

Figure 31. Log In Success 18

Figure 32. Wrong path with 404 not found status 19

Figure 33. Log in 20

Figure 34. Sign Up/ Log in UI 20

Figure 35. Home page interface with Quick Add function 21

Figure 36. Menu side bar 21

Figure 37. Add Transactions & Balance homepage 22

Figure 38. See all Transactions/ Category 22

Figure 39. Create new Category/ Edit Category 23

Figure 40. Statistics page with Charts 23

Figure 41. Customize Cluster 24

Figure 42. Get connection string 25

Figure 43. Connection string is stored in .env file 25

Figure 44. Specify Node.js version used 25

Figure 45. Run Node.js and MongoDB app locally 25

Figure 46. Create new application 26

Figure 47. Host IP address is added 26

Figure 48. Application successfully deployed 27

Figure 49. Setting up environment & configuration 27

Figure 50. Configuring file server.js 28

Figure 51. Running & pushing the project into GitHub 28

Figure 52. Create new Front-end application 29

Figure 53. Application is deployed 29

Figure 54. Sign up page test 30

Figure 55. Log in page test 30

Figure 56. Expense Adding function with no amount value 31

Figure 57. Create new Add/Edit 31

Figure 58. Log in page, Dashboard, Add transactions page demo 32

Figure 59. Category & Edit options demo 33

1

1 INTRODUCTION

There has been a rapid change in the technology industry. One of the remarkable

changes is many ways to create tracking products which help to make our life

easier.

Out of many new programming languages, JavaScript with Angular Framework

stands out to be one of the most efficient ways to create such applications.

1.1 Study Case

The original purpose for creating the site came from the idea to help a friend with

tracking, which allows her to track daily expenses such as what products are

bought or where the money is spent. This tracking application allows expense

tracking and gives users statistics about their expenses.

The front-end of the application is written in JavaScript using the Angular

framework, utilizing HTML and CSS (Cascading Style Sheets). In addition to these

PrimeNG library for UI components was used. At the back end of the application

the following technologies were used: the Expressjs framework, JavaScript, also

bcrypt (for password hashing and encrypting), JSON Web Token (for authorization

and authentication) were used along with Dotenv.

1.2 Scope and objectives

The main objective of this thesis project is to make expense tracking process

easier. The goal for the application interface is to have the most crucial

information available: balance and expenses.

2

2 REQUIREMENTS

2.1 Description

The basic idea for the Expense tracking application is to balance the user’s income

against expenses. With the application, the user can input their shopping

information, such as store information, date for shopping, total sum, receipt or

other images and categorize the information for further analysis and tracking.

2.2 Use Cases

The use-case diagram, which describes possible interactions between users and

the system of the application is shown in Figure 1. The application has the

following functionalities:

1. Log in and log out, where the user can create a new account, specify user

information and log out of the application

2. Add new transactions, where users can add their income and receipts from

shopping

3. View and edit existing transactions

4. Categories to categorize user expenses. Users can add new categories or

edit existing ones.

5. Statistics that include a line chart and a pie chart to show the difference

between incomes and outcomes that changes over months and expenses

divided by categories

3

Figure 1. Use-case Diagram

4

3 RELEVANT TECHNOLOGIES

3.1 JavaScript, HTML and CSS

The application was written in JavaScript using the Angular framework. JavaScript,

often abbreviated as JS, is a programming language that is one of the core

technologies of the World Wide Web, alongside HTML and CSS. According to

Wikipedia, as of 2022, 98% of the websites use JavaScript on the client side for

webpage behavior.

The rise in the use of mobile devices has led many a business owner to consider if

the business requires both a website and a mobile application. With JavaScript,

the project also utilizes HTML and CSS. CSS is used to style an HTML document. It

describes how HTML elements should be displayed and how applications work

smoothly in different devices. /1//2/

3.2 Angular Framework

Angular (also referred to as “Angular 2+”) is a TypeScript-based /3/, free and open-

source web application framework, whose development is led by the Angular

Team and by a community of individuals. Angular is a Single Page application

Framework which is used for creating Web Applications fast.

An example of a minimal Angular component is shown in Figure 2. The class is

marked by decorator @Component, which makes it one component. Once

component can implement one life cycle, for example OnInit is used.

5

Figure 2. Angular components

3.3 UI library PrimeNG

PrimeNG is a collection of rich UI components for Angular. All widgets are open

and free to use under the MIT License. The PrimeNG UI library makes front-end

development fast and efficient. PrimeNG is written in TypeScript, and it does not

contain any third-party dependencies. /3/

Figure 3. PasswordModule is imported from UI library

Figure 4. Utilizing properties in “p-password”

6

The Password component is defined and exported in PasswordModule. To be able

to use the p-password component, passwordModule needs to be imported, as

shown in Figure 3. As shown in Figure 4, properties such as toggleMask are used

from the p-password. ToggleMask is to show an eye-like icon that displays

password as plain text; the placeholder is for advisory information to display on

input, see Figure 4

3.4 Bootstrap

Bootstrap /4/ is the most popular CSS Framework for developing responsive and

mobile-first websites. Bootstrap 5 is the newest version Bootstrap. Bootstrap is

used in this project because of its conveniences, classes are well designed for

responsive purpose.

Bootstrap contains predefined classes and by using them developers do not need

to write the CSS by themselves. For example, as shown in Figure 5, Bootstrap class

.mb-4 replaces CSS {margin-bottom: $spacer*1.5}. In the second <div/>, .d-flex

replaces CSS {display: flex}; .justify-content-between replaces for CSS {justify-

content: between}.

Figure 5.Ultilizing Spacing in Bootstrap

7

3.5 RxJS

RXJS (Reactive Extensions Library for JavaScript) is a library for reactive

programming. RXJS uses observables, which makes it easier to compose

asynchronous or call-back-based code. It offers a powerful, functional approach

for dealing with events and integration points into many frameworks. /6//20/

Figure 6. The use of RXJS

Figure 6 shows how RXJS is used to call Login-API. When the API returns data, the

observer can receive three events: “next”, “error”, “complete”. The “Next” event

is triggered when the observer receives a successful value, and the “Error” event

is triggered when the observer receives an error value. “complete” is called after

the whole stream is completed.

If the username and password are incorrect, the application returns error “User

not found” to the user. If the username is correct but a wrong password was given,

the application returns “Invalid password” to the user.

3.6 Google Icons

Google Icons is an icon set that consolidates over 2,891 glyphs in a single font file

with a wide range of design variants. The symbols are available in three styles and

four adjustable variable font styles (fill, weight, grade, and optical size). /7/

In this project, “add a photo” icon was used. In order to have “add a photo” icon,

tag must have class “material-symbols-outline” with content

add_a_photo, as shown in Figure 7.

8

Figure 7. Adding the target icon in tag

3.7 LightBox

Lightbox is a small JavaScript library that is used to overlay images on top of the

current page. It is an easy to set up and it works on all modern browsers. /8/

LightBox provides services, which enable services injection into components via

constructor, as shown in Figure 8. In this template, (click) event will be listened to

call function open() and this function will have an index parameter (Figure 9). To

prepare data for LightBox, an array <IAlbum> is predefined (Figure 10); in Figure

11, LightBoxservices provide open() function. This function receives 3 parameters:

Album, index, config to pop up the photo.

Figure 8. Inject Lightbox

Figure 9. (click) event & open(i) function

9

Figure 10. Array <IAlbum> is predefined

Figure 11. function open() takes 3 parameters

3.8 Ngx-webstorage

The ngx-webstorage library provides an easy-to-use service to manage the web

storages of browser from an Angular application. It provides also two decorators

to synchronize the component attributes and the web storages /9/

In the project, LocalStorageservice was injected to components via a constructor.

The library provides a function called store() that takes two parameters, key and

its value. This combination is then saved into localStorage, as shown in Figure 12.

Figure 12. LocalStorageServices injection to components

10

4 DATABASE & GUI DESIGN

4.1 Database Diagram

This chapter describes the structure of the database and relations between

database objects. The needed objects are User, Category and Expense, as shown

in Figure 13. For user and category, the relation is one to many, meaning that one

user can have many categories. For category and expense, the relation is many to

many, meaning that many categories can have many expenses.

Figure 13. Relations between tables

4.2 Process Flow

This chapter includes a process flow chart which describes how the application

works. The process flow is shown in Figure 14. Before starting the application, the

user must register to the system. The user can create an account in the Sign in

view. Once the account is created, the user is directed back to the Login page.

On the Login page, a wrong password directs the user back to the Login with an

error notification, the right password directs to the home page. At the Home page,

the user can either go to Expense handling or log out from the application. In case

of Expense which not been added yet (does not exist), the user can create new

11

Expense, where a database for Expense is needed. A cycle of Expense is as follows:

no category exists >create a new category (database needed), category exists,

then the user is able to edit the category (in category database created). On the

other hand, if Expense already exists, then the user can go straight to edit expense

(interact with database) on the Homepage.

Figure 14. Process Flow Diagram

4.3 Other technologies

4.3.1 Framework ExpressJS

Express is a minimal and flexible Node.js web application framework that provides

a robust set of features for web and applications. It is used to build a single page,

multipage, and hybrid web application. /5/ As shown in Figure 15, the application

can receive requests from clients using different paths. These paths are routed to

corresponding routes.

12

Figure 15. Bootstrap the app by PORT

4.3.2 Bcrypt

Bcrypt is a password-hashing function designed by Niels Provos and David

Mazieres. The bcrypt function is the default password hash algorithm. There are

implementations of bcrypt in C, C++, Go, Java, JavaScript and other languages /10/

An example of the password hashing process can be seen in Figure 16. Bcrypt has

function hash() that helps to encrypt passwords. Then it changes the user’s

password into an encrypted password using the hash() function bcrypt provides.

The encrypted password of the corresponding user is saved to the database.

Figure 16. Hashing passwords

4.3.3 JSON Web Token

JSON Web Token (or JWTs) is an open, industry standard RFC 7519 method for

representing claims securely between two parties. As a JSON object, information

can be verified and trusted because it is digitally signed. JWTs can be signed using

a secret (HMAC algorithm) or a public/private key pair using RSA or ESDSA /11/

In this thesis project, JWT was used for authorization reasons. Once the user logs

in, they are allowed to access routes, services, and resources that are permitted

with that token. Assigned ‘jsonwebtoken’ as variable jwt (Figure 17), a token is

13

generated from the user information: id, username with private key and expire

time. In Figure 18, JWT provides a verify() function that takes 2 parameters: token

(needs to be verified) and private key and return true if the token is valid, when

the token is invalid, the function will throw an error.

Figure 17. Generate token function

,

Figure 18. Verify token

4.3.4 Dotenv

Dotevn is a zero-dependency module that loads environment variables from a .env

file into process.env. The Dotenv package is a great way to keep passwords, API

keys, and other sensitive data out of codes. It allows creating environment

variables in a .env file /12/

In the project, .env file was created and variables were defined with syntax:

variable_name = value, as shown in Figure 19. These variables can be accessed

using syntax process.env.variable_name, as shown in Figure 20

14

Figure 19. Define environment variable

Figure 20. Using PORT variable

4.3.5 Mongoose

Mongoose is a MongoDB object modeling tool, designed to work in an

asynchronous environment /14/. Mongoose 7.0.0 version was used in this project.

First, Mongoose is required, then it was used to connect database via connect()

function (Figure 21),

Figure 21.Connect to database

A schema can be defined for the database (Figure 22). The schema helps to

interact with the database through the functions, as shown in Figure 23 and 24

15

Figure 22. Define a Schema

Figure 23.Import Schema

Figure 24. Using Schema to fetch data

4.3.6 Multer

Multer is a node.js middleware for handling multipart/form-data. It is primarily

used for uploading files purpose and is written on top of busboy for maximum

efficiency. Multer will not process any form which is not multipart

(multipart/form-data) /15/

Multer adds a body object and a file (or files) object to the request object. The

body object contains the values of the text fields of the form, the file of files object

contains the files uploaded via the form. First, ‘multer’ is required, then a

middleware upload is defined with configs (see Figure 25), then the upload is

imported into needed service, in Figure 26. Finally, this middleware is used to

receive and store files to the database from the request, as can be seen in Figure

27

16

Figure 25. Defining the upload middleware with config

Figure 26. Importing the upload middleware

Figure 27. Using the upload middleware

4.3.7 GridFS

GridFS is a specification for storing and retrieving files that exceed the BSON -

document size limit of 16 MB. Instead of storing a file in a single document, GridFS

divides the file into parts, or chunks, and stores each chunk as a separate

document. In this thesis project, multer-grid-storage supports the software storing

files into MongoDB. In Figure 28, a storage with configs (url & file) is then defined.

Figure 28. Define a storage to save photos

4.3.8 CORS

Cross-origin recourse sharing (CORS) is a mechanism which allows restricted

resources on a web page to be requested from another domain outside the

domain from which the first resource was served /17/. In the project, CORS was

used because the two applications (FE&BE) are deployed in 2 different servers.

17

4.3.9 Http-status

The HTTP Status code for node creates Utility for interacting with the HTTP status

code. Once this module is required, one can call it with either an HTTP code or a

message name. With an HTTP code, one can get the message name while with a

message name one will get an HTTP code. /18/ In this project, instead of return

status code “403”, HTTP_STATUS.BAD_REQUEST can be used when there is an

error, see Figure 29.

Figure 29. Creating an error with status 'BAD_REQUEST'

18

5 IMPLEMENTATION, DEPLOYMENT & TESTING

5.1 Implementation

Figure 30. Sign Up

When the user accesses the application, they will be directed to the Login with

path= “/login”. The Sign-up page has a form (see Figure 30) that takes input from

the client, and checks if that input is valid. If the input is valid, the front end sends

the form data to the backend API. If the user is a new user, an account is created.

When the user succeeded in creating a new account, the application will pop up,

as in Figure 31. Another feature when accessing the url to the software

application, when user gives wrong path of the url, the application will pop up an

image with status “404” not found, as shown in figure 32.

Figure 31. Log In Success

19

Figure 32. Wrong path with 404 not found status

In the component login.component.ts, a form variable type FormGroup, assigns

two field inputs “username” and “password” via directive formConTrolName. The

Login also check the form of the user input, if the input is valid, the form is sent to

the backend. The backend takes over the form, checking the user information from

the database, if it matches, then allows the user to log themselves in. Here,

Validators were used for both fields, “username” & “password”, if any of the

above fields does not have a value then the form is invalid, utilizing these

properties to handle logic, for example not allowing the request to be sent. In the

case the form is valid, HTTPClient is used to send one request to the backend with

a body that includes the username and password. Meanwhile, the backend will

verify the user and return the corresponding result, as seen in Figure 33.

If the user is valid, localStorageService is used to store the user information,

including the token into LocalStorage. Tokens will be used to authenticate users in

future requests. Below is the demo images of Sign up and Log in UI of the software,

as shown in Figure 34.

20

Figure 33. Log in

Figure 34. Sign Up/ Log in UI

After logging into the application successfully, the user is navigated to the home

page. On the home page, the user can see the balance (Total Balance = Income –

Expense) and create a new transaction via “+”-button on top right of the screen,

as shown in Figure 35.

21

Figure 35. Home page interface with Quick Add function

The user can also navigate through the menu-button to other pages. The menu-

button is located on the bottom right, in Figure 36. For the menu, the component

<p-sidebar> was utilized.

Figure 36. Menu side bar

With quick add transaction, the application will navigate itself to the component

expense-form.component.ts . Like with other forms, Validator was used to bind

the conditions validity for the form (here is at least the AMOUNT must have a

value). In the add transaction interface the user defines the transaction

information, type, category, amount, date & description, and images, as shown in

Figure 37.

22

Figure 37. Add Transactions & Balance homepage

The user can click into an item to edit the transaction or use the button “See All”

to have a look at all transactions available. Besides, the user can also navigate to

the Category page, shown in Figure 38.

Figure 38. See all Transactions/ Category

A few categories are created as default for the user when a new account is created.

The user can also create new categories by using the “+Category” button.

FormGroup was also used to manage inputs for NewCategory. One category needs

to have: name, colour (for chart purpose), icon and description (optional). The

application also allows the user to edit an existing category by clicking the

category. The interface for editing a category is shown in Figure 39.

23

Figure 39. Create new Category/ Edit Category

In the Menu dashboard, the chart component from PrimeNG library is used as <p-

chart>.FormGroup will also be used to manage the group button

day/week/month/year, dropdown for filtering expense/income. After

initialization of the form, valueChange event is set to listen these two fields, button

and dropdown. Once the event is triggered, a request to get appropriate data is

sent to the backend. The statistics pages are shown in Figure 40.

Figure 40. Statistics page with Charts

24

5.2 Heroku Deployment

Heroku is a cloud platform as a service (PaaS) that enables businesses to create,

deliver, monitor, and scale applications. Heroku was created to alleviate

infrastructure concerns and eliminate the need for learning about network

administration, server configuration, or database tuning. Heroku removes the

barriers so that developers can concentrate on creating excellent apps /19/

5.2.1 Deploy Backend Application

When deploying backend to Heroku, first a New MongoDB Cluster is created. The

creation starts by clicking the “Build database” button. The type for the cluster

needs to be selected. In this project, the Shared cluster was used. The cluster can

be customized by selecting Share > AWS from menu and clicking the Create cluster

-button. It is important at least to define the authentication for the cluster. In this

project, the username and password were defined by clicking Create user -button.

Connections also need to be specified. Once all settings are done, the window is

closed by clicking Finish and Close button, shown in Figure 41

Figure 41. Customize Cluster

A connection string for the new MongoDB Cluster is needed to enable connection

from the application. The connection string is stored into Heroku, it can be viewed

by clicking the Connect-button, as shown in Figure 42. The connection string is

stored under the Connect your application -tab. In the application settings, the

25

Connection string is defined inside the .env-file, the format of the string is shown

in Figure 43.

Figure 42. Get connection string

Figure 43. Connection string is stored in .env file

The Heroku Command Line Interface (CLI) enables the creation and management

of Heroku applications directly from the terminal. It is an essential part of using

Heroku. Heroku CLI is installed with the command npm install -g heroku. Json-

package defines which scripts are used to start special to startscript. Finally, the

application is started on port 3000 (Figure 45)

Figure 44. Specify Node.js version used

Figure 45. Run Node.js and MongoDB app locally

26

The creation of a new application to Heroku is relatively easy, as shown in Figure

46. The creation starts by clicking the button “Create new app”. In creation,

information, such as name and port for the application, is defined, as shown in

Figure 47. A Git repository using a new or existing git-directory needs to be defined

to enable continuous integration. In Heroku, configuration can be seen from

‘Setting’ - ‘Reveal Config Vars’ -view. The host IP address needs to be added to the

Network Permission List. It gives the host access to the created cluster. Once all

the settings are done, the application is deployed to Heroku, as shown in Figure

48.

Figure 46. Create new application

Figure 47. Host IP address is added

27

Figure 48. Application successfully deployed

5.2.2 Front-End Application

To setup the local environment, a file package.json needs to be created. That file

specifies basic environment and server configuration, as shown in Figure 49.

Server.js file, as shown in Figure 50, is the starter file for the front-end application.

AS in software projects, all source files are stored in version control system. In this

project, GitHub was used. By pushing files into Github, application is automatically

configured to be built, as shown in Figure 51

Figure 49. Setting up environment & configuration

28

Figure 50. Configuring file server.js

Figure 51. Running & pushing the project into GitHub

When deploying the application to Heroku, create new app is clicked, as shown in

Figure 52. In the Deployment method, GitHub is chosen. After connecting GitHub

to Heroku, the project created in GitHub is found and “Enable automatic deploy”

can be chosen. After a successful deployment, the application can be accessed via

URL https://thesis-fe.herokuapp.com as shown in Figure 53

https://thesis-fe.herokuapp.com/

29

Figure 52. Create new Front-end application

Figure 53. Application is deployed

5.3 Testing

This chapter describes the testing of all the possible error inputs, and shows in one

of the contexts, that the application runs smoothly on a mobile device. Crucial

functions are included: sign up, log in account, and some other features inside the

application: amount adding, category editing.

5.3.1 Sign Up

This section tests: Register new account function with these possible scenarios. If

any of input from the user is invalid or if the input is valid, but the username

already exists. The expected result should be like this: the “Sign up” button will be

disabled. The application pops up an error message: “Username is already taken!”,

see Figure 54

30

Figure 54. Sign up page test

5.3.2 Log in Test

This section test: correct username, but wrong password/User does not exist. The

expected result: the software pops an error message: “Invalid password”, “User

not found” respectively for these scenarios, as seen in Figure 55 below

Figure 55. Log in page test

5.3.3 Expense with No Amount

This section tests: the add transaction function of the application. When the

amount of the transaction is left “empty”, the expected result is the “Add” button

is disabled, as shown in Figure 56 below.

31

Figure 56. Expense Adding function with no amount value

5.3.4 Category without an icon/name

This section tests the Add category function. If the text “NAME” is left empty, or

no icon had been chosen, the expected result is the “Add” button is disabled, as

seen in Figure 57.

Figure 57. Create new Add/Edit

32

5.3.5 Some Other Noticeable Features of the Application

The application has also been tested with different browsers (Firefox, Google

Chrome, Safari, Internet Explorer) and it worked out finely. It had been tested on

a mobile device, specialized in an iPhone XS Max, and it runs perfectly.

Some figures of the mobile version were taken. In Figure 58, the Login page is

visible for the user to log in, here one account was created already for testing

purposes, namely “Hatdaika123”. As shown in the picture, after successfully

logging in the application, a dashboard is displayed, with the “Total balance” of

the user.

The user can see the income as well as the expense right below the balance. There

is also a Transaction History where the user can see all incomes and expenses.

These transactions are sorted into different categories: Family, transportation,

coffee, … On the top right of the page, there a “+” sign where users can click to

add transaction page. On the transaction page, users can add an amount, and

categorize these spendings (Figure 58)

Figure 58. Log in page, Dashboard, Add transactions page demo

Figure 59 shows how the application looks in this interface: Category, Edit

category. In this demo, the user can customize their category colour, icons (from

Google Fonts>icons).

33

Figure 59. Category & Edit options demo

34

6 CONCLUSIONS

JavaScript is the most popular and commonly used programming language around

the world. It adds versatility and speedy performance in any type of application.

Being compatible with modern browsers and so much more makes JavaScript the

frequent choice to developers. Angular is a powerful set of tools that support

routing, guard, reusable components. Angular itself provides most of the tools so

that it is ready to use. PrimeNG is a powerful component library that is easy to

implement and use.

The thesis contributes to these experiences: route distribution using ExpressJS (BE

application); organizing database: MongoDB is a no-SQL database, allowing

flexible data saving; organizing files: each file takes their own role,

i.e:expense.route only takes upcoming requests; expense. service will have

functions for expense.

Lastly, the number of frameworks is developing all the time, for JavaScript.

Whenever we have a framework that comes with useful additional functions, it

becomes even more powerful.

REFERENCES

/1/ Wikipedia. JavaScript. Accessed May 20, 2023.

https://en.wikipedia.org/wiki/JavaScript

/2/ Clark, Scott. 2010. “New Mobile Apps re Using HTML 5, CSS and JavaScript”.

Accessed May 20, 2023. https://www.htmlgoodies.com/webmaster/html5-css-js-

mobile-apps/

/3/ PrimeNG. “The Most Complete User Interface Suite for Angular”, “Why

PrimeNG?”Accessed May 20, 2023. https://www.primefaces.org/primeng-v8-

lts/#/

/4/ Wikipedia. 2023. “Bootstrap-CSS framework” Accessed May 25, 2023.

https://en.wikipedia.org/wiki/Bootstrap_(front-end_framework) .

/5/ Besant Technologies. “What is Express.JS?”, Accessed May 20, 2023.

https://www.besanttechnologies.com/what-is-expressjs

/6/ @btroncone. 2020. “Learn RXJS, Introduction” Accessed May 20, 2023

https://www.learnrxjs.io/

/7/ “Google Fonts/Icons” official site. Accessed May 20,2023

https://fonts.google.com/icons?icon.query=add+a+photo

“Introducing Material Symbol”, fonts official site, accessed May 25, 2023

https://fonts.google.com/icons

/8/ “Lightbox2”, NPMJS official site, published Feb 2023. Accessed May 20, 2023

https://www.npmjs.com/package/lightbox2

/9/ “NGX-Webstorage” published 2022, Dec. Accessed May 21, 2023

https://www.npmjs.com/package/ngx-webstorage

https://en.wikipedia.org/wiki/JavaScript
https://www.htmlgoodies.com/webmaster/html5-css-js-mobile-apps/
https://www.htmlgoodies.com/webmaster/html5-css-js-mobile-apps/
https://www.primefaces.org/primeng-v8-lts/#/
https://www.primefaces.org/primeng-v8-lts/#/
https://en.wikipedia.org/wiki/Bootstrap_(front-end_framework)
https://www.besanttechnologies.com/what-is-expressjs
https://www.learnrxjs.io/
https://fonts.google.com/icons?icon.query=add+a+photo
https://fonts.google.com/icons
https://www.npmjs.com/package/lightbox2
https://www.npmjs.com/package/ngx-webstorage

36

/10/ “What is Bcrypt. How to use it to has passwords”, Shubham Sharma

November 17, 2022. Accessed May 20, 2023 https://dev.to/documatic/what-is-

bcrypt-how-to-use-it-to-hash-passwords-5c0g

/11/ “Introduction to JSON Web Tokens”, accessed May 20, 2023

https://jwt.io/introduction

/12/ ”dotenvTS” public, Published Oct 2022. Accessed May 20, 2023

https://www.npmjs.com/package/dotenv

/13/ “MomentJS”, published July 2022. Accessed May 20, 2023

https://www.npmjs.com/package/moment

/14/ “Introduction to Mongoose for MongoDB”, freecodecamp official site,

published Feb 11, 2018. Accessed May 20, 2023

https://www.freecodecamp.org/news/introduction-to-mongoose-for-mongodb-

d2a7aa593c57/

/15/” Multer” published to publicity, May 2022. Accessed May 20, 2023

https://www.npmjs.com/package/multer?activeTab=readme

/16/ “Multer GridFS Storage” published May 2021. Accessed May 20, 2023

https://www.npmjs.com/package/multer-gridfs-storage

“GridFS”, MongoDB offical. Accessed May 26, 2023

https://www.mongodb.com/docs/manual/core/gridfs/

/17/ “Cross-origin resource” sharing last edited 10 February 2023. Accessed May

20, 2023, https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

/18/ “HTTP Status codes for Node”, published January 2023. Accessed May 20,

2023, https://www.npmjs.com/package/http-status

/19/ Ekekenta Odionyefe, “Deploy Node.js & MongoDB Application to Heroku”,

Oct 12, 2022. Accessed May 17,

https://dev.to/documatic/what-is-bcrypt-how-to-use-it-to-hash-passwords-5c0g
https://dev.to/documatic/what-is-bcrypt-how-to-use-it-to-hash-passwords-5c0g
https://jwt.io/introduction
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/moment
https://www.freecodecamp.org/news/introduction-to-mongoose-for-mongodb-d2a7aa593c57/
https://www.freecodecamp.org/news/introduction-to-mongoose-for-mongodb-d2a7aa593c57/
https://www.npmjs.com/package/multer?activeTab=readme
https://www.npmjs.com/package/multer-gridfs-storage
https://www.mongodb.com/docs/manual/core/gridfs/
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://www.npmjs.com/package/http-status

2023.https://blog.appsignal.com/2022/10/12/deploy-a-nodejs-and-mongodb-

application-to-heroku.html

/20/ Angular. 2022. “The RXJS library”. Accessed May 25,
2023.https://angular.io/guide/rx-
library#:~:text=RxJS%20(Reactive%20Extensions%20for%20JavaScript,asynchron
ous%20or%20callback%2Dbased%20code

https://blog.appsignal.com/2022/10/12/deploy-a-nodejs-and-mongodb-application-to-heroku.html
https://blog.appsignal.com/2022/10/12/deploy-a-nodejs-and-mongodb-application-to-heroku.html
https://angular.io/guide/rx-library#:~:text=RxJS%20(Reactive%20Extensions%20for%20JavaScript,asynchronous%20or%20callback%2Dbased%20code
https://angular.io/guide/rx-library#:~:text=RxJS%20(Reactive%20Extensions%20for%20JavaScript,asynchronous%20or%20callback%2Dbased%20code
https://angular.io/guide/rx-library#:~:text=RxJS%20(Reactive%20Extensions%20for%20JavaScript,asynchronous%20or%20callback%2Dbased%20code

	1 introduction
	1.1 Study Case
	1.2 Scope and objectives

	2 Requirements
	2.1 Description
	2.2 Use Cases

	3 relevant technologies
	3.1 JavaScript, HTML and CSS
	3.2 Angular Framework
	3.3 UI library PrimeNG
	3.4 Bootstrap
	3.5 RxJS
	3.6 Google Icons
	3.7 LightBox
	3.8 Ngx-webstorage

	4 Database & GUI Design
	4.1 Database Diagram
	4.2 Process Flow
	4.3 Other technologies
	4.3.1 Framework ExpressJS
	4.3.2 Bcrypt
	4.3.3 JSON Web Token
	4.3.4 Dotenv
	4.3.5 Mongoose
	4.3.6 Multer
	4.3.7 GridFS
	4.3.8 CORS
	4.3.9 Http-status

	5 implementation, Deployment & Testing
	5.1 Implementation
	5.2 Heroku Deployment
	5.2.1 Deploy Backend Application
	5.2.2 Front-End Application

	5.3 Testing
	5.3.1 Sign Up
	5.3.2 Log in Test
	5.3.3 Expense with No Amount
	5.3.4 Category without an icon/name
	5.3.5 Some Other Noticeable Features of the Application

	6 ConclusionS
	references

