

Bachelor’s thesis

Information and Communications Technology

2023

Tommi Leiritie

Automated Hardening of Linux

Infrastructure

Bachelor’s Thesis | Abstract

Turku University of Applied Sciences

Information and Communications Technology

2023 | 33 pages

Tommi Leiritie

Automated Hardening of Linux Infrastructure

Automated hardening of virtualized and bare-metal computer systems is essential in

large high security environments. Unlike Group Policies in a Microsoft Windows

Domain, a built-in mechanism to automate the configuration of multiple hosts in a Linux

environment does not exist, so an alternative solution is needed. Configuration

management solutions provide the required consistency and determinism to ensure the

technical security of Linux operating systems.

In this thesis, different hardening guidelines were studied, and the hardening of Linux

operating system is presented according to the guidelines developed by the Center for

Internet Security community. Also, HashiCorp Vagrant and Red Hat Ansible

configuration management solutions are introduced.

The objective of the thesis was to develop an Ansible playbook which can be used to

harden multiple Linux hosts and distributions simultaneously according to the Center

for Internet Security Benchmarks and generate a report of the hardening actions.

The Ansible playbook was developed using HashiCorp Vagrant which was used to

create and dispose of multiple Linux virtual machines. The final testing of the Ansible

playbook was executed in a reference environment which consisted of virtualized and

bare-metal Linux hosts.

According to the test results, the Ansible playbook meets the objectives and is a

maintainable product. The produced Ansible playbook substantially reduces the need

for manual hardening.

Keywords:

Hardening, Configuration management, Linux, Ansible, CIS

Opinnäytetyö (AMK) | Tiivistelmä

Turun ammattikorkeakoulu

Tieto- ja Viestintätekniikka

2023 | 33 sivua

Tommi Leiritie

Automatisoitu Linux-infrastruktuurin koventaminen

Automatisoitu työasemien, palvelimien ja sovellusten koventaminen on välttämätöntä

suurissa korkean turvallisuustason ympäristöissä. Microsoft Windows -toimialueessa

automaatio voidaan toteuttaa ryhmäkäytänteillä. Linux-ympäristöissä vastaavaa

sisäänrakennetua mekanismia ei ole, joten vaihtoehtoinen ratkaisu on tarpeen.

Konfiguraationhallintaratkaisut tuottavat vaadittavan johdonmukaisuuden ja

determinismin Linux-käyttöjärjestelmien teknisen turvallisuuden takaamiseksi.

Työssä analysoidaan erilaisia kovennusoppaita ja esitellään Center for Internet

Security -yhteisön kovennusoppaan mukaiset Linux-käyttöjärjestelmäkovennukset,

sekä HashiCorp Vagrant ja Red Hat Ansible -konfiguraationhallintaratkaisut.

Työn tavoitteena oli tuottaa Ansible-pelikirja, jolla voidaan suorittaa Center for Internet

Security -yhteisön tuottamia kovennuskomentosarjoja samanaikaisesti usealle Linux-

jakelulle ja isäntäkonelle, sekä tuottaa raportti kovennustoimenpiteistä.

Ansible-pelikirja kehitettiin käyttämällä HashiCorpin Vagrant -työkalua, jolla luotiin ja

hävitettiin useita Linux virtuaalikoneita. Ansible-pelikirjan lopputestaus toteutettiin

referenssiympäristössä, joka koostui virtualisoiduista ja fyysisistä Linux-isäntäkoneista.

Testauksen perusteella Ansible-pelikirja täyttää asetetut tavoitteet ja on ylläpidettävä

kokonaisuus. Ansible-pelikirja vähentää merkittävästi manuaalisen koventamisen

tarvetta.

Asiasanat:

Koventaminen, Konfiguraationhallinta, Linux, Ansible, CIS

Contents

List of abbreviations 6

1 Introduction 8

2 System Hardening 11

2.1 Microsoft Windows Hardening 11

2.2 Hardening Guidelines 12

2.3 CIS Benchmarks 13

2.4 CIS Distribution Independent Linux Benchmark 14

3 Configuration Management 16

3.1 Vagrant 17

3.2 Ansible 18

4 Developing the automation 21

4.1 Development environment 22

4.2 Structure of the playbook 24

5 Testing the automation 26

5.1 Testing environment 26

5.2 Post-hardening usability 27

5.3 Compliance according to logs 28

5.4 CIS Compliance Assessment Tool 29

6 Conclusions and recommendations 30

References 32

Figures

Figure 1. Diagram of the development environment. 23

Figure 2. Testing environment principle 27

Code

Code 1. Simple Vagrantfile. 17

Code 2. Development Vagrantfile. 24

List of abbreviations

AAA Authentication, Authorization, and Accounting

API Application Programming Interface

AWS Amazon Web Services

BIOS Basic Input Output System

CAT Compliance Assessment Tool

CIS Center of Internet Security

CPU Central Processing Unit

DHCP Dynamic Host Configuration Protocol

DISA Digital Information Security Agency

DNS Domain Name System

DSC Desired State Configuration

GCP Google Cloud Platform

GPO Group Policy Object

MAC Mandatory Access Control

MAC Media Access Control

NAT Network Address Translation

NIST National Institute of Standards and Technology

NTP Network Time Protocol

HIPAA Health Insurance Portability and Accountability Act

IaC Infrastructure as Code

IP Internet Protocol

IPS Intrusion Prevention System

JSON JavaScript Object Notation

LDAP Lightweight Directory Access Protocol

OVAL Open Vulnerability and Assessment Language

PCI DSS Payment Card Industry Data Security Standard

QEMU Quick Emulator

RADIUS Remote Authentication Dial-In User Service

RHEL Red Hat Enterprise Linux

RPC Remote Procedure Call

SCAP Security Content Automation Protocol

SSH Secure Shell

STIG Security Technical Implementation Guide

UEFI Unified Extensible Firmware Interface

USGCB United States Government Configuration Baseline

WMI Windows Management Instrumentation

WSL Windows Subsystem for Linux

XCCDF The Extensible Configuration Checklist Description Format

YAML Yet Another Markup Language

8

Turku University of Applied Sciences Thesis | Tommi Leiritie

1 Introduction

As technical vulnerabilities are discovered on a day-to-day basis, operating

systems and applications need to be protected against exploitation of both

disclosed and undisclosed vulnerabilities. In 2021 the most common infection

vector was exploitation of vulnerabilities which covered 37% of identified

incidents (Mandiant 2022). A Security Information and Event Management

(SIEM) solution can be tuned with high quality detection rules and threat

intelligence feeds to detect known security threats. The SIEM can then be

configured to command an Intrusion Prevention System (IPS) to prevent

exploitation, but the challenge lies in defending against the unknown. Thorough

hardening of operating systems and applications supplementing and enforcing a

well-defined security policy is an effective strategy defending against

undisclosed vulnerabilities or 0-day vulnerabilities. This is achieved by reducing

both the technical and operational attack surface.

Large IT-environments require automation to reduce the workload of

maintaining the environment. In Microsoft Windows environments where Active

Directory Domain Services are present, Group Policy management enables

centralized, automated, and a hierarchical way to manage the configuration of

the operating system, application settings and user rights (Microsoft 2022a).

Typically, Active Directory Domain Services are set up in an enterprise setting

enabling centralized user account management for the administrators. Often

PowerShell scripting is also used to supplement the Group Policy Objects

(GPO) and further automate tasks. PowerShell scripts using the PowerShell

remote management capabilities such as Windows Management

Instrumentation (WMI) or Remote Procedure Call (RPC) can be run on the

Domain Controller or the domain administrator’s workstation and the results of

the remote management actions can be reported back to the manager machine

(Microsoft 2022b).

In Linux environments Remote Authentication Dial-In User Service (RADIUS)

can be used to provide Authentication, Authorization, and Accounting (AAA)

9

Turku University of Applied Sciences Thesis | Tommi Leiritie

services. Active Directory services can be utilized for authentication and

authorization using Lightweight Directory Access Protocol (LDAP) or Kerberos

authentication (Red Hat 2022). None of these solutions provide a capable

method of managing the configuration of Linux operating systems or application

settings. As Linux environments lack a built-in solution to manage configuration,

user accounts and user rights in large environments, 3rd party tools are

required.

Configuration management solutions such as Ansible by Red Hat and Vagrant

and Terraform by HashiCorp provide centralized, consistent, and deterministic

tools for administrators to provision and maintain large Linux environments. In

the context of provisioning and managing IT infrastructure through a

configuration management solution, the term commonly used to describe this

process is Infrastructure as Code (IaC). This means describing the desired state

of the infrastructure in structured text files. When used in conjunction with

version control software such as Git, modifications to the configuration can be

tracked and managed.

The objectives of this thesis are to research different hardening guidelines and

develop an automated solution to harden large high security Linux

environments. The requirements for the automation are to enable granular

control over hardening, compile a report of the implemented hardening and to

be simple and maintainable. The requirements for the hardening are to be

sufficiently comprehensive to meet certain security standards.

During the thesis work, HashiCorp Vagrant was used to repeatedly provision

and dispose of a small Linux environment that was used to develop an Ansible

playbook. The developed playbook enables a user to harden multiple virtualized

and bare-metal Linux hosts simultaneously according to hardening Benchmarks

developed by the Center of Internet Security (CIS) community. To use the

playbooks the user is required to have access to the CIS Build Kits as the

playbook itself does not contain any hardening actions to respect the end user

agreement of the CIS Build Kits. The CIS Build Kits generate comprehensive

logs that document the specific actions taken for configuration

10

Turku University of Applied Sciences Thesis | Tommi Leiritie

recommendations. These logs include details on remediated recommendations,

skipped recommendations deemed not applicable, failed recommendations due

to errors, and recommendations that were already configured according to the

Benchmark. Additionally, the logs identify configuration recommendations that

need manual remediation. The developed playbook collects the logs to the

Ansible controller for detailed reviewing of the hardening actions on each

individual host and a Python script can be used to compile a summary report.

To ensure that the Ansible playbook achieves the objectives and meets the

given requirements, the playbook was tested in a reference environment

consisting of virtualized and bare-metal Linux hosts. The testing started by

ensuring the configuration changes made by the hardening script do not prevent

the usage of the Linux hosts as intended. Then the improvement of CIS

Benchmark compliance was analyzed using the collected logs and finally, the

compliance was verified and reported using the CIS Compliance Assessment

Tool. After thorough testing, the developed hardening automation was

introduced into production environments.

The thesis is structured as follows. Chapter 1 introduces the researched

subjects of the thesis and the methodology used in the development and testing

of the automation. Chapter 2 discusses the theory of hardening and introduces

different hardening methods and guidelines. Chapter 3 reviews the process of

configuration management and introduces the configuration management

solutions used during this thesis work. Chapter 4 presents the development

environment and tools used in the thesis work and discusses the structure of

the developed Ansible playbook. Chapter 5 presents the testing environment

and methodology and discusses the test results. Chapter 6 assesses the

fulfillment of the objectives and presents recommendations for future

improvements.

11

Turku University of Applied Sciences Thesis | Tommi Leiritie

2 System Hardening

The process of hardening computer systems is a component of a

comprehensive information security strategy. Hardening reduces the potential

attack surface by ensuring the computer systems are up to date, nonessential

services are turned off and in general, the systems are configured correctly and

according to the best security practices such as least privilege access principle

etc. In a comprehensive information security strategy procedures and policies

are in place and the technical hardening measures supplement or enforce the

procedures and policies.

Hardening a computer system thoroughly involves several steps to form layers

of protection (NIST SP 800-152 2015). This involves selecting hardware from a

trusted manufacturer that supports the required security features and hardening

the UEFI/BIOS-settings. If the supply chain or firmware settings are not

considered, the effectiveness of operating system and application hardening are

diminished.

Many hardening guidelines, checklists and benchmarks have been developed

by various communities, agencies, and enterprises. Also, standardized

protocols, file formats and specification languages have been developed

including the Security Content Automation Protocol (SCAP), Open Vulnerability

and Assessment Language (OVAL) definitions and the Extensible Configuration

Checklist Description Format (XCCDF) benchmarks. (Henttunen 2018)

2.1 Microsoft Windows Hardening

In a Microsoft Windows environment, the operating system and application

hardening can be achieved using Group Policies. In an enterprise setting,

where Active Directory Domain Services are present, Group Policies enable

centralized, automated, and a hierarchical way to manage the configuration of

the operating system, application settings and user rights (Microsoft 2022a).

Different hardening guidelines, checklists and benchmarks have been

12

Turku University of Applied Sciences Thesis | Tommi Leiritie

developed for Microsoft Windows; they are usually released as GPOs which

can be deployed in a Windows Domain via the Domain Controller. Well

established hardening guidelines available as GPOs include the Microsoft

Security Compliance Toolkit Security Baselines (Microsoft 2023), the Digital

Information Security Agency (DISA) Security Technical Implementation Guides

(STIG) (DISA 2023), The National Institute of Standards and Technology (NIST)

United States Government Configuration Baseline (USGCB) (NIST 2020) and

the CIS Benchmark Build Kits.

On some Linux distributions such as Red Hat Enterprise Linux (RHEL)

operating system hardening can be performed during installation. For common

Linux distributions that do not provide such functionality, hardening methods

have been developed by various organizations.

2.2 Hardening Guidelines

The CIS Benchmarks are developed for a wide range of organizations. In

contrast, the NIST USGCB and DISA STIGs are designed specifically for the

US Department of Defense and government agencies. CIS Benchmarks use

roles and levels to distinguish between different hardening scenarios while

USGCB and DISA STIG use control IDs to identify specific security

configurations. The USGCB and DISA STIG are mapped to NIST frameworks

such as NIST Cybersecurity Framework and NIST Special Publication 800-53

Security and Privacy Controls for Information Systems and Organizations (NIST

SP 800-70r4 2018). The CIS Benchmarks are mapped to various industry

standards such as NIST Cybersecurity Framework, Payment Card Industry

Data Security Standard (PCI DSS) and Health Insurance Portability and

Accountability Act (HIPAA) (Center of Internet Security n.d.)

CIS releases the Linux Benchmark Build Kits as shell scripts to the CIS

community members while the DISA STIG and NIST USGCB are released in

the XCCDF format. A hardening script can be generated from a XCCDF format

hardening guideline using the OpenSCAP Workbench application, but these

13

Turku University of Applied Sciences Thesis | Tommi Leiritie

scripts lack the granularity of the CIS community developed scripts which

implement four levels of hardening and provide a mechanism for excluding even

single hardening actions. The OpenSCAP tools provide a way to automate the

hardening of Linux hosts according to the security guidelines but lack a

reasonable way to manage the general settings of the hosts. This was one of

the reasons in this thesis work to choose the combination of a configuration

management platform and the CIS Build Kits to implement the hardening

automation.

2.3 CIS Benchmarks

The CIS Benchmarks are recommendations of configuration to achieve

technical hardening against cyber-attacks. The CIS Benchmarks are developed

by the CIS community which consists of more than 12,000 IT security

professionals and volunteers. The strength of the CIS Benchmarks is the

development process and the community which consists of subject matter

experts, technology vendors, public and private community members and

academics across from different industries to debate and agree on the

recommended configurations. Also, the Benchmarks can be a good source to

learn as the recommendations are broken into description which summarizes

the recommendation, rationale which explain why this recommendation is

important, impact which describes the benefits of implementing the

recommendation, audit which describes how to check compliance to the

recommendation and remediation which provides the technical steps how to

implement the recommendation. The Benchmarks are available for more than

25 vendor product families such as different cloud providers, mobile and

network devices, operating systems, and desktop and server software. For

Linux operating systems there are distribution specific Benchmarks for widely

used Linux distributions such as CentOS, Debian, Fedora, Oracle Linux, RHEL,

SUSE and Ubuntu. (CIS 2023a)

CIS also offers hardened virtual machine images on Amazon Web Services

(AWS), Google Cloud Platform (GCP), Microsoft Azure and Oracle Cloud

14

Turku University of Applied Sciences Thesis | Tommi Leiritie

marketplaces. The CIS Hardened Images are virtual machine images that have

been pre-configured according to the CIS Benchmarks. (CIS 2023b)

2.4 CIS Distribution Independent Linux Benchmark

The CIS Distribution Independent Linux Benchmark is a distribution agnostic

hardening guideline which can be applied to many different Linux distributions

(CIS 2019). As the goal of this thesis is to produce automation to harden

different Linux distributions using a single playbook, the Distribution

Independent Benchmark is reviewed in this section to give an overview of steps

taken in the process of hardening a generic Linux host.

The CIS Distribution Independent Linux Benchmark divides the process of

hardening a Linux host into the following sections:

• Initial setup

• Service configuration

• Network configuration

• Logging and auditing

• Access, authentication, and authorization

• System maintenance

The initial setup consists of hardening steps that may be difficult to perform on a

host that has been already installed. The steps are filesystem configuration,

software update configuration, filesystem integrity checking, secure boot

settings, additional process hardening, mandatory access control (MAC) and

configuring warning banners.

The service configuration section ensures that unneeded services and service

clients are not present in the system. The required services and clients that are

present on the system according to the host’s role are configured according to

the best practices and the integrity of their configuration is protected.

15

Turku University of Applied Sciences Thesis | Tommi Leiritie

The network configuration section checks that the network parameters are

configured in a way that unexpected network behavior is prevented such as a

workstation routing network traffic. Also, uncommon, and unneeded network

protocols and functionalities are disabled, and the host firewall is configured.

The logging and auditing section configures the system to log and audit the

system events according to the best practices and to prevent tampering of the

logs. Integrity, correctly configured retention, and logging of meaningful events

is vital for efficient system monitoring both in performance and security

perspective.

The access, authentication and authorization section ensure that both local and

remote access is secured with strong cryptographic algorithms and

authentication policies. Also measures to prevent the escalation of privileges by

a non-privileged user are taken.

The system maintenance section checks that system file permissions and user,

and group settings are configured correctly. This includes checking ownership

and read, write and execution permissions of various directories and files both

in system files but also user home directories.

16

Turku University of Applied Sciences Thesis | Tommi Leiritie

3 Configuration Management

Configuration management is a process for maintaining computer systems,

servers, and software in a desired, consistent, and reproducible state. It is a

way to make sure that a system performs as it is expected even when

configuration changes are made over time. (Red Hat 2019). The use of a

configuration management solution eliminates manual configuration of single

hosts. The desired state of the infrastructure is usually described in structured

text documents. In contrast to traditional scripting where tasks are described in

scripting languages such as Bash or PowerShell the configuration management

software is responsible for performing the tasks according to the description.

This method of describing the infrastructure as code also provides the ability to

keep track of the current and past configuration when used in conjunction with

version control software such as Git. It could be argued that the actual

configuration files of the hosts could be kept under version control, but this

would require keeping track of many more files than when using configuration

management software.

As virtualization, containerization and cloud computing have become the

leading solution in managing infrastructure, tools specialized in provisioning

such resources have been developed. Such tools include HashiCorp Vagrant

and Terraform, both focused on provisioning virtual machines and cloud

computing resources. Vagrant is typically used in conjunction with Type-2

hypervisor such as Oracle VirtualBox to consistently provision virtual machines

for testing and development purposes. In contrast, Terraform is typically used to

provision virtual machine and container infrastructure on a Type-1 hypervisor

such as VMWare ESXi or on a cloud computing platform such as Microsoft

Azure or AWS. The main differences between HashiCorp Vagrant and

Terraform is that Vagrant pulls the virtual machine image or a “Vagrant Box”

from Vagrant Cloud and is focused on managing development environments

while Terraform uses virtual machine templates on the virtualization platform

and is a tool for building production infrastructure.

17

Turku University of Applied Sciences Thesis | Tommi Leiritie

3.1 Vagrant

Vagrant is a command line utility for managing the lifecycle of virtual machines.

Vagrant uses a structured text file called Vagrantfile to describe the virtual

machines the user wishes to set up. Vagrantfiles use Ruby syntax, but prior

Ruby knowledge is not needed to successfully create and modify Vagrantfiles.

(HashiCorp 2022). Vagrant improves productivity as setting up a development

environment can be as simple as acquiring a Vagrantfile and invoking a single

command “vagrant up”. For development teams this enables consistency

across the developer’s environments when the development environments are

created with the same Vagrantfile. Also disposing of the environment created

with Vagrant is as simple as invoking a single command “vagrant destroy”.

Usually even for the simplest local tests utilizing a single generic virtual machine

on a laptop, it is faster to create and dispose of using Vagrant than installing it

by hand using an installation medium.

Code snippet 1 Simple Vagrantfile shows the simplest Vagrantfile possible. In

the example, configuration version is defined as version 2 and Vagrant is

directed to provision a single virtual machine with Debian 10 operating system,

default central processing unit (CPU), memory and hard disk resources and

connected to the VirtualBox default network. Vagrant uses Oracle VirtualBox as

the default virtualization provider.

Vagrant.configure("2") do |config|

 config.vm.box = "debian/buster64"

end

Code 1. Simple Vagrantfile.

In addition to the default virtualization provider Vagrant officially supports

multiple different providers, VMWare Fusion and Workstation, Docker, and

Microsoft Hyper-V. The Vagrant community also maintain various custom

providers such as QEMU (HashiCorp 2022)

To create a virtual machine, Vagrant pulls a “Vagrant Box” from the Vagrant

Cloud. Vagrant Cloud is a service provided by HashiCorp which hosts the

18

Turku University of Applied Sciences Thesis | Tommi Leiritie

Vagrant boxes created by HashiCorp and community contributors. The public

Vagrant box catalogue contains packages of most major operating systems and

many specialized boxes with commonly used configurations such as popular

web application stacks. Vagrant Cloud also has paid subscription plans which

enable the user to create and host private Vagrant Boxes on the platform.

(HashiCorp 2020)

Vagrant enables the user to provision the virtual machines during the setup

process. The user has access to multiple provisioning options from using shell

scripts to using a configuration management solution such as Ansible. However,

in this thesis the goal was to develop automation to harden infrastructure which

does not use Vagrant so in the development environment minimal provisioning

was used. Vagrant also enables the user to specify the virtual hardware of the

virtual machines. This includes specifying the virtual network adapter types and

virtual network connections, specifying the amount of CPU cores and maximum

usage of the given cores and the size of the virtual machine’s virtual memory

and hard disks. (HashiCorp 2022)

3.2 Ansible

Ansible is an agentless configuration management platform developed by Red

Hat. Ansible uses Secure Shell (SSH) connection by default to interact with

Linux hosts and the tasks performed by Ansible are defined in YAML-files called

Playbooks. Ansible expects a certain directory and file structure for the

playbook to work.

The main components of an Ansible Playbook are the top-level playbook file,

sub-playbooks, the inventory file, the roles directory containing directories and

files for the roles and the variable directories. The top-level playbook is used to

import sub-playbooks which enables to run the whole automation against all the

hosts defined in the inventory file. (Red Hat 2021)

The sub-playbooks are structured by host role, i.e., web servers and database

servers. This enables the user to run the automation against a subset of hosts

19

Turku University of Applied Sciences Thesis | Tommi Leiritie

defined in the inventory file providing the first level of granularity. The sub-

playbooks contain definitions of which hosts or host groups from the inventory

file are addressed, and which roles will be applied to the given hosts. It is good

practice to name the sub-playbooks with corresponding names as the host

groups in the inventory file. (Red Hat 2021)

The inventory file contains the information of the hosts in the infrastructure and

how the hosts are being grouped. The inventory file can be written in

initialization (INI) file like format or in YAML-format. In general, the INI-format is

more suitable for smaller environments as the syntax is simpler than the YAML-

format. In the other hand the YAML-format is suited for more complex use-

cases as the YAML-format inventory files can be generated dynamically and

has more features altogether. (Red Hat 2023b)

The roles directory contains a directory for each role and their files and sub-

directories. A role directory must contain at least one of the following sub-

directories: tasks, handlers, defaults, vars, files, templates or meta. The tasks

folder contains the main list of the tasks for the role, and it is common practice

to have the individual tasks in task specific YAML-files. Handlers are special

kinds of tasks which are run only when a change is made on a host. For

example, restarting a service only when the configuration has been changed by

Ansible. Defaults and vars directories both contain files defining role specific

variables. Defining variables in the roles enables creating modular roles i.e., by

defining Linux distribution specific variables for a role. Files and templates

directories contain files that are deployed to the host. The difference between

files and templates is that files are deployed unchanged, and templates contain

variables that are filled in during the deployment. The meta directory contains

metadata about the role such as dependencies to other roles, author, version,

and license information. (Red Hat 2021)

The variable directories within the top-level of a playbook are group_vars and

host_vars directories which contain host and group specific variables. These

exist to help the playbook developer to organize the variables instead of writing

the host and group variables into the inventory files. Defining variables in the

20

Turku University of Applied Sciences Thesis | Tommi Leiritie

inventory file or the variable directories separates the variables from the

playbook’s functionality which enables the sharing of the playbook functionality

without sharing details of the inventory. Ansible Vault is a tool to further protect

the confidentiality of sensitive data such as credentials in the inventory or

variables. Ansible Vault enables the user to encrypt variables and files using a

password. (Red Hat 2023a)

21

Turku University of Applied Sciences Thesis | Tommi Leiritie

4 Developing the automation

The development of the playbook was executed on a Windows 10 Enterprise

workstation. To develop the playbook, Windows Subsystem for Linux (WSL),

Microsoft Visual Studio Code, HashiCorp Vagrant, and Microsoft Hyper-V were

used. The development environment was designed to require minimal

adjustments and provide a straightforward workflow during the development

process. By using time to plan and adjust the development environment and

tools before the development process, the productivity and cognitive

ergonomics of the actual development work can be improved considerably. By

using linters and static code analysis tools, interruptions to the development

work caused by the need to find semantical and syntactical errors can be

reduced.

As the work’s objectives and technologies to be used were clear, the

development process was straightforward. First, the steps to achieve the

objective were mapped: The Build Kit archive needs to be transferred securely

to the hosts, the archive needs to be extracted, the main script needs to be

executed and the host hardening logs need to be fetched to the Ansible

controller. Then, techniques to implement the steps with Ansible were

researched and Ansible modules to be used were selected. The steps were

then implemented into Ansible tasks using the modules and techniques

researched. After the core functionalities of the playbook were developed,

sections that need to be able to change during playbook execution identified

and converted into variables in the task definitions. These sections were mainly

file paths as the different Build Kits have slightly different file and directory

names. Finally, the structure of the inventory was designed to provide a logical

way to control the variables and implemented.

22

Turku University of Applied Sciences Thesis | Tommi Leiritie

4.1 Development environment

The Debian 11 Bullseye WSL image was used as the Ansible controller node.

Ansible and its dependencies such as various Python 3 libraries were installed

via the Debian package manager. Also, the Visual Studio Code Server was

installed to enable connecting the Visual Studio Code editor to the WSL

container. By default, WSL connects the container to a “Special” WSL Internal

network Hyper-V virtual switch which enables communication to the host’s

network using network address translation (NAT) as illustrated in Figure 1.

Normally Hyper-V Internal network virtual switches only allow communication

between virtual machines and the host but not to the host’s network. The WSL

container was operated using the Visual Studio Code terminal as this provides

convenience by enabling working within a single application.

The Visual Studio Code editor was used to write the Ansible playbook’s various

YAML-files such as the task descriptions, variable files, and the inventory.

Visual Studio Code can be extended to resemble an integrated development

environment (IDE). In this development environment a WSL extension

developed by Microsoft was used to enable connecting the Visual Studio Code

editor to the Visual Studio Code Server running in the WSL container. Also,

Ansible and YAML language support plugins developed by Red Hat were used

to constantly run static code analysis for ensuring syntactical and structural

correctness of the project files.

Hyper-V was used as the virtualization platform to host virtual machines as

targets for the hardening automation. As the project required constant creation

and deletion of virtual machines Hyper-V was selected because it is well

supported by Vagrant and the network setup to connect to the WSL container

was straightforward. A Hyper-V External network virtual switch was created for

the virtual machines to share the physical network interface of the host for direct

access to the host’s network as illustrated in Figure 1. This type of virtual

network setup is often called a network bridge. The network bridge setup

23

Turku University of Applied Sciences Thesis | Tommi Leiritie

allowed the WSL container to access the virtual machines through the NAT and

for the virtual machines to access different package repositories on the internet.

Figure 1. Diagram of the development environment.

Vagrant was an essential tool to create and dispose of the multi-machine virtual

environment consistently and quickly for developing the playbook. The virtual

environment consisted of four virtual machines using Debian 10, Debian 11,

Ubuntu 18.04 LTS and Ubuntu 20.04 Linux operating systems. Vagrant was

configured to allocate 4GB of virtual memory and 2 CPU cores for the virtual

24

Turku University of Applied Sciences Thesis | Tommi Leiritie

machines to ensure enough computing resources are available to the

virtualization host. The Media Access Control (MAC) addresses of virtual

machines were configured within the Vagrantfile to ensure the virtual machines

would always be assigned the same Internet Protocol (IP) addresses by the

Dynamic Host Configuration Protocol (DHCP) server within the development

network. Vagrant was also configured to not insert its own SSH public key to the

virtual machines. Instead, a script was used to insert the public part of a pre-

generated keypair to ensure access to the virtual machines via SSH for Ansible

on the WSL Ansible controller.

Code snippet 2 Development Vagrantfile shows an example of the configuration

for a single machine used in the development environment. For the three other

machines the configuration was identical from the ‘config.vm.define “debian10”

do |v|’ to that block’s closing ‘end’ statement. The operating system versions,

machine names and the MAC-address were unique for each virtual machine

configuration.

Vagrant.configure("2") do |config|

 config.ssh.insert_key = false

 config.vm.define "debian10" do |v|

 v.vm.box = "generic/debian10"

 v.vm.network "public_network", bridge: "Bridge"

 v.vm.provider "hyperv" do |h|

 h.mac = "00:11:22:33:44:55"

 h.vmname = "debian10"

 h.maxmemory = 4096

 h.cpus = 2

 end

 end

 # retracted for redundancy

end

Code 2. Development Vagrantfile.

4.2 Structure of the playbook

The hardening functionality was achieved by developing a common role that

has tasks to check if the target hosts already contain the CIS Build Kit archive

file and if not, transfer the archive to the hosts. Then a task to check if the

25

Turku University of Applied Sciences Thesis | Tommi Leiritie

archive has already been extracted into a directory and again, if not then

extracts the archive. After the role has ensured that the Build Kit is available on

the target hosts, a task populates the exclusion list in the Build Kit directory from

variables set in the inventory. Before execution of the main script a task

changes the permissions of the main script file of the Build Kit, so the script is

executable, and another task executes the script. The main script executes the

hardening actions and generates logs of the results in the Build Kit directory.

Lastly a task searches for the most recent log files and passes this information

to a task that fetches the most recent log file to the Ansible controller node. On

the Ansible controller node a local Python script is executed which assembles

the individual host results into a summary report. Tags were assigned to the

tasks to enable the user to only do the checks, extraction, transfer, execution, or

log fetching and summarizing for finer granularity of the playbook.

The inventory file’s structure was designed to control which level of hardening

and which Build Kit will be applied to which hosts. Top-level groups Level 1

Server, Level 2 Server, Level 1 Workstation, and Level 2 Workstation were

defined. Distribution specific groups were defined as children to the top-level

groups. The individual host information such as hostnames and IP addresses

were defined in the distribution specific groups. The host’s assignment into a

group controls the group variables assigned to the host during playbook

execution. The top-level group assigns a hardening profile variable to the host

which is used during the playbook execution to answer to the Build Kit main

script’s prompt which asks for consent and level of hardening to be applied. The

distribution specific groups assign variables for the name of the Build Kit

archive, the Build Kit directory path, the name of the Build Kit main script and

the path to the Build Kit log files. The variables for excluding hardening actions

can be defined to either the distribution specific groups variables or individual

host variables. This functionality improves the usability of the playbook both in

homo- and heterogenous environments. For Linux distributions that do not have

a distribution specific Build Kit developed by the CIS community, a generic

Linux group was defined. Assigning a host to this group assigns the CIS

Distribution Independent Benchmark’s Build Kit to be run on the host.

26

Turku University of Applied Sciences Thesis | Tommi Leiritie

5 Testing the automation

The developed automation was tested thoroughly as hardening has a potential

to impair or even prevent legitimate usage of hosts and services. The testing

consisted of deploying the automation in a reference environment, assessing

the usability of the environment after the hardening, and finally assessing and

verifying the compliance according to the CIS Benchmarks.

Even though the direct numerical improvement of compliance was substantial, it

is important to identify that quantity does not compensate for quality. Different

hardening actions have a different impact on the actual effectiveness of the

hardening. Also, in a comprehensive security strategy, many different security

controls are in place along hardening including both technical and operational

security controls.

5.1 Testing environment

The test environment was a reference environment of a production environment

consisting of several Linux servers and workstations and networking equipment

such as switches and firewalls as shown in Figure 2. The Linux hosts were both

bare-metal and virtualized. The networking equipment was used to provide the

networking infrastructure for the communications between the Linux-hosts and

the Ansible-controller. The Linux servers were providing numerous services

such as off-line Linux repository mirrors, Domain Name System (DNS) and

Network Time Protocol (NTP) services along with the customer’s proprietary

services. The Linux workstations were generic workstations, and SSH-service

was enabled on them so that the Ansible controller could connect to the

workstations.

27

Turku University of Applied Sciences Thesis | Tommi Leiritie

Figure 2. Testing environment principle

5.2 Post-hardening usability

The effects of the hardening recommendations were evaluated before running

the Ansible playbook on the test environment. Hardening recommendations that

would uninstall, disable, or impair a service provided by a server or an

application used on a workstation were excluded. The planning and evaluation

of applicable hardening actions is an essential step in reducing the possibility of

disrupting the functionality of a host.

After running the Playbook in the test environment, the desired functionality of

the services and applications were tested by hand, checking monitoring

systems, and interviewing users. The most essential core services and

functionalities were tested by hand immediately after the playbook was run to

notice any catastrophic failures caused by the hardening. Only a few problems

28

Turku University of Applied Sciences Thesis | Tommi Leiritie

with a host firewall occurred but these were located and fixed quickly. The

monitoring systems were inspected for an extended period to notice any new

errors and warnings, and none were present. After the technical functionality

was ensured and the users had had time to use and test the hardened systems,

the users were interviewed. In general, the systems functioned as intended. The

most common complaint was regarding the inability to use USB storage on

Level 2 workstations as recommendation number 1.1.10 disables USB storage.

This complaint is more of a policy matter than a fault in the automation or the

CIS Build Kits.

5.3 Compliance according to logs

The logs were analyzed after the hardening to evaluate the improvement of

compliance to the CIS Benchmarks. The percentage of improvement was

calculated by dividing the number of successfully remediated recommendations

by the number of applicable recommendations. This gives an estimate of how

much the potential attack surface has been reduced.

Across all the hosts hardened, the compliance to the CIS Benchmarks was

improved by 35 percentage points. On serves where Level 1 hardening was

applicable, the compliance was improved on average by 49 percentage points

and on servers requiring Level 2 hardening by 36 percentage points. On Level 1

workstations the compliance was improved by 25 percentage points and on

Level 2 by 30 percentage points. Some recommendations were not remediated

by the CIS Build Kit scripts as the automatic remediation was not possible or the

recommendation was not applicable because of the host’s hardware or software

configuration. The recommendations requiring manual remediation were mainly

from the CIS Benchmark’s Initial Setup section but also included

recommendations that have potential lock legitimate users out of the host during

hardening. The reason for this is that for example, recommendations regarding

partitions and partition options cannot be remediated automatically as if the

host’s hard drive is not partitioned in a particular way and the automation should

not set or change passwords without the user’s consent.

29

Turku University of Applied Sciences Thesis | Tommi Leiritie

5.4 CIS Compliance Assessment Tool

The CIS community develops and maintains a Compliance Assessment Tool

(CAT) to assess and report compliance of hosts according to the CIS

Benchmarks. CIS CAT functions in a similar way to a vulnerability scanner such

as Nessus. The user specifies information of the hosts for CIS CAT to connect

to and selects which Benchmarks are used in the assessment. After the

configuration is done, the assessment is run and a report in a format requested

by the user is generated.

A CIS CAT report consists of a summary, profiles used, assessment results and

assessment details. The summary is a scored list of hardening sections and

their subsections showing the number of passed and failed recommendations.

The profiles section shows which Benchmark profiles were used on which host

in the assessment as several Benchmarks can be applied to a single host, for

example operating system and application hardening. The assessment results

show a more list of individual hardening actions passed or failed. Finally, the

assessment details show the full Benchmark details for each hardening action.

As the report can be configured to show only failed/manual recommendations, it

is a great tool for generating a “to-do” list for achieving ever higher compliance

as the assessment details include instructions to implement the

recommendation.

CIS CAT Pro was used in the reference environment to verify the information

given by the collected host logs and the results between the logs and the CIS

CAT report were identical. The results of the report and usability testing were

assessed, and a decision was made to introduce the developed automation into

production environments according to a separate plan.

30

Turku University of Applied Sciences Thesis | Tommi Leiritie

6 Conclusions and recommendations

In this work, a functioning automation to harden multiple Linux hosts was

developed. The resulting Ansible playbook fulfilled the objectives set by the

client which were enabling granular control over hardening, compiling a report

of the implemented hardening and being simple and maintainable. The

granularity was achieved by implementing tags in the Ansible playbook for

controlling the automation and utilizing the granular control the CIS Build Kits

provided. The reporting functionality was implemented successfully, and the

quality of the reports was verified with the CIS Compliance Assessment Tool.

The simplicity and maintainability of the Ansible playbook were achieved by

decoupling the hardening from the automation. By implementing the hardening

automation this way, when the CIS Build Kits are updated, the automation does

not need modifications. Also, by strictly following Red Hat’s documentation and

guidelines in the Playbook structure, the maintainability and modularity of the

Playbook were ensured.

The importance of a reference environment for testing hardening before

deploying into production was emphasized, as high levels of hardening have the

potential to prevent the intended usage of a host or a service. Even though

comprehensive hardening is essential when reducing technical attack surface,

the hardening actions cannot impair the usability of a host or a service. By

comprehensively testing the intended hardening actions in a sufficiently realistic

reference environment, the number of problems when deploying to production is

substantially reduced.

As there are hardening recommendations that cannot be executed

automatically, a conscious decision needs to be made on how the remaining

hardening recommendations are considered. The environment’s security

requirements need to be taken into consideration to evaluate whether the

remaining hardening recommendations need to be implemented manually,

mitigated by other security controls or the risk can be accepted as residual risk.

The compliance achieved by automation can be improved by preparing the

31

Turku University of Applied Sciences Thesis | Tommi Leiritie

environment to support the more demanding hardening recommendations such

as the recommendations in the CIS initial setup section. This would

consequently require more work and, therefore, is both a risk management and

a business decision.

To improve the effectiveness and usability of the developed Playbook, several

ideas were noted. By implementing tasks to configure firewall rules according to

variables set in the inventory, the amount of manual configuration would be

reduced. Also, a well-configured firewall reduces the network attack surface and

provides visibility into network events. As CIS Build Kits for services and

applications are developed, it would be relatively straightforward to implement

variable and task structures to also utilize these Build Kits. This would further

improve the overall hardening coverage. To automatically remediate the manual

recommendations that require setting secrets such as various system

passwords, Ansible Vault could be utilized. This would require developing tasks

for the individual recommendations and would increase the complexity of the

Playbook. To improve the user experience of the automation, a mechanism for

displaying the progress during the hardening could be developed. When

hardening hosts to CIS Level 2, the execution of the hardening script takes

several minutes. This could lead to a misconception that the automation has

stopped working.

32

Turku University of Applied Sciences Thesis | Tommi Leiritie

References

CIS Distribution Independent Linux 2019. Distribution Independent Linux

Benchmark. Referenced on 7. April 2023. https://www.cisecurity.org/cis-

benchmarks

Center for Internet Security. 2023a. CIS Benchmarks. Referenced on 20. April

2023 https://www.cisecurity.org/cis-benchmarks-overview_new

Center for Internet Security. 2023b. CIS Hardened Images FAQ. Referenced on

9. May 2023. https://www.cisecurity.org/cis-hardened-images/cis-hardened-

images-faq

Center of Internet Security. (No date available). Mapping and Compliance.

Referenced on 16. April 2023. https://www.cisecurity.org/cybersecurity-

tools/mapping-compliance

Defense Information Systems Agency. 2023. Group Policy Objects. Referenced

on 20. April 2023. https://public.cyber.mil/stigs/gpo/

Henttunen, K. 2018. Automated hardening and testing CentOS Linux 7: security

profiling with the USGCB baseline. Bachelor’s Thesis. Information and

Communications Technology. Turku University of Applied Sciences.

Referenced on 7. April 2023. https://urn.fi/URN:NBN:fi:amk-2018060512649

HashiCorp. 2020. Vagrant boxes. Referenced on 23. April 2023.

https://developer.hashicorp.com/vagrant/docs/boxes

HashiCorp. 2022. Vagrant Documentation. Referenced on 10. April 2023.

https://developer.hashicorp.com/vagrant/docs

Mandiant. 2022. M-Trends 2022 Report. Referenced on 9. May 2023.

https://mandiant.widen.net/s/bjhnhps2mt/m-trends-2022-report

Microsoft Corporation. 2022a. Active Directory Domain Services Overview.

Referenced on 12. April 2023. https://learn.microsoft.com/en-us/windows-

server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-

overview#understanding-active-directory

Microsoft Corporation. 2022b. Running Remote Commands. Referenced on 5.

May 2023. https://learn.microsoft.com/en-

33

Turku University of Applied Sciences Thesis | Tommi Leiritie

us/powershell/scripting/learn/remoting/running-remote-

commands?view=powershell-7.3

Microsoft Corporation. 2023. What is the Security Compliance Toolkit (SCT)?

Referenced on 20. April 2023. https://learn.microsoft.com/en-

us/windows/security/threat-protection/windows-security-configuration-

framework/security-compliance-toolkit-10

National Institute of Standards and Technology, Information Technology

Laboratory. 2020. United States Government Configuration Baseline.

Referenced on 20. April 2023. https://csrc.nist.gov/Projects/United-States-

Government-Configuration-Baseline/USGCB-Content/Microsoft-Content

NIST Special Publication 800-53 Revision 5 National Security and Privacy

Controls for Information Systems and Organizations. National Institute of

Standards and Technology.

NIST Special Publication 800-70 Revision 4 National Checklist Program for IT

Products – Guidelines for Checklist Users and Developers. National Institute of

Standards and Technology.

NIST Special Publication 800-152 A Profile for U. S. Federal Cryptographic Key

Management Systems. National Institute of Standards and Technology.

Red Hat. 2019. What is configuration management? Referenced on 7. April

2023. https://www.redhat.com/en/topics/automation/what-is-configuration-

management

Red Hat. 2021. Best Practices. Referenced on 25. April 2023.

https://docs.ansible.com/ansible/2.8/user_guide/playbooks_best_practices.html

Red Hat. 2022. Integrating RHEL systems directly with Windows Active

Directory. Referenced on 18. April 2023.

https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/8/html/integrating_rhel_systems_directly_with_wind

ows_active_directory/index

Red Hat. 2023a. Ansible vault. Referenced on 25. April 2023.

https://docs.ansible.com/ansible/latest/vault_guide/index.html

Red Hat. 2023b. How to build your inventory. Referenced on 25. April 2023.

https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html

	List of abbreviations
	1 Introduction
	2 System Hardening
	2.1 Microsoft Windows Hardening
	2.2 Hardening Guidelines
	2.3 CIS Benchmarks
	2.4 CIS Distribution Independent Linux Benchmark

	3 Configuration Management
	3.1 Vagrant
	3.2 Ansible

	4 Developing the automation
	4.1 Development environment
	4.2 Structure of the playbook

	5 Testing the automation
	5.1 Testing environment
	5.2 Post-hardening usability
	5.3 Compliance according to logs
	5.4 CIS Compliance Assessment Tool

	6 Conclusions and recommendations
	References

