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As technology continues to advance, people are increasingly interacting with a vari-

ety of systems, ranging from mobile phones and wearables to payment terminals and

vehicles. Although many of these systems still rely on traditional forms of authenti-

cation, such as PINs and passwords, these methods are not without limitations due

to human errors and biases. As a result, there is a growing interest in the use of

Behavioral Biometrics (BB) as a more seamless and passive authentication method.

BB is typically used in combination with multifactor authentication (MFA). In this

thesis, the focus is on gait analysis using accelerometer and gyroscope data as a bio-

metric modality. The study aims to investigate the effectiveness of classical machine

learning techniques in analyzing gait data for authentication purposes, as well as

the potential of gait-based BB to enhance customer authentication through MFA.

The study is divided two parts: a theoretical exploration of BB, and an empirical

analysis of gait data. A combination of qualitative and quantitative research meth-

ods was employed to investigate the effectiveness of various machine learning models

and their applicability in the context of BB.

Keywords: Behavioral Biometrics, Machine Learning, Customer Authentication,

Multifactor Authentication, Gait Analysis, Accelerometer, Gyroscope
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1. INTRODUCTION

Behavioral Biometrics (BB) is the measurement and statistical analysis of people’s

unique physical and behavioral characteristics. The technology is mainly used for

identification and access control. The basic premise of biometric authentication is

that every person can be accurately identified by intrinsic physical or behavioral

traits. The term biometrics is derived from the Greek words bio, meaning ”life”,

and metric, meaning ”to measure” (Gillis, Loshin, and Cobb 2021).

Such unimodal systems have to deal with various challenges such as lack of secrecy,

non-universality of samples, extent of user’s comfort and freedom while dealing with

the system, spoofing attacks on stored data, etc. BB is a vast area of computer

science that is heavily dependent on machine learning and is about to determine

when a significant deviation from patterns or trends established as a standard for

users and entities is occurring. Authentication by biometric verification is becoming

increasingly common in corporate and public security systems, consumer electronics

and point-of-sale applications. In addition to security, the driving force behind

biometric verification has been convenience, as there are no passwords to remember

or security tokens to carry. Some biometric methods, such as measuring a person’s

gait, can operate with no direct contact with the person being authenticated (Gillis,

Loshin, and Cobb 2021).

The uniqueness of the biometric features extracted from these traits, have allowed

unimodal biometric systems to be widely used for identification and verification

applications in a wide variety of scenarios (Soleymani et al. 2021), (Haghighat,

Abdel-Mottaleb, and Alhalabi 2016).
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2. SMARTPHONES

As one can infer from the name, smartphones are smart. Not the device itself, but

because of its connection to a network, the sea of information. You can search for in-

formation using a smartphone and use the information via various applications and

services. Behind its surface is the world of sensors, which is not normally of much

interest. Using sensors, you can accurately and precisely monitor the movement

and location of a three-dimensional device or detect changes in its environment. For

instance, thanks to sensors, game applications can detect when the mobile phone is

tilted or shaken and a weather application records the current environment through

temperature, pressure, and humidity information (What Kinds of Sensors are Em-

bedded in Smartphones? 2022).

DynaTAC 8000x launched in 1983, was the first commercially available smartphone

in the world from Motorola. At that time, no one can even imagine that one day

mobile phones will become as powerful as computers. Whether you want to click

an amazing photo in low lighting conditions or you want to control your home

appliances right from your phone. Today’s smartphones can fulfill one’s needs.

Smartphones can detect light and adjust the screen brightness. Smartphones can

count the user’s steps, send the user a warning when the central processing unit

(CPU) is overheated. The camera of a smartphone knows whether the user holds

the smartphone in landscape or portrait (Tillu 2021).
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2.1 Smartphone Sensors

2.1.1 Definition of Sensor

The sensor is a device that detects and measures the changes in the nearby en-

vironment and sends that data to the operating system or processor. They sense

and collects data for which they are made. Like ambient light, the sensor is made

for detecting light, so it is an expert in detecting the light. There are three main

categories of sensors that smartphone having (Tillu 2021):

1. Motion Sensors

2. Environmental Sensors

3. Position Sensors

2.1.2 Motion Sensors

These sensors measure axis-based motion sensing, like acceleration forces and rota-

tional forces, along with three axes. This category includes an accelerometer, gravity

sensors, and gyroscopes sensors (Tillu 2021).

2.1.3 Environmental Sensors

These sensors measure environmental parameters like humidity, illumination inten-

sity, surrounding pressure, and temperature sensors. Relative humidity, expressed as

a percentage, indicates absolute humidity. Pressure and temperature are expressed

in absolute values, and illumination is measured in lux. A thermometer inside a

smartphone measures the temperature inside the device and prevents overheating.

Some smartphone makers add either an altimeter or other sensors. With environ-

ment sensors, a smartphone can adjust the screen brightness to a comfortable level

for the user, calculate the dew point of the day in a weather application, or gather
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related information and deliver it to the user (What Kinds of Sensors are Embedded

in Smartphones? 2022).

2.1.4 Position Sensor

These sensors are used to check a device’s physical location. A location sensor

uses a geomagnetic sensor and an accelerometer to indicate your relative location

from the North Pole. Thanks to this sensor, you can use a device as a compass

and check the device’s location changes. A proximity sensor measures the distance

between a certain object and the device. For instance, it can be used to measure

how far a user’s head is from a headset. That is how your smartphone’s screen is

off and does not respond to touch during a call. This sensor is usually located near

the front camera, where your ear touches (What Kinds of Sensors are Embedded in

Smartphones? 2022).

2.1.5 Standard Smartphone Sensors

Standard sensors that a modern smartphone is having (Tillu 2021):

• Accelerometer

• Ambient Light Sensor

• Ambient Temperature Sensor

• Air Humidity Sensor

• Barometer Sensor

• Fingerprint Sensor

• Gyroscope Sensor

• Harmful Radiation Sensor
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• Magnetometer

• Near-Field Communication (NFC) Sensor

• Proximity Sensor

• Pedometer Sensor

2.1.6 New Types of Sensors

The standard types of smartphone sensors have been listed above. Smartphones re-

leased during the past two to three years have sensors like a heartbeat sensor previ-

ously used for medical devices or a light detection and ranging (LiDAR) sensor used

for autonomous vehicles (What Kinds of Sensors are Embedded in Smartphones?

2022).

Heartbeat Sensor

A heartbeat sensor usually consists of two light-emitting diodes (LED) that emit

light and a photodetector that measures the intensity of the reflected light. When

the heart contracts and sends blood throughout the entire body, the pressure in the

arteries increases, spurting blood corpuscles to capillary vessels. In other words,

the number of blood corpuscles increases when the heart contracts. The number of

blood corpuscles decreases when the heart relaxes. Usually, blood corpuscles tend to

absorb LED light, so it looks dark if there are numerous blood corpuscles. If it looks

bright, then it means there are fewer blood corpuscles. A photodetector measures

heartbeat by identifying such changes (What Kinds of Sensors are Embedded in

Smartphones? 2022).

Then, how is blood oxygen saturation (SpO2) measured? Oxygenated hemoglobin

tends to absorb infrared light, whereas deoxygenated hemoglobin tends to absorb

red light. A smartphone shines both infrared light and red light and measures how
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oxygenated the blood is. This is why a smartphone’s sensor sends off a red light

(What Kinds of Sensors are Embedded in Smartphones? 2022).

LiDAR Sensor

A LiDAR sensor is used by autonomous vehicles to detect other vehicles or surround-

ings. As one can conclude from its name, a LiDAR sensor shines a light on a target,

measures the features of the reflected signal, and maps the distance. The sensor

can analyze reflected light patterns by the microsecond or even by the nanosec-

ond. Based on this, a target’s relative location can be drawn in a three-dimensional

virtual space (What Kinds of Sensors are Embedded in Smartphones? 2022).

A LiDAR sensor is used because a smartphone camera is sensitive to the surround-

ing environment, including brightness, and an ultrasonic sensor cannot accurately

measure distance and cannot be used if the distance is farther than a few meters.

In other words, a LiDAR sensor can accurately locate a target even on rainy, foggy,

or snowy days or in a dark environment. In addition, with a LiDAR sensor, you

can place objects in a virtual space, develop a camera application that can instantly

adjust the camera focus at night, and automatically measure the size of a three-

dimensional space. Moreover, applications that can convert photos into 2D and 3D

floor plans will soon be released (What Kinds of Sensors are Embedded in Smart-

phones? 2022).

Sensor Hub

Developers can leverage the rich sensing platform to enable thousands of mobile

applications. Many of these applications require continuous sensing and monitoring

for tasks ranging from simple step counting to more complex fall detection, sleep

apnea diagnoses, dangerous driver monitoring and others. Unfortunately, continuous

sensing applications are power hungry. Interestingly, it is neither the sensors nor
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the computation that make these applications battery drainers. Instead, the main

processor needs to be powered on frequently to collect sensor samples, which in

turn increases the power consumption (Priyantha, Lymberopoulos, and Liu 2011),

(Lin et al. 2012). Hardware manufacturers recognize that supporting low-power

continuous sensing is crucial. To this end, companies such as Texas Instruments

(TI), Intel, and Apple, are embedding a low power microcontroller called a Sensor

Hub in their smartphones. The sensor hub continuously collects sensor data, keeping

the higher power main processor idle. Sensor hub can perform continuous sensing

while drawing a fraction of the power compared to the main processor. Figure 2.1

shows an example sensor hub architecture (Shen et al. 2015).

Figure 2.1 A typical sensor hub architecture

Communication between host CPU and microcontroller in sensor hub typically takes

place through universal asynchronous receiver-transmitter (UART), and the micro-

controller polls the sensors through various buses: UART, serial peripheral interface

(SPI), and inter-integrated circuit (I2C) (Shen et al. 2015).
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3. BIOMETRIC MODALITIES

A biometric modality refers to a system built to recognize a particular biometric

trait. Face, fingerprint, hand geometry, palm print, iris, voice, signature, gait, and

keystroke dynamics are examples of biometric traits. In the context of a given

system and application, the presentation of a user’s biometric feature involves both

biological and behavioral aspects (Committee, Pato, and Millett 2010).

3.1 Types of Biometric Modalities

There are various traits present in humans, and these can be used as biometrics

modalities. These modalities can be grouped into two main categories, namely

physiological and behavioral (Piugie et al. 2021), like depicted in the Figure 3.1.

3.2 Reliability of Biometric Modalities

Biometric recognition systems are inherently probabilistic, and their performance

needs to be assessed within the context of this fundamental and critical characteris-

tic. Biometric recognition involves matching, within a tolerance of approximation,

of observed biometric traits against previously collected data for a subject. Approxi-

mate matching is required due to the variations in biological attributes and behaviors

both within and between persons. Consequently, in contrast to the largely binary

results associated with most information technology systems, biometric systems pro-

vide probabilistic results (Committee, Pato, and Millett 2010).
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Figure 3.1 Biometric modalities

3.3 Behavioral Modalities

3.3.1 Touchscreen

Touchscreen dynamics, which is a behavioral biometry, refers to the unique patterns

of rhythm and timing-based features that are created when a user types on a touch-

screen in computing devices such as mobile devices (Krishnamoorthy et al. 2018),

(Trojahn, Arndt, and Ortmeier 2013).

For example, pressure, size or exact coordinates of keystroke can be used. Basically,

the rhythm is a characteristic which can be calculated by different aspects, but, in

most cases, at least the time differences are used (Maiorana et al. 2011).

With the increased popularity of touchscreen mobile phones, touch gesture be-

havior is increasingly becoming important in comparison to its counterpart the
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keystroke behavior, since almost all smartphones use the touchscreen as the main

input method. Typically, there are three extra feature sets added in addition to the

well-studies Keystroke biometrics: timing features, touchscreen features, and both

timing and touchscreen features combined. The duration of each soft keystroke, and

transitions between press-release and release-press events are taken, for the total

features. The non-timing touchscreen features are calculated similarly to the tim-

ing features and include: the pressure and the position of screen-touch X- and Y-

coordinates (Pandikumar et al. 2017).

3.3.2 Hand-waving

This is a relatively novel application authentication approach that can be used to

protect a mobile device from unauthorized access. It captures user’s intent to access

the service via a lightweight hand waving gesture. This gesture is very simple,

quick and intuitive for the user, but would be very hard for the attacker to exhibit

without the user’s knowledge. In this approach, an accelerometer is used to detect

and classify hand waving patterns using neural network classifiers. This allows for a

secure and user-friendly authentication experience on mobile devices (Mohana Priya

and Alamelu 2018) (Ijartet, Greena, and Baveenther 2016).

For precisely characterizing user’s shaking actions, selecting appropriate sensors is

necessary. Typically, this technique uses the 3-axis accelerometer for detecting the

hand shaking motion. The accelerometer allows smartphones to detect the motion

performed on them. The accelerometer in smartphones measures the acceleration

of the phone relative to free-fall. The accelerometer measures the acceleration of

the phone in three different axes: X, Y, and Z. Based on these features, a system

with neural network pattern classifiers decides is this a genuine user or an imposter

(Ijartet, Greena, and Baveenther 2016).
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3.3.3 Keystroke

Keystroke recognition has been defined by both industry and academics as the

process of measuring and assessing a typing rhythm on digital devices, including

computer keyboards, mobile phones, and touch screen panels. A noted typing mea-

surement, keystroke recognition, often called ”keystroke dynamics”, refers to the

detailed timing information, or the rhythm, that describes exactly when each key

was pressed on a digital device and when it was released as a person types (Krish-

namoorthy et al. 2018).

Basically, the rhythm is a characteristic which can be calculated by different aspects,

but, in most cases, at least the time differences were used (Moskovitch et al. 2009).

3.3.4 Gait

With the growth in smartphone use as well as wearables (G. Bai and Sun 2019),

a relatively new behavioral biometry is gaining popularity: a smartphone-based

gait recognition. For this purpose, smartphone-based accelerometers are used to

capture gait data continuously in the background, but only when an individual

walks. Later, the system analyzes the recorded gait data and establishes the identity

of an individual (Zeng et al. 2021), (Muaaz and Mayrhofer 2017).

An advantage of using the gait modality is that it can be linked with characteristics

such as unobtrusiveness, effectiveness from a distance, and non-vulnerability, as it

is difficult to continuously manipulate one’s own gait (Khamsemanan, Nattee, and

Jianwattanapaisarn 2017).

There are researches in the area of a lightweight user identification, exploiting both

commodity sensing devices and up-to-date deep learning techniques. The technology

is built on a key observation that footsteps carry “footprints” unique to individuals,

and thus can be leveraged for effective user identification. These footprints can be

passively captured by commodity acoustic sensing hardware, totally removing the
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need for active user involvements (Cai et al. 2021).

3.3.5 Signature

As it was stated in (Piugie et al. 2021) the biometric features used in authentication

process are divided into two categories: (a) physiological - related to the construction

of the human body (e.g. fingerprint, iris, hand geometry, face) and (b) behavioral

- related to the human behavior (e.g. signature, gait, keystrokes). A handwritten

signature occupies a special place among behavioral characteristics, its acquisition

is not controversial, and it is commonly socially acceptable (Cpalka, Zalasinski, and

Rutkowski 2016).

A handwritten signature occupies a special place among behavioral characteristics,

its acquisition is not controversial, and it is commonly socially acceptable (Cpalka,

Zalasinski, and Rutkowski 2016).

There are two types of signature verification: (a) offline (static) verification and

(b) online (dynamic) verification. In the offline setting, the system has the shape

of the signature by capturing or scanning them from papers or extracted from the

picture of the signature. Therefore, in an offline verification system, input data

contains Y- Y- coordinates of signatures. However, in the online setting, the system

uses devices for capturing additional information while the user is signing. Online

signatures have extra information for extraction such as time, pressure, pen up and

down, azimuth, etc. (Fayyaz et al. 2015).

3.3.6 Voice

Biometric voice recognition is the use of the human voice to uniquely identify bio-

logical characteristics to authenticate an individual, unlike passwords or tokens that

require physical input. This modality includes both biometric categories - physio-

logical and behavioral (Eshwarappa M and Latte 2012).
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Voice authentication has become an integral part of security-critical operations, such

as bank transactions and call center conversations. The vulnerability of Automatic

Speaker Verification Systems (ASV) to spoofing attacks instigated the development

of countermeasures, whose task is to tell apart bona fide and spoofed speech (Kassis

and Hengartner 2021).

With the increased popularity of wearables, smart vehicles, and home automation

systems, Voice Assistants, such as Siri, Google Now, Cortana and Alexa, have be-

come the everyday fixtures, especially in scenarios where touch interfaces are incon-

venient or even dangerous to use, when for example driving or exercising. However,

with sound being an open channel, voice as an input mechanism is inherently inse-

cure as it is prone to replay, sensitive to noise, and easy to impersonate. In order to

improve the reliability, researchers are looking into additional methods, for example

the novel system that provides usable and continuous authentication for voice assis-

tant systems. As a wearable security token, it supports ongoing authentication by

matching the user’s voice with an additional channel that provides physical assur-

ance. The system collects the body-surface vibrations of a user via a wearable-device

accelerometer and continuously matches them to the voice commands received by

the voice assistant (Feng, Fawaz, and Shin 2017).

3.3.7 Behavior Profiling

Lifestyle authentication has become a new research approach. A promising idea for

it is to use the location history since it is relatively unique. Even when people live

in the same area or they occasionally travel, it does not vary from day to day. For

Global Positioning System (GPS) data, the previous work used the longitude, the

latitude, and the timestamp as the features for the classification. In addition to this,

researchers are investigating a new approach utilizing the distance coherence, which

can be extracted from the GPS itself without the need to require other information

(Thao 2020).
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Another group of researchers proposed behavior profiling technique by using a mo-

bile user’s application usage to detect abnormal mobile activities. Whilst some users

were difficult to classify, a significant proportion fell within the performance expec-

tations of a behavioral biometric and therefore a behavior profiling system on mobile

devices is able to detect anomalies during the use of the mobile device. Incorpo-

rated within a wider authentication system, this biometric would enable transparent

and continuous authentication of the user, thereby maximizing user acceptance and

security (Li et al. 2011).

As the popularity of wearable devices (smartwatches and fitness trackers) has been

growing, researchers have begun to pay attention to new types of data, such as oxy-

gen saturation, collected continuously using the oxygen saturation (SpO2) sensors

and represent the percentage of oxygen-saturated hemoglobin compared to the total

amount of hemoglobin in the blood. Such systems are becoming available to market

wearables (Suffocating Progress 2020). This personalized data could be valuable to

identify an individual and thereby could be useful for implicit user authentication

(Muratyan et al. 2021).
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4. DATA ANALYSIS

4.1 Dataset For Real-life Human Activity Recognition

In this thesis, a public domain dataset for Real-life Human Activity Recognition

Using Smartphone Sensors has been used (A Public Domain Dataset For Real-life

Human Activity Recognition Using Smartphone Sensors 2020).

The information in this dataset is the measurements from the accelerometer, gyro-

scope, magnetometer, and GPS of the smartphone. Additionally, each measure is

associated with one of the four possible registered activities: inactive, active, walking

and driving. This work also proposes an SVM model to perform some preliminary

experiments on the dataset. Considering that this dataset was taken from smart-

phones in their actual use, unlike other datasets, the development of a good model

on such data is an open problem and a challenge for researchers (A Public Domain

Dataset For Real-life Human Activity Recognition Using Smartphone Sensors 2020).

Data was collected using an Android app from each of the 19 participant’s smart-

phones in the study. The data was collected in a real-life environment, allowing each

participant to use their device as they normally would for each specified action. As

a result, the orientation and placement of the smartphones during data collection

were not fixed.

There were four types of activities performed:

• Inactive: When the mobile phone is not being used. For example, the phone

is kept on a desk while the person is doing some other activity.
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• Active: When the mobile phone is being carried while performing any other

activity such as cooking, attending a concert, shopping or doing the dishes.

• Walking : When the mobile phone is being carried while walking to a specific

place. Running or jogging are also considered as ”walking” activities.

• Driving : When the mobile phone is being carried while traveling in a vehicle

powered by an engine. This includes cars, buses, motorbikes, trucks or any

other similar vehicle.

The data was obtained from four distinct sensors, each capturing different aspects of

the device’s movement and location. These sensors include the accelerometer, gyro-

scope, magnetometer, and GPS. The accelerometer, gyroscope, and magnetometer

provided tri-axial values, which were recorded. For the GPS sensor, detailed infor-

mation on the device’s location was collected, such as changes in latitude, longitude,

and altitude, as well as the bearing, speed, and accuracy of the measurements. The

resulting dataset is a comprehensive representation of the device’s movement and

location during the time it was being monitored.

It is important to note that the measures mentioned in the study cannot be set at

a fixed frequency on Android devices. Furthermore, some participants did not have

access to all the sensors on their smartphones, which resulted in certain sessions

lacking a gyroscope or both a gyroscope and a magnetometer.

4.1.1 Experimental Setup

For all computer calculations presented in this thesis, a Python software environment

was utilized, running on the author’s personal computer. The following are the

installed Python modules that were used:

• Pandas : a software library designed for the Python programming language,

used for data manipulation and analysis.
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• Numpy : a software library that is available as an open-source tool for several

scientific and engineering fields. It is the most commonly used library in

Python to work with numerical data and is an essential component of the

scientific Python and PyData ecosystems.

• SciPy : provides algorithms for various classes of problems including optimiza-

tion, integration, interpolation, eigenvalue problems, algebraic equations, dif-

ferential equations, and statistics.

• Scikit-learn: a free software machine learning library for Python that features

various classification, regression, and clustering algorithms.

• Seaborn and Matplotlib: Python data visualization libraries used for creating

graphs and plots.

• Jupyter Notebook : Notebook documents, commonly referred to as ”notebooks”,

are files that are created using the Jupyter Notebook App. These files con-

tain both computer code, which is usually written in Python, and rich text

elements, such as paragraphs, equations, figures, and links. Notebook doc-

uments serve a dual purpose - they can be read by humans as they contain

descriptions of the analysis and its results (such as tables and figures), and

they can also be executed to perform data analysis.

4.1.2 Sensor Selection

Sensors Set

Nowadays, smartphones are equipped with various sensors, as demonstrated in sec-

tion 2.1.5. As these devices increasingly integrate into our daily lives, they have the

potential to collect a wealth of personal information through their sensors. There-

fore, it is essential to select a limited number of sensors that can reliably capture a

user’s unique characteristics.
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The combination of data from two sensors indeed provides better authentication

accuracy than using a single sensor. Another interesting finding is that using a

combination of magnetometer and orientation sensors is worse than the other two

pairs, which include an accelerometer. In fact, the combination of magnetometer and

orientation sensors is not necessarily better than using just the accelerometer. And

finally, the use of three sensors give the best authentication accuracy. Therefore,

choosing good sensors is very important (W.-H. Lee and R. Lee 2017).

In the scope of this thesis, the following two sensors have been used: accelerometers

and gyroscopes. They also represent different information about the user’s behavior

and environment: the accelerometer can detect coarse-grained motion of a user, like

how the person walks (Nickel, Wirtl, and Busch 2012), the orientation (gyroscope)

sensor can detect fine-grained motion of a user like how the person holds a smart-

phone (Xu, K. Bai, and Zhu 2012). Furthermore, these sensors do not need the

user’s permission to be used in Android applications, which is useful for continuous

monitoring for implicit authentication. Also, these two sensors do not need the user

to perform a sequence of actions dictated by a script - hence facilitating implicit

authentication (W.-H. Lee and R. Lee 2017).

Combining Sensors Data

The main objective of this thesis is to identify the most common user activity pat-

terns in gait by focusing on walking. However, some of the participants in the study

did not have all the necessary sensors available on their smartphones. Additionally,

some users interrupted or changed the recording of certain activities, which resulted

in gaps in the continuous data. These gaps can hinder the frequency and statis-

tical analysis, so it is recommended to split such data into separate records where

sampling was done continuously.

The challenge was to integrate multi-sensor data, especially when the data is sep-
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arated into different files. This situation is similar to real-world scenarios where

sensor data is transmitted through different threads due to certain operating system

designs.

Therefore, preliminary data preprocessing and analysis is crucial before conducting

complex analysis to achieve objectives:

• Clean up the files with accelerometer and gyroscope raw data.

• Find out the number of users who participated in the recording of all datasets,

and select the top 8 users with the longest duration of the ”Walking” activity.

• Analyze the ”Walking” activity of each user for data continuity, and if there

are significant gaps in the continuous sequence of samples (for example, more

than five seconds), break the activity into continuous fragments.

• Identify the beginning and end timestamps of each fragment and calculate

the length of each fragment. Determine the discrepancy in timestamp values

between the start and stop of user fragments in the corresponding dataset files.

If the fragments match accurately, it is recommended to merge them into a

single Data Frame.

• In cases of varying data recording frequencies among sensors, resampling is

recommended to synchronize datasets for meaningful analyses.

This systematic approach will provide a reliable foundation for the precise analysis

and interpretation of the data from multiple sensors.

4.1.3 Dataset Preprocessing

Reading the Dataset into Pandas DataFrames

Following code reads data from 2 sensors dataset files into Pandas Data Frames:
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1 base_path = r’/Users/’ + getpass.getuser () + ’/real -life -HAR -

dataset ’

2 accel_raw_data_fn = base_path + ’/data_raw/sensoringData_acc.csv’

3 gyro_raw_data_fn = base_path + ’/data_raw/sensoringData_gyro.csv’

4 accel_raw_data_df = pd.read_csv(accel_raw_data_fn)

5 gyro_raw_data_df = pd.read_csv(gyro_raw_data_fn)

Figures 4.1 and 4.2 depict sensors Pandas Data Frames in the form of tables.

Figure 4.1 Gyroscope raw data as Pandas DataFrame

Figure 4.2 Accelerometer raw data as Pandas DataFrame

The resulting gyroscope data frame consists of 3242321 rows and 8 columns and

accelerometer data frame consists of 17378634 rows and 8 columns.

Cleaning Up Datasets

Data cleaning is a critical process that involves identifying and resolving any in-

accuracies, inconsistencies, or errors in datasets. It typically involves correcting
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or removing incorrect, corrupted, poorly formatted, duplicate, or incomplete data.

Although there is no one-size-fits-all approach to data cleaning, it is essential to es-

tablish a standardized template to ensure that the process is consistent and reliable

every time.

The following code removes rows with duplicate timestamps globally and drops any

rows with missing values from the entire dataset:

1 accel_raw_data_df_len = len(accel_raw_data_df)

2 accel_raw_data_df_unique_len = len(pd.unique(accel_raw_data_df[’

timestamp ’]))

3 accel_dup_num = accel_raw_data_df_len -

accel_raw_data_df_unique_len

4 accel_dup_percent = accel_dup_num/accel_raw_data_df_len * 100

5 gyro_raw_data_df_len = len(gyro_raw_data_df)

6 gyro_raw_data_df_unique_len = len(pd.unique(gyro_raw_data_df[’

timestamp ’]))

7 gyro_dup_num = gyro_raw_data_df_len - gyro_raw_data_df_unique_len

8 gyro_dup_percent = gyro_dup_num/gyro_raw_data_df_len * 100

9 accel_data_df = (accel_raw_data_df.drop_duplicates(subset="

timestamp")).dropna ()

10 gyro_data_df = (gyro_raw_data_df.drop_duplicates(subset="timestamp"

)).dropna ()

Number of rows with duplicate ”timestamp” column values in:

1 ACCEL raw data: 641583 (3.69%) from total length: 17378634

2 GYRO raw data: 8923 (0.28%) from total length: 3242321

Based on the data analysis, it seems that the duplicated ”timestamp” values are

most likely due to the low resolution of the time clock system, which results in

measurement inaccuracies. To address this issue, the best approach would be to

remove the duplicated rows without performing any interpolation. It is important

to note that the overall percentage of duplicates is not significant.
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4.1.4 Exploratory Data Analysis

Users IDs

The following code returns the count of unique user IDs, lists of usernames/user IDs

from datasets, and a ”common” list of users present in both sensor dataframes:

1 accel_list_of_usernames = accel_data_df[’username ’]. unique ()

2 gyro_list_of_usernames = gyro_data_df[’username ’]. unique ()

3 a = accel_list_of_usernames

4 b = gyro_list_of_usernames

5 userid_in_all = list(set.intersection (*map(set , [a, b])))

These are the usernames that are found in both sensor dataframes and are not

duplicated:

1 ACCEL data: [11 1 15 18 17 9 6 7 3 13 0 10 14 8 4 5 16 12 2]

2 GYRO data: [11 1 9 6 7 3 13 0 10 8 5 16 12 2]

Here is a list of usernames that appear in both the accelerometer and gyroscope

dataframes:

1 [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16]

The next step is to remove rows from the dataframe where the username is not on

the ”common list”:

1 accel_users_df = accel_data_df[accel_data_df[’username ’].isin(

userid_in_all)]

2 gyro_users_df = gyro_data_df[gyro_data_df[’username ’].isin(

userid_in_all)]

1 ACCEL user list "clean up": 19 -> 14

2 GYRO user list "clean up": 14 -> 14

There is a file named activityChanges.csv in the public dataset folder that contains

information about activity sessions, including the username, start and end times,
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and activity types. The code below extracts the start time, end time, and duration of

activities performed by users on the ”common” list and sorts them by their duration:

1 activity_changes_fn = base_path + ’/data_raw/activityChanges.csv’

2 changes_df = pd.read_csv(activity_changes_fn)

3 activity_changes_df = changes_df[changes_df[’username ’].isin(

userid_in_all)]

4 walking_changes_df = activity_changes_df.query("activity == ’

Walking ’")

5 walking_changes_sorted_df = walking_changes_df.sort_values(by=’

duration ’, ascending=False , inplace=False)

The ”Walking” activity has been engaged by a total of 13 different users:

1 [ 8 7 1 16 5 9 11 6 10 2 13 12 3]

Top-10 users for further analysis

Below is a code that generates a list named common walk users. The list includes

10 users who have walked for at least 10 minutes and appear in both accelerometer

and gyroscope datasets. Only the users who meet these two criteria are included in

the list:

1 duration_sec = 600

2 walking_above_10m_df = walking_changes_sorted_df[

walking_changes_sorted_df[’duration ’] >= duration_sec]

3 walk_unique_id = walk_above_10m_df["username"]. nunique ()

1 users_over_10min = walk_above_10m_df[’username ’]. unique ().tolist ()

2 common_walk_users = list(set(users_over_10min).intersection(

userid_in_all))

3 users_over_10min = walk_above_10m_df [’username ’]. unique ().

tolist ()

4 2 common_walk_users = list(set( users_over_10min ). intersection (

5 userid_in_all ))
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This is a list of user IDs for those with ”Walking” activity duration exceeding 10

minutes:

1 [8, 7, 1, 16, 5, 9, 11, 6, 10, 2]

This is a list of user IDs who had a ”Walking” activity in both sensor datasets:

1 [1, 2, 5, 6, 7, 8, 9, 10, 11, 16]

The dataframe should be filtered to include only the ”Walking” activities for users

on the common walk users list:

1 accel_walk_data_df = accel_users_data_df[accel_users_data_df[’

username ’].isin(common_walk_users)].query("activity == ’Walking ’

")

2 gyro_walk_data_df = gyro_users_data_df[gyro_users_data_df[’username

’].isin(common_walk_users)]. query("activity == ’Walking ’")

The number of users in the ”Walking” lists for accelerometer and gyroscope de-

creased from 14 to 10 after cleanup.

The format for dictionaries used in training and testing datasets

Dataframes containing accelerometer and gyroscope sensor data should be seg-

mented based on ”Walking” activity sessions listed in activityChanges.csv file. Each

segment will be represented as an entry in a Python dictionary with the following

fields:

• idx: Index of the dataframe row.

• user: Username.

• data idx df : Dataframe, cropped from the original Data Frame according to

init timestamp and end timestamp, converted to ”datetime” format and the

timestamp column set as the index.
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• data idx df resampled: Dataframe, resampled from data idx df dataframe or

None if not applicable.

• init ts: Initial timestamp.

• end ts: End timestamp.

• dur: Duration of the segment (data chunk).

The same code was applied to both sensor dataframes (e.g. sensor user walk -¿

accel user walk and gyro user walk):

1 sensor_user_walk = []

2 df = sensor_user_walk.copy()

3 for index , row in walk_above_10m_df.iterrows ():

4 user = row[’username ’]

5 start_t = row[’init_timestamp ’]

6 stop_t = row[’end_timestamp ’]

7 crops_df = df[(df[’username ’] == user) & (df[’timestamp ’] >=

start_t) & (df[’timestamp ’] <= stop_t)]

8 crops_df[’timestamp ’] = pd.to_datetime(crops_df[’timestamp ’],

unit=’s’)

9 crops_df.set_index(’timestamp ’, inplace=True)

10

11 crops_entry = {

12 ’idx’: index ,

13 ’user’: row[’username ’],

14 ’init_ts ’: start_t ,

15 ’end_ts ’: stop_t ,

16 ’data_idx_df ’: crops_df ,

17 ’data_idx_df_resampled ’: None ,

18 ’dur’: row[’duration ’],

19 ’activity_id ’: row[’activity_id ’],

20 }

21 sensor_user_walk.append(crops_entry)
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Two Python dictionaries, accel user walk and gyro user walk, have been created

after executing this code.

The code evaluates the duration of walking segments in two sensor datasets and

outputs the top 10 durations:

1 def get_df_duration_in_sec(time_idx_df):

2 time_idx_df_temp = time_idx_df.copy()

3 duration =

4 time_idx_df_temp.index.max() - time_idx_df_temp.index.min()

5 return copy.deepcopy(duration.total_seconds ())

6

7 the_range = 10

8 for i in range(the_range):

9 sensor_dur = copy.deepcopy(sensor_user_walk[i].get("dur"))

10 sensor_dur_actual = get_df_duration_in_sec(sensor_user_walk[i].

get("data_idx_df"))

11 sensor_user = copy.deepcopy(sensor_user_walk[i].get("user"))

12 sensor_len = len(sensor_user_walk[i].get("data_idx_df"))

13 sensor_activity_id = copy.deepcopy(sensor_user_walk[i].get("

activity_id"))

The following list highlights the top 10 durations of ”Walking” activity fragments

among user IDs:

1 --- Top #0:

2 ACCEL duration: 10160.0 sec , actual: 10159.6 sec , ID: 8, len:

50118

3 GYRO duration: 10160.0 sec , actual: 10159.8 sec , ID: 8, len:

50241

4 --- Top #1:

5 ACCEL duration: 2357.7 sec , actual: 2357.6 sec , ID: 7, len: 12047

6 GYRO duration: 2357.7 sec , actual: 2357.2 sec , ID: 7, len: 11972

7 --- Top #2:

8 ACCEL duration: 2093.2 sec , actual: 2093.1 sec , ID: 1, len:

157591
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9 GYRO duration: 2093.2 sec , actual: 2092.7 sec , ID: 1, len: 10490

10 --- Top #3:

11 ACCEL duration: 1812.1 sec , actual: 329.4 sec , ID: 16, len: 3145

12 GYRO duration: 1812.1 sec , actual: 329.1 sec , ID: 16, len: 1579

13 --- Top #4:

14 ACCEL duration: 1608.0 sec , actual: 1607.7 sec , ID: 8, len: 25965

15 GYRO duration: 1608.0 sec , actual: 1607.7 sec , ID: 8, len: 7936

16 --- Top #5:

17 ACCEL duration: 1560.0 sec , actual: 1560.0 sec , ID: 5, len: 77829

18 GYRO duration: 1560.0 sec , actual: 1559.4 sec , ID: 5, len: 7805

19 --- Top #6:

20 ACCEL duration: 1487.0 sec , actual: 1486.9 sec , ID: 1, len: 16155

21 GYRO duration: 1487.0 sec , actual: 1486.5 sec , ID: 1, len: 7452

22 --- Top #7:

23 ACCEL duration: 1464.3 sec , actual: 1464.3 sec , ID: 5, len: 69535

24 GYRO duration: 1464.3 sec , actual: 1464.0 sec , ID: 5, len: 21307

25 --- Top #8:

26 ACCEL duration: 1403.1 sec , actual: 1402.9 sec , ID: 9, len: 68309

27 GYRO duration: 1403.1 sec , actual: 1402.6 sec , ID: 9, len: 7789

28 --- Top #9:

29 ACCEL duration: 1357.9 sec , actual: 1357.8 sec , ID: 5, len: 67808

30 GYRO duration: 1357.9 sec , actual: 1357.2 sec , ID: 5, len: 6794

Preliminary Conclusion

• Upon analysis, an issue with data fragments was found. Specifically, some

accelerometer sensor data segments had more samples than the gyroscope

sensor, while time duration matched.

• Fragment ”3” has a discrepancy between the listed and actual duration for

the ”Walking” activity. The listed duration is 1812 seconds, but the actual

duration is only 329 seconds based on the first and last timestamps.

• To ensure greater accuracy, it is recommended to exclude Fragment ”3” from
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further analysis and focus on examining the top nine fragments: [0,1,2,4,5,6,7,8,9]

Here is a list of the top 9 crop fragments for further analysis. Each value corresponds

to an index from the dictionary of crops above:

1 top_9_fragments_for_analysis = [0,1,2,4,5,6,7,8,9]

Datasets Sampling Rate Analysis

Before conducting any analysis, it is crucial to evaluate the stability of the sensor

signal samples for the ”Walking” activity among the chosen users. Furthermore, it

is essential to explore if there are any variations in the sampling frequency across

datasets from different sensors and measure the degree of such differences.

One way to evaluate the sampling rate of an entire dataset is by constructing his-

tograms of the time intervals (delta) between recorded timestamps of different sensor

types. This practical method involves using histograms of time intervals to analyze

the sampling rate. By visualizing the time intervals, it becomes easier to identify

any inconsistencies or variations in the sampling frequency, which can be crucial for

the success of the analysis efforts.

As described in Equation 4.1, the average sampling rate is the reciprocal of the

Mean of the time intervals between recorded timestamps:

Average Sampling Rate =
1

Mean of Time Differences
(4.1)

A histogram is a rudimentary estimation of a dataset’s Probability Density Function

(PDF). For a continuous random variable X, the PDF, f(x), gives the likelihood of

X taking on the value x. The mathematical representation for this is demonstrated

in the following equation:

f(x) =
P (x ≤ X < x+ δx)

δx
(4.2)
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where δx is an infinitesimally small interval.

When creating a histogram, the data range is divided into intervals called bins. The

number of observations in each bin can be described by the following equation:

hi =
∑
x∈Bi

1 (4.3)

where hi is the height of the i-th bin and Bi represents the interval of the i-th bin.

The code provided below is used to calculate the difference between two timestamps

and the average sampling rate:

1 for i in top_9_fragments_for_analysis:

2 accel_idx_df = accel_user_walk[i].get(’data_idx_df ’).copy()

3 gyro_idx_df = gyro_user_walk[i].get(’data_idx_df ’).copy()

4 accel_original_actual_duration = get_df_duration_in_sec(

accel_idx_df)

5 gyro_actual_duration = get_df_duration_in_sec(gyro_idx_df)

6

7 # Calculating the differences between timestamps

8 accel_time_diffs = accel_idx_df.index.to_series ().diff().dt.

total_seconds ()

9 accel_avg_sampling_rate = 1 / accel_time_diffs.mean()

10 gyro_time_diffs = gyro_idx_df.index.to_series ().diff().dt.

total_seconds ()

11 gyro_avg_sampling_rate = 1 / gyro_time_diffs.mean()

The code provided below is used to calculate histograms and plot them in a visual

format:

1 num_of_bins = 80

2 edge_color = ’k’

3 x_axis_limit = [0, 0.6]

4 fig , axs = plt.subplots(1, 2, figsize =(10, 4), sharey=True)

5 axs [0]. hist(accel_time_diffs [1:], bins=num_of_bins , edgecolor=

edge_color)
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6 axs [0]. set_xlabel(’Time Difference (s)’)

7 axs [0]. set_ylabel(’Frequency ’)

8 axs [0]. set_title(f’ACCEL. Average sampling rate: {

accel_avg_sampling_rate :.1f} Hz’)

9 axs [0]. grid(True)

10 axs [0]. set_xlim(x_axis_limit)

11 acc_text_str = (

12 f’Fragment #:{i}, user ID: {accel_user_id }\n’

13 f’Length: {len(accel_idx_df)} rows\n’

14 f’Duration (table): {accel_user_walk[i].get("dur"):.1f} sec

\n’

15 f’Duration (actual): {accel_original_actual_duration :.1f}

sec\n’

16 )

17 axs [0]. text (0.02 , 0.98, acc_text_str , transform=axs [0].

transAxes , verticalalignment=’top’, fontsize =9)

18

19 axs [1]. hist(gyro_time_diffs [1:], bins=num_of_bins , edgecolor=

edge_color)

20 axs [1]. set_xlabel(’Time Difference (s)’)

21 axs [1]. set_title(f’GYRO. Average sampling rate: {

gyro_avg_sampling_rate :.1f} Hz’)

22 axs [1]. grid(True)

23 axs [1]. set_xlim(x_axis_limit)

24 gyr_text_str = (

25 f’Fragment #:{i}, user ID: {gyro_user_id }\n’

26 f’Length: {len(gyro_idx_df)} rows\n’

27 f’Duration (table): {gyro_user_walk[i].get("dur"):.1f} sec\

n’

28 f’Duration (actual): {accel_original_actual_duration :.1f}

sec\n’

29 )

30 axs [1]. text (0.02 , 0.98, gyr_text_str , transform=axs [1].

transAxes , verticalalignment=’top’, fontsize =9)
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31

32 max_ylim = max(axs [0]. get_ylim ()[1], axs [1]. get_ylim ()[1])

33 axs [0]. set_ylim(0, max_ylim)

34 axs [1]. set_ylim(0, max_ylim)

Figures 4.3 to 4.11 display histograms of sampling periods for the ”Walking” seg-

ments in the Top-9 list for both sensors datasets:
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Figure 4.3 Histograms of sampling periods, fragment ”0”, user ID: 8
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Figure 4.4 Histograms of sampling periods, fragment ”1”, user ID: 7

The readings from the accelerometer and gyroscope sensors in Android devices can

sometimes be inconsistent. This is because the real-time performance of sensor

data collection is not always guaranteed, depending on the manufacturer, model,

background processes, and OS version of the Android device. There are several

reasons for this variability:
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Figure 4.5 Histograms of sampling periods, fragment ”2”, user ID: 1
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Figure 4.6 Histograms of sampling periods, fragment ”4”, user ID: 8

• Other processes and applications running in the background can interrupt or

delay sensor data collection, causing inconsistencies in sampling rates. This

happens because Android is not a real-time operating system.

• Sensor hardware differences can lead to varying actual data sampling rates,

even if requested at a specific rate.

• In power-saving mode, Android’s power management can affect sensor data

sampling rates.

Upon analyzing the situation regarding the inconsistencies, it has become evident

that aligning the datasets is a crucial step for successful machine learning, especially

in the case of classification algorithms. To achieve optimal results, it is recommended
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Figure 4.7 Histograms of sampling periods, fragment ”5”, user ID: 5
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Figure 4.8 Histograms of sampling periods, fragment ”6”, user ID: 1

to either resample the accelerometer data or process it in a way that matches the

same dimension and sampling rate as the gyroscope data. This alignment guarantees

consistency and reliability when feeding the data into machine learning models,

particularly when the features extracted from both datasets need to be comparable

or combined for effective classification.

In order to accomplish this, the following steps were taken:

• First, the time differences between the timestamps in the gyroscope dataframe

were calculated.

• Then, this time difference was divided by the total number of samples mi-

nus one, to derive the estimated sampling interval. This is because the time
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Figure 4.9 Histograms of sampling periods, fragment ”7”, user ID: 5
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Figure 4.10 Histograms of sampling periods, fragment ”8”, user ID: 9

difference between n samples includes n− 1 intervals.

• Finally, the accelerometer data was resampled based on this interval.

It was discovered that there is an issue with a fragment of gyroscope sensor data,

specifically labeled as ”7”. Upon analysis, it was found that the sampling period

histogram shows several peaks, similar to the ones observed in the accelerometer

data.

Resampling of accelerometer data

Resampling adjusts dataset’s sample rate by adding/removing samples within fixed

duration.
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Figure 4.11 Histograms of sampling periods, fragment ”9”, user ID: 5

The sampling interval ∆t, is the time duration between two consecutive samples.

Its reciprocal gives the sampling frequency fs, which is represented in equation 4.4:

fs =
1

∆t
(4.4)

Linear interpolation is a method used to estimate values between two known values

by drawing a straight line between the two points (x1, y1) and (x2, y2).

For a value x in the interval [x1, x2], the value y along the straight line is given by

equation 4.5:

y = y1 +
(x− x1)× (y2 − y1)

x2 − x1

(4.5)

4.1.5 Resampling Technique

The goal of resampling is to change the sampling frequency of accelerometer data

by interpolating it at new time intervals derived from the gyroscope data.

When a signal that was originally sampled at time intervals of ∆t1 needs to be

resampled at different intervals of ∆t2, a common method is to use the aforemen-

tioned linear interpolation formula 4.5 for all new time points that fall between two

consecutive original sample time points.
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The Python code below resamples accelerometer data based on gyroscope data

parameters. The code annotations provide additional insights for resampling ac-

celerometer data based on gyroscope data parameters:

1 def get_resampled_accel_df(accel_time_idx_df , gyro_time_idx_df):

2 acc_temp_idx = accel_time_idx_df.copy()

3 gyr_temp_idx = gyro_time_idx_df.copy()

4

5 # Sorting the dataframe by the index

6 gyr_time_diff = gyr_temp_idx.index.to_series ().diff().dt.

total_seconds ().dropna ()

7

8 # Calculate the sampling interval in microseconds

9 gyr_time_diff_us = gyr_time_diff * 1_000_000

10 gyro_avg_sampling_interval = gyr_time_diff_us.mean()

11

12 # Resample the gyroscope data with a new sampling interval

13 # with linear interpolation of missed values if any

14 resampled_df = acc_temp_idx.resample(f’{round(

gyro_avg_sampling_interval)}U’).mean(numeric_only=True).

interpolate(method=’linear ’)

15

16 # Convert needed columns back to integers

17 resampled_df[’id’] = resampled_df[’id’]. astype(int)

18 resampled_df[’username ’] = resampled_df[’username ’]. astype(int)

19 resampled_df[’activity_id ’] = resampled_df[’activity_id ’].

astype(int)

20 resampled_df[’activity ’] = ’Walking ’

21 return resampled_df

1 for i in top_8_fragments_for_resampling:

2 accel_idx_df = accel_user_walk[i].get(’data_idx_df ’)

3 gyro_idx_df = gyro_user_walk[i].get(’data_idx_df ’)

4 accel_original_actual_duration = get_df_duration_in_sec(

accel_idx_df)
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5 accel_idx_df_resampled = get_resampled_accel_df(accel_idx_df ,

gyro_idx_df)

6 accel_resampled_actual_duration = get_df_duration_in_sec(

accel_idx_df_resampled)

7 gyro_actual_duration = get_df_duration_in_sec(gyro_idx_df)

8

9 # Update the dictionary with resampled data frame

10 accel_user_walk[i][’data_idx_df_resampled ’] =

accel_idx_df_resampled

11

12 # Calculating the differences between timestamps

13 accel_time_diffs = accel_idx_df_resampled.index.to_series ().

diff().dt.total_seconds ()

14 accel_avg_sampling_rate = 1 / accel_time_diffs.mean()

15 gyro_time_diffs = gyro_idx_df.index.to_series ().diff().dt.

total_seconds ()

16 gyro_avg_sampling_rate = 1 / gyro_time_diffs.mean()

Figures 4.12 to 4.19 show histograms of sampling periods for the ”Walking” seg-

ments in the Top-8 list for both sensor datasets after resampling the accelerometer

data:
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Figure 4.12 Histograms of sampling periods, fragment ”0”, user ID: 8

After resampling, the accelerometer data is now more aligned with the gyroscope

data in terms of histogram distributions and sampling rate, which ensures uniformity
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Figure 4.13 Histograms of sampling periods, fragment ”1”, user ID: 7
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Figure 4.14 Histograms of sampling periods, fragment ”2”, user ID: 1

across the different sensor data dimensions.

4.2 Training and Testing Datasets

For this thesis project, the main objective was to create a method that could dif-

ferentiate specific users from a larger pool of users. To ensure the machine learning

model was robust and versatile, its performance was tested on data that was not

used for training. As a result, the data was split into two categories - training data

and testing data. The model was trained on 75% of the data, allowing it to identify

patterns in the walking data of users. The remaining 25% was assigned for testing

to evaluate the model’s performance on unfamiliar data objectively. This approach

ensures that the model can accurately identify users in real-world situations, instead
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Figure 4.15 Histograms of sampling periods, fragment ”4”, user ID: 8
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Figure 4.16 Histograms of sampling periods, fragment ”5”, user ID: 5

of adapting only to the training data’s nuances.

The test dataset was kept entirely separate from the training dataset to ensure

evaluations were conducted on previously unobserved data segments.

Figure 4.20 displays the arrangement of the training and testing datasets.

4.3 Feature Engineering on Time-Series Data

4.3.1 ”Windowing” of Time-Series Data

Time-series data, which is collected from devices such as accelerometers and gyro-

scopes, is inherently sequential and continuous. However, analyzing such raw data
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Figure 4.17 Histograms of sampling periods, fragment ”6”, user ID: 1

��� ��� ��� ��	 ��
 ��� ���
�&("��&##"-") "��.�

�

����

����

	���


���

����

����

���

����

�-
",

0"
) 

3

�")$/%�����-*2.
�0-�/&*)��/��'"����
�	���." 
�0-�/&*)��� /0�'����
�����." 

�������-".�(+'"!����1"-�$"�.�(+'&)$�-�/"�������4

��� ��� ��� ��	 ��
 ��� ���
�&("��&##"-") "��.�

�-�$(")/������0."-������
�")$/%�����-*2.
�0-�/&*)��/��'"����
�	���." 
�0-�/&*)��� /0�'����
�����." 

�������1"-�$"�.�(+'&)$�-�/"�������4

Figure 4.18 Histograms of sampling periods, fragment ”8”, user ID: 9

with machine learning models can pose challenges in terms of computational effi-

ciency and significant pattern recognition. This is where feature engineering comes

in. Through feature engineering, raw data is transformed into a more structured

and representative format, which allows algorithms to identify patterns, trends, or

anomalies with greater accuracy. This transformation makes it possible to extract

more meaningful insights from the time-series data.

The process involves the segmentation of time-series data using a technique called

”windowing”. Each window spans a duration of 20 seconds, as shown in Figure

4.21. To ensure that there is a continuous flow of information and to account for the

continuous nature of the data, overlapping windows are used instead of discrete ones.

These overlapping windows have a 50% overlap and help to capture transitional
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Figure 4.19 Histograms of sampling periods, fragment ”9”, user ID: 5

Figure 4.20 Training and testing datasets layout

patterns, thus reducing the risk of missing important information between discrete

windows. This technique ensures that each subsequent row in the transformed

dataset carries over some information from the previous window, resulting in a

seamless flow of data.

The specific window duration chosen may be questioned by some. However, two

reasons support this choice. Firstly, since the sensors’ average sampling rate is five

Hz, 100 samples amount to 20 seconds of data. Secondly, a 20-second duration is

considered optimal for capturing the repetitive motions inherent to human walking.

If the window is too short, it might not provide a complete snapshot of the motion.

Conversely, an excessively large window could dilute the specific characteristics of

the motion and reduce the number of data points in the transformed dataset. This
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could compromise the training phase, potentially leading to suboptimal results.

Figure 4.21 Feature engineering of sensors time-series data

By capturing 100 raw samples within each window, the aim is to extract relevant

features that encapsulate the core characteristics of the data.

To assign class labels to each window, the most common user ID within the window

is used. It is crucial to ensure that the extracted features are accurately correlated

with the corresponding user IDs. This is particularly important for tasks that require

user-specific analysis and classification.

The following Python code demonstrates a general approach to processing data from

two sensor datasets, which includes the use of the windowing technique to analyze

time-series data:

1 sensor_x = []

2 sensor_y = []

3 sensor_z = []

4 sensor_labels = []

5
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6 for i in range(0, sensor_set_df.shape [0] - window_size_samples ,

step_size_samples):

7 xs = sensor_set_df[’sensor_x_axis ’]. values[i: i +

window_size_samples]

8 ys = sensor_set_df[’sensor_y_axis ’]. values[i: i +

window_size_samples]

9 zs = sensor_set_df[’sensor_z_axis ’]. values[i: i +

window_size_samples]

10

11 user_ids = sensor_set_df[’username ’]. values[i: i +

window_size_samples]

12 label = np.argmax(np.bincount(user_ids))

13 sensor_x.append(xs)

14 sensor_y.append(ys)

15 sensor_z.append(zs)

16 sensor_labels.append(label)

4.3.2 List of Statistical Features

The complete list of statistical features employed in this feature engineering process

includes:

• Min: Smallest value in the window.

Min(X) =
n

min
i=1

xi (4.6)

where X is the set of all data points in the window, and xi is an individual

data point.

• Max : Largest value in the window.

Max(X) =
n

max
i=1

xi (4.7)
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where X is the set of all data points in the window, and xi is an individual

data point.

• Difference of maximum and minimum values : The range of values within the

window.

Range(X) = max(X)−min(X) (4.8)

where X is the set of all data points in the window.

• Mean: Average of the values.

µ(X) =
1

n

n∑
i=1

xi (4.9)

where X represents the set of all data points in the window, and n is the total

number of data points in X.

• Average absolute deviation: Measures the dispersion of data.

AAD(X) =
1

n

n∑
i=1

|xi − µ(X)| (4.10)

where X represents the set of all data points in the window, n is the total

number of data points in X and µ(X) is the mean of the data points in X.

• Standard deviation: Measures how spread out data is from its average value.

σ(X) =

√√√√ 1

n

n∑
i=1

(xi − µ(X))2 (4.11)

where X represents the set of all data points in the window, n is the total

number of data points in X and µ(X) is the mean of the data points in X.
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• Median: The middle value when data is arranged in order.

Median(X) =


xn+1

2
if n is odd

xn
2
+xn

2 +1

2
if n is even

(4.12)

where X is the sorted version of the data in ascending order and n is the total

number of data points in X.

• Median absolute deviation: This measure is calculated by finding the median

of the absolute deviations from the median of the data.

MAD(X) = med(|xi −med(X)|) (4.13)

where X is the dataset, xi is each data point in X, med(X) is the median of X

and |xi −med(X)| represents the absolute deviation of each data point from

the median of X.

• Interquartile range: Range between the 25th and 75th percentile.

IQR = Q3 −Q1 (4.14)

where Q3 is the 75th percentile (or the third quartile) and Q1 is the 25th

percentile (or the first quartile).

• Negative count : Number of values below zero.

NegativeCount =
n∑

i=1

1(xi < 0) (4.15)

where n is the total number of data points in the window, xi is the value of the

ith data point and 1 is the indicator function that returns 1 if the condition

inside the parenthesis is true, and 0 otherwise.
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• Positive count : Number of values above zero.

PositiveCount =
n∑

i=1

1(xi > 0) (4.16)

where n is the total number of data points in the window, xi is the value of the

ith data point and 1 is the indicator function that returns 1 if the condition

inside the parenthesis is true, and 0 otherwise.

• Values above mean: Count of values that are greater than the mean.

V aluesAboveMean =
n∑

i=1

1(xi > x̄) (4.17)

where n is the total number of data points in the window, xi is the value of the

ith data point, x̄ is the mean of all data points and 1 is the indicator function

that returns 1 if the condition inside the parenthesis is true, and 0 otherwise.

• Skewness : Measures the asymmetry of the data distribution.

Skewness(X) =
E[(X − µ)3]

σ3
(4.18)

where E represents the expectation (the ”average” or ”expected value”), X

represents the random variable (or the dataset), µ is the mean of X and σ is

the standard deviation of X.

• Kurtosis : Quantifies the degree of heaviness or thickness of the tails of a

probability distribution.

Kurt[X] = E

[(
X − µ

σ

)4
]
− 3 (4.19)

where X is the random variable, µ is the mean of X and σ is the standard

deviation of X.
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• Number of peaks : Indicates data’s variability.

Xi is a peak if Xi > Xi−1 and Xi > Xi+1

Number of Peaks = |{i : Xi is a peak}| (4.20)

• Energy : Total energy (mean of sum of squares of the values) of the signal.

E(X) =
1

100

100∑
i=1

X2
i (4.21)

• Average resultant : Average magnitude of the vector sum of its components.

Ri =
√

X2
i + Y 2

i + Z2
i (4.22)

AvgResultant =
1

n

n∑
i=1

Ri (4.23)

where X, Y and Z are the components of a 3-dimensional vector.

• Signal magnitude area: Represents the total area under a signal.

SMA =
1

100

(
n∑

i=1

|Xi|+
n∑

i=1

|Yi|+
n∑

i=1

|Zi|

)
(4.24)

4.3.3 The Resulting Training and Testing Data Frames

After performing feature engineering, the datasets were divided into two distinct

dataframes: users training df and users testing df .

Accelerometer and gyroscope sensors were used to collect data in both dataframes.

The prefix ”acc ” identifies accelerometer columns, while ”gyr ” indicates gyroscope

columns. The columns contain several statistical metrics, including minimum, max-

imum, energy, and signal magnitude area.

Both dataframes contain complete and well-preprocessed datasets as all the columns
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are non-null, as illustrated below:

1 <class ’pandas.core.frame.DataFrame ’>

2 RangeIndex: 1656 entries , 0 to 1655

3 Data columns (total 98 columns):

4 # Column Non -Null Count Dtype

5 --- ------ -------------- -----

6 0 acc_x_min 1656 non -null float64

7 1 acc_y_min 1656 non -null float64

8 2 acc_z_min 1656 non -null float64

9 3 gyr_x_min 1656 non -null float64

10 4 gyr_y_min 1656 non -null float64

11 5 gyr_z_min 1656 non -null float64

12 6 acc_x_max 1656 non -null float64

13 7 acc_y_max 1656 non -null float64

14 8 acc_z_max 1656 non -null float64

15 9 gyr_x_max 1656 non -null float64

16 10 gyr_y_max 1656 non -null float64

17 11 gyr_z_max 1656 non -null float64

18 12 acc_x_maxmin_diff 1656 non -null float64

19 13 acc_y_maxmin_diff 1656 non -null float64

20 ...

21 93 gyr_z_energy 1656 non -null float64

22 94 avg_result_acc 1656 non -null float64

23 95 avg_result_gyr 1656 non -null float64

24 96 acc_sma 1656 non -null float64

25 97 gyr_sma 1656 non -null float64

26 dtypes: float64 (74), int64 (24)

27 memory usage: 1.2 MB

1 <class ’pandas.core.frame.DataFrame ’>

2 RangeIndex: 551 entries , 0 to 550

3 Data columns (total 98 columns):

4 # Column Non -Null Count Dtype

5 --- ------ -------------- -----

6 0 acc_x_min 551 non -null float64
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7 1 acc_y_min 551 non -null float64

8 2 acc_z_min 551 non -null float64

9 3 gyr_x_min 551 non -null float64

10 4 gyr_y_min 551 non -null float64

11 5 gyr_z_min 551 non -null float64

12 6 acc_x_max 551 non -null float64

13 7 acc_y_max 551 non -null float64

14 8 acc_z_max 551 non -null float64

15 9 gyr_x_max 551 non -null float64

16 10 gyr_y_max 551 non -null float64

17 11 gyr_z_max 551 non -null float64

18 12 acc_x_maxmin_diff 551 non -null float64

19 13 acc_y_maxmin_diff 551 non -null float64

20 ...

21 93 gyr_z_energy 551 non -null float64

22 94 avg_result_acc 551 non -null float64

23 95 avg_result_gyr 551 non -null float64

24 96 acc_sma 551 non -null float64

25 97 gyr_sma 551 non -null float64

26 dtypes: float64 (74), int32 (18), int64 (6)

27 memory usage: 383.2 KB

After applying the windowing technique, the number of unique user IDs reduced to

5 as the window was labeled with the most frequently occurring ID:

1 acc_training_unique_labels: [1 5 7 8 9]

2 gyr_training_unique_labels: [1 5 7 8 9]

3 acc_testing_unique_labels: [1 5 7 8 9]

4 gyr_testing_unique_labels: [1 5 7 8 9]

Feature engineering is a crucial aspect of machine learning, especially when deal-

ing with time-series data. In this process, raw data is transformed into meaningful

features that can be more efficiently processed by machine learning models. By cre-

ating a dataset that is both representative and informative, the accuracy of learning,

classification, and prediction is significantly improved. If this process is ignored, the
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efficiency and precision of a machine learning model’s output can be severely im-

pacted.

4.4 Empirical analysis of classification methods for time-series

data

In this concluding chapter, a systematic examination of three prominent classifi-

cation models specifically tailored for time-series analysis is conducted. The im-

portance of meticulously evaluating the effectiveness and precision of each model

in differentiating among individual users is underscored, given the intricate nature

of the dataset derived from accelerometer and gyroscope readings captured by a

smartphone.

For an in-depth analysis, two distinct parameter tuning methods are applied to each

classification model. This methodical procedure culminates in six comprehensive

tests, aimed at determining the optimal configuration for achieving the highest level

of accuracy and efficiency in user recognition.

The analytical endeavor is underpinned by two primary objectives. The first objec-

tive is to identify the best model and tuning combination specifically tailored for this

dataset. Simultaneously, the second objective is to explore the wider implications

and intricacies of parameter configuration variations and their subsequent impact

on model efficacy.

4.4.1 Logistic Regression Model

Logistic Regression (LR) is an algorithm that is commonly used to classify data

into two distinct labels. However, it can also be modified to work for multi-class

classification. The way it works is by calculating the probability of a given input

belonging to a specific class.

If the probability of a given input belonging to a specific class is greater than a
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certain threshold, which is usually set to 0.5, then the algorithm will predict that

the input belongs to that class. On the other hand, if the probability is less than

the threshold, the algorithm will predict that the input belongs to the other class.

Feature Set Standardizing

To ensure accurate LR models, it is important to standardize features by centering

them around zero and giving them a standard deviation of one, using the standard

score formula:

z =
x− µ

σ
(4.25)

where µ is the mean of the training samples, and σ is the standard deviation of the

training samples.

To maintain consistency in feature sets, the StandardScaler() method from scikit

-learn, a well-known Python library for data analysis and data mining, is utilized

before training the model. The fit method is used to calculate the mean and standard

deviation of the training data, and the features are standardized using the transform

method.

To ensure consistent scaling between the training and testing data, the scaler is

fitted solely to the training data. The same scaling is subsequently applied to both

datasets. Care is taken not to fit the scaler to the testing data, which can result in

potential data leakage and inaccurate test results. The same transformation applied

to the training data is then used on the testing data.

An example Python code illustrating the scaling process is provided below:

1 y_train = np.array(training_labels_list)

2 y_test = np.array(testing_labels_list)

3
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4 scaler = StandardScaler ()

5 scaler.fit(training_data_df)

6 x_train_data_lr = scaler.transform(training_data_df)

7 x_test_data_lr = scaler.transform(testing_data_df)

The variable x_train_data_lr mentioned earlier is a standardized version of the

training_data_df. This standardized data will be used to train the LR model. Stan-

dardization of the training data makes sure that all features are on the same scale.

This helps the LR model to converge faster and find a better solution.

Similarly, the x_test_data_lr is the standardized version of the testing_data_df. This

standardized test data is crucial for evaluating the LR model. To ensure that the

model is evaluated fairly, it is important to use the same scaling, including mean

and standard deviation, that was applied to the training data.

Model Training

The provided Python code trains an LR model on standardized training data and

uses the model to predict labels for standardized testing data:

1 logistic_regression = LogisticRegression(random_state = 21,

max_iter =1000)

2 logistic_regression.fit(x_train_data_lr , y_train)

3 logistic_regression_default_y_pred = logistic_regression.predict(

x_test_data_lr)

4 logistic_regression_default_report = classification_report(y_test ,

logistic_regression_default_y_pred , digits =4)

LR model training (with default parameters) classification report:

1 precision recall f1-score support

2

3 1 0.7812 0.8427 0.8108 89

4 5 0.8353 0.9861 0.9045 72

5 7 1.0000 0.9833 0.9916 60
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6 8 0.9712 0.9278 0.9490 291

7 9 1.0000 0.8462 0.9167 39

8

9 accuracy 0.9220 551

10 macro avg 0.9176 0.9172 0.9145 551

11 weighted avg 0.9279 0.9220 0.9232 551

• Accuracy: This ratio reflects the number of correct predictions made by the

model in comparison to the total number of observations. It is a good measure

when the classes of the target variable in the data are balanced:

Accuracy =
True Positives + True Negatives

Total Observations
(4.26)

• Precision: When it comes to measuring the accuracy of a classification, Pre-

cision is a commonly used metric. Essentially, it measures how many positive

outcomes were predicted correctly out of all the predictions that were made.

Another term for Precision is Positive Predictive Value. To calculate Precision,

the following formula is used:

Precision =
True Positives

True Positives + False Positives
(4.27)

• Recall: The Recall, also known as Sensitivity, Hit Rate or True Positive Rate,

and it represents the proportion of correct positive predictions to all actual

positive observations in a class. In order to calculate Recall, the following

formula is used:
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Recall =
True Positives

True Positives + False Negatives
(4.28)

• F1-Score: The F1-Score is a metric that evaluates the performance of a

classifier. It is calculated as the weighted average of Precision and Recall,

taking into account false positives and false negatives. This score provides an

accurate assessment of the classifier’s value for both recall and precision. In

order to calculate F1-Score, the following formula is used:

F1 =
2× Precision× Recall

Precision + Recall
(4.29)

• Support: When analyzing a dataset, the term Support refers to the number

of instances of a particular class. In a classification report, the support for

each class indicates the number of instances of that class in the actual data.

• Macro Avg: The Macro Average calculates the metric for each class and

averages the results, treating all classes equally.

• Weighted Avg: The Weighted Average calculates the average of metrics by

weighting the score of each class based on its presence in the true data sample.

Confusion Matrix

The confusion matrix is a valuable tool for assessing the accuracy of a classification

model. It is commonly used when the true values of a dataset are known. The matrix

is constructed with rows and columns, where each row represents the predicted

instances within a specific class and each column represents the actual instances

within a specific class. This organization helps evaluate the model’s performance by
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identifying true positives, false positives, true negatives, and false negatives.

In a binary classification task, a confusion matrix will be a 2x2 table as shown in

table 4.1:

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

Table 4.1 Confusion Matrix for Binary Classification

• True Positives (TP): True positives are cases where the actual and predicted

class values are both 1.

• True Negatives (TN): True negatives are values that are correctly predicted

as negative, indicating that the actual and predicted class values are both 0

• False Positives (FP): A false positive occurs when the predicted class is 1, but

the actual class is 0.

• False Negatives (FN): False negatives occur when the predicted class is 0, but

the actual class is 1.

When dealing with tasks that involve multiple categories, the confusion matrix ex-

pands to accommodate the greater number of prediction categories. Despite the

increase in size, the fundamental principle remains consistent. Each matrix entry

specifies the count of predictions for a particular category versus its actual occur-

rences.

In the current classification task, there are five distinct categories labeled as one, five,

seven, eight, and nine. Therefore, the confusion matrix will have a size of 5x5. The

diagonal, running from the top left to the bottom right, displays the True Positives,

which are instances where the model’s predictions align with the actual categories.

Conversely, off-diagonal entries indicate where the model has made inaccuracies.
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Here is a Python code that uses default parameters to create a visualization of an

LR model’s prediction results, as shown in Figure 4.22.

1 from sklearn.metrics import confusion_matrix

2 import seaborn as sns

3 labels = np.unique(training_labels_list)

4 log_reg_confusion_mat = confusion_matrix(y_test ,

logistic_regression_default_y_pred)

5 sns.heatmap(log_reg_confusion_mat , xticklabels=labels , yticklabels=

labels , annot=True , linewidths = 0.2, fmt=’d’, cmap = ’BuPu’)
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Figure 4.22 Confusion Matrix of Logistic Regression (default parameters)

A conclusion can be drawn from the provided confusion matrix that the LR model

has performed relatively well in predicting user IDs. A high level of accuracy was

observed across the diagonal of the matrix, which represents correct predictions or

True Positives. User IDs 7, 5, and 9 were predicted with 59, 71, and 33 correct

predictions, respectively, while User ID 8 had the highest number of correct predic-

tions, with a total of 270. However, there are a few misclassifications that need to

be taken into consideration.

User ID 1 was misclassified eight times as user ID 5 and 6 times as user ID 8.
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Similarly, User ID 8 was mispredicted 18 times as user ID 1. User ID 9 had only

minor misclassifications to user IDs 1, 5, and 8.

Although good accuracy was demonstrated for several user IDs, there is a struggle

to differentiate between user IDs 1 and 8, which suggests that there is room for

improvement. By tuning the model, its accuracy might be enhanced.

Optimizing the model parameters with GridSearchCV

Tuning hyperparameters is crucial for achieving the best model performance. Grid-

SearchCV is a useful technique that facilitates the process of hyperparameter tun-

ing. This method involves exhaustive search through a set parameter grid, where

the model is trained for each parameter combination. The parameters that produce

the best results are selected based on a cross-validated metric.

When working with an LR model, it is recommended to use GridSearchCV as it

provides several advantages. Firstly, it helps to find the most suitable parameters

for the model, resulting in a more accurate and robust model. This is particularly

important for LR, which has several hyperparameters such as the regularization

strength (C), penalty type (penalty), and solver algorithm (solver).

Additionally, GridSearchCV performs k-fold cross-validation during the search. This

process helps in selecting parameters that generalize well to unseen data. This is

crucial in avoiding overfitting the model to the training data.

Moreover, the parameter selection process is automated, saving significant time

and effort, especially when there are multiple hyperparameters with many possible

values.

Lastly, the flexibility of specifying any performance metric (accuracy, precision, re-

call, etc.) to select the best parameters allows for customization based on the specific

requirements of the problem at hand.
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GridSearchCV with an LR model selects optimal hyperparameters based on given

performance metric, resulting in a more accurate and robust model.

Here is a Python code that utilizes GridSearchCV with the LR model:

1 from sklearn.model_selection import GridSearchCV , cross_val_score

2 from sklearn.linear_model import LogisticRegression

3

4 # Define the parameter grid to search over

5 param_grid = {

6 ’C’: [0.001 , 0.01, 0.1, 1, 10, 100],

7 ’penalty ’: [’l2’],

8 ’solver ’: [’liblinear ’, ’lbfgs’]

9 }

10

11 logistic_regression = LogisticRegression(max_iter =1000)

12 grid_search = GridSearchCV(logistic_regression , param_grid , cv=5)

13

14 # Fit the GridSearchCV instance the original data

15 grid_search.fit(x_train_data_lr , y_train)

16 print("Best parameters:", grid_search.best_params_)

17

18 # Get the best model from the grid search

19 best_model = grid_search.best_estimator_

20

21 # Predict using the best model

22 logistic_regression_grid_search_y_pred = best_model.predict(

x_test_data_lr)

The outcome of the GridSearchCV optimization process is as follows:

1 Best parameters: {’C’: 0.1, ’penalty ’: ’l2’, ’solver ’: ’lbfgs’}

1 logistic_regression_gridsearch_report = classification_report(

y_test , logistic_regression_grid_search_y_pred , digits =4)

Here is the classification report for the model training after the optimization with
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GridSearchCV:

1 precision recall f1-score support

2

3 1 0.7429 0.8764 0.8041 89

4 5 0.9103 0.9861 0.9467 72

5 7 1.0000 0.9833 0.9916 60

6 8 0.9710 0.9210 0.9453 291

7 9 1.0000 0.8462 0.9167 39

8

9 accuracy 0.9238 551

10 macro avg 0.9248 0.9226 0.9209 551

11 weighted avg 0.9314 0.9238 0.9257 551

Here is a Python code that uses default parameters to create a visualization of an

LR model’s prediction results after the optimization with GridSearchCV, as shown

in Figure 4.23.

1 labels = np.unique(training_labels_list)

2 log_reg_confusion_mat = confusion_matrix(y_test ,

logistic_regression_grid_search_y_pred)

3 sns.heatmap(log_reg_confusion_mat , xticklabels=labels , yticklabels=

labels , annot=True , linewidths = 0.2, fmt=’d’, cmap = color_map)

Analysis of Logistic Regression model results

Classification Report

The optimized parameter model using GridSearchCV slightly outperforms the de-

fault model with an accuracy improvement from 92.2% to 92.38%.

The model’s ability to identify positive samples in Class 1 improved after optimiza-

tion, with a recall increase from 84.27% to 87.64%. However, there was a slight

decrease in precision from 78.12% to 74.29%, indicating an increase in false posi-

tives.
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Figure 4.23 Confusion Matrix of Logistic Regression (GridSearchCV)

On the other hand, precision for Class 5 saw a significant increase from 83.53% to

91.03%, and there was a small increase in recall from 98.61% to 98.61%. Scores

remained the same for Class 7 and Class 9. Class 8 saw a slight decrease in recall

from 92.78% to 92.10%, but precision remained almost the same, dropping from

97.12% to 97.10%.

Confusion Matrix

There were 75 true positives in Class 1, which increased to 78. However, the number

of false negatives went up from 18 to 22.

In Class 5, the number of false positives decreased from 8 to 5, which is a positive

change. The confusion matrix remained unchanged for Class 7 and Class 9. In

Class 8, the number of false negatives went up from 18 to 22, but the number of

false positives decreased from 3 to 1.

Overall Performance

After optimization, an improvement was observed in the performance of the model.
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However, in certain classes, there was an increase in precision but a decrease in recall,

and vice versa. For instance, in Class 1, recall increased while precision decreased.

Conversely, in Class 5, both precision and recall increased, which is considered a

positive development.

It is crucial to determine which factor is more significant for the specific usage

scenario, precision, or recall since there is often a trade-off between the two.

Conclusion

In conclusion, optimizing the LR model slightly improved its performance. However,

it is important to consider the trade-offs in precision and recall for specific classes

depending on the application.

4.4.2 Random Forest

Random Forest (RF) is a machine learning technique that employs a collection of

decision trees to classify or predict results. Unlike LR, which is a linear model, RF

has the ability to capture complex non-linear relationships in the data. Each tree in

the Random Forest generates its own prediction, and the final output is determined

by combining these predictions. For classification tasks, the most frequently pre-

dicted class among all the trees is taken as the final prediction, while for regression,

the final prediction is typically the average of the predictions.

While LR models are robust when the relationship between the features and the

target variable can be approximated by a linear function, RF models excel in cases

where the data has intricate and non-linear patterns. It can be applied to a wide

range of tasks, including both classification and regression. Another advantage of

RF over LR is its ability to handle a mix of numerical and categorical features

without requiring much preprocessing. However, due to its ensemble nature, RF

could require more computational resources and may not be as interpretable as a
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simple LR model.

The provided Python code trains an RF model on standardized training data and

uses the model to predict labels for standardized testing data:

1 from sklearn.ensemble import RandomForestClassifier

2

3 scaler = StandardScaler ()

4 scaler.fit(training_data_df)

5 x_train_data_rf = scaler.transform(training_data_df)

6 x_test_data_rf = scaler.transform(testing_data_df)

7

8 random_forest = RandomForestClassifier(random_state =21)

9 random_forest.fit(x_train_data_rf , y_train)

10 random_forest_default_y_pred = random_forest.predict(x_test_data_rf

)

11 random_forest_default_report = classification_report(y_test ,

random_forest_default_y_pred , digits =4)

RF model training (with default parameters) classification report:

1 precision recall f1-score support

2

3 1 0.7188 0.7753 0.7459 89

4 5 0.8250 0.9167 0.8684 72

5 7 1.0000 0.9833 0.9916 60

6 8 0.9684 0.9485 0.9583 291

7 9 0.9677 0.7692 0.8571 39

8

9 accuracy 0.9074 551

10 macro avg 0.8960 0.8786 0.8843 551

11 weighted avg 0.9127 0.9074 0.9087 551

Here is a Python code that uses default parameters to create a visualization of an

RF model’s prediction results, as shown in Figure 4.24.

1 labels = np.unique(training_labels_list)
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2 random_forest_default_confusion_mat = confusion_matrix(y_test ,

random_forest_default_y_pred)

3 sns.heatmap(random_forest_default_confusion_mat , xticklabels=labels

, yticklabels=labels , annot=True , linewidths = 0.2, fmt=’d’,

cmap = color_map)
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Figure 4.24 Confusion Matrix of Random Forest (default parameters)

Here is a Python code that utilizes GridSearchCV with the RF model:

1 from sklearn.ensemble import RandomForestClassifier

2 from sklearn.model_selection import GridSearchCV

3

4 # Define the parameter grid to search over

5 param_grid = {

6 ’n_estimators ’: [10, 50, 100, 200],

7 ’max_features ’: [’sqrt’],

8 ’max_depth ’: [10, 20, 30, None],

9 ’min_samples_split ’: [2, 5, 10],

10 ’min_samples_leaf ’: [1, 2, 4],

11 ’bootstrap ’: [True , False]

12 }
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13

14 random_forest = RandomForestClassifier(random_state =21)

15 grid_search = GridSearchCV(random_forest , param_grid , cv=5)

16

17 # Fit the GridSearchCV instance the original data

18 grid_search.fit(x_train_data_rf , y_train)

19 print("Best parameters:", grid_search.best_params_)

20

21 # Get the best model from the grid search

22 best_model = grid_search.best_estimator_

23

24 # Predict using the best model

25 random_forest_gridsearch_y_pred = best_model.predict(x_test_data_rf

)

The outcome of the GridSearchCV optimization process is as follows:

1 Best parameters: {’bootstrap ’: False , ’max_depth ’: 20, ’

max_features ’: ’sqrt’, ’min_samples_leaf ’: 4, ’min_samples_split

’: 2, ’n_estimators ’: 50}

Here is the classification report for the model training after the optimization with

GridSearchCV:

1 random_forest_gridsearch_report = classification_report(y_test ,

random_forest_gridsearch_y_pred , digits =4)

1 precision recall f1-score support

2

3 1 0.7423 0.8090 0.7742 89

4 5 0.8608 0.9444 0.9007 72

5 7 1.0000 0.9833 0.9916 60

6 8 0.9718 0.9485 0.9600 291

7 9 0.9375 0.7692 0.8451 39

8

9 accuracy 0.9165 551

10 macro avg 0.9025 0.8909 0.8943 551
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11 weighted avg 0.9209 0.9165 0.9175 551

Here is a Python code example that uses default parameters to visualize an RF

model’s prediction results after the optimization with GridSearchCV, as shown in

Figure 4.25.
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Figure 4.25 Confusion Matrix of Random Forest (GridSearchCV)

Analysis of Random Forest model results

Classification Report

After comparing the two reports, it was observed that the model with optimized pa-

rameters using GridSearchCV performed slightly better than the model with default

parameters in terms of accuracy, precision, recall, and f1-score.

According to the test results, the model using default parameters had an accuracy

rate of 90.74%. The weighted average of precision, recall, and f1-score were 0.9127,

0.9074, and 0.9087, respectively.

However, after optimizing the model using GridSearchCV, the accuracy improved to

91.65%, while the weighted average of precision, recall, and f1-score were respectively
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0.9209, 0.9165, and 0.9175.

Confusion Matrix

The default model has a tendency to misclassify class 1 as either class 5 (14 times)

or class 8 (6 times). Additionally, class 8 is often misclassified as class 1 (15 times)

and class 9 is misclassified as either class 1 (8 times) or class 8 (1 time).

However, after undergoing optimization through GridSearchCV, there was a de-

crease in the number of misclassifications for class 1 as class 5 (11 instead of 14) and

similar misclassifications for other classes compared to the default model.

Overall, the optimized model had slightly fewer misclassifications between certain

classes.

Conclusion

In conclusion, implementing GridSearchCV optimization for the RF model led to

a slight improvement in the accuracy, precision, recall, and f1-score of the model.

These enhancements were evident in both the classification report and confusion

matrix. It is important to note that even minor improvements can be critical,

especially in cases where the cost of misclassification is significant.

4.4.3 Gradient Boosting Machine

Gradient Boosting Machine (GBM) is a powerful machine learning technique that

can be used for both classification and regression tasks. As an ensemble learning

method, GBM combines the predictions of multiple machine learning models to

produce more accurate predictions than any individual model.

GBM operates iteratively and emphasizes the errors from previous iterations, or

”weak learners,” to enhance its performance. This step-by-step process enables

GBM to improve its predictions over successive iterations, making it a flexible and
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adaptable method that can optimize any given differentiable loss function.

Compared to LR, which is a linear classifier, GBM can capture complex non-linear

relationships in data. This makes it a preferred choice in scenarios with intricate data

structures. While LR works well when the relationship between features and the

target can be delineated linearly, GBM is designed to navigate through and exploit

more nuanced data patterns. However, this complexity comes at a cost. GBM

models can be more computationally intensive to train than LR models and might

require more careful tuning to avoid overfitting. Additionally, the interpretability

of GBM models can be more challenging compared to the straightforward nature of

LR coefficients.

The provided Python code trains a GBM on standardized training data and uses

the model to predict labels for standardized testing data:

1 from sklearn.ensemble import GradientBoostingClassifier

2

3 y_train = np.array(training_labels_list)

4 y_test = np.array(testing_labels_list)

5

6 scaler = StandardScaler ()

7 scaler.fit(training_data_df)

8 x_train_data_gbm = scaler.transform(training_data_df)

9 x_test_data_gbm = scaler.transform(testing_data_df)

10

11 gbm = GradientBoostingClassifier(random_state =21)

12 gbm.fit(x_train_data_gbm , y_train)

13 gbm_default_y_pred = gbm.predict(x_test_data_gbm)

14 gbm_default_default_report = classification_report(y_test ,

gbm_default_y_pred , digits =4)

GBM training (with default parameters) classification report:

1 precision recall f1 -score support

2
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3 1 0.7917 0.8539 0.8216 89

4 5 0.8537 0.9722 0.9091 72

5 7 1.0000 0.9667 0.9831 60

6 8 0.9684 0.9485 0.9583 291

7 9 1.0000 0.7692 0.8696 39

8

9 accuracy 0.9256 551

10 macro avg 0.9227 0.9021 0.9083 551

11 weighted avg 0.9305 0.9256 0.9262 551

Here is a Python code that uses default parameters to visualise GBM prediction

results, as shown in Figure 4.26.

1 labels = np.unique(training_labels_list)

2 gbm_confusion_mat = confusion_matrix(y_test , gbm_default_y_pred)

3 sns.heatmap(gbm_confusion_mat , xticklabels=labels , yticklabels=

labels , annot=True , linewidths = 0.2, fmt=’d’, cmap = color_map)
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Figure 4.26 Confusion Matrix of GBM (default parameters)

Here is a Python code that utilizes GridSearchCV with GBM:

1 from sklearn.ensemble import GradientBoostingClassifier

69



2 from sklearn.model_selection import GridSearchCV

3

4 # Define the parameter grid to search over

5 param_grid = {

6 ’n_estimators ’: [10, 50, 100, 200],

7 ’learning_rate ’: [0.001 , 0.01, 0.1, 0.2],

8 ’max_depth ’: [3, 5, 10],

9 ’min_samples_split ’: [2, 5, 10],

10 ’min_samples_leaf ’: [1, 2, 4],

11 }

12

13 gbm = GradientBoostingClassifier(random_state =21)

14 grid_search = GridSearchCV(gbm , param_grid , cv=5)

15

16 # Fit the GridSearchCV instance the original data

17 grid_search.fit(x_train_data_gbm , y_train)

18 print("Best parameters:", grid_search.best_params_)

19

20 # Get the best model from the grid search

21 best_model = grid_search.best_estimator_

22

23 # Predict using the best model

24 gbm_gridsearch_y_pred = best_model.predict(x_test_data_gbm)

The outcome of the GridSearchCV optimization process is as follows:

1 Best parameters: {’learning_rate ’: 0.1, ’max_depth ’: 5, ’

min_samples_leaf ’: 2, ’min_samples_split ’: 2, ’n_estimators ’:

200}

Here’s the classification report for GBM training after the optimization with Grid-

SearchCV:

1 gbm_gridsearch_report = classification_report(y_test ,

gbm_gridsearch_y_pred , digits =4)
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1 precision recall f1-score support

2

3 1 0.8000 0.8090 0.8045 89

4 5 0.8519 0.9583 0.9020 72

5 7 0.9672 0.9833 0.9752 60

6 8 0.9650 0.9485 0.9567 291

7 9 0.9091 0.7692 0.8333 39

8

9 accuracy 0.9183 551

10 macro avg 0.8986 0.8937 0.8943 551

11 weighted avg 0.9199 0.9183 0.9182 551

Here is a Python code that uses default parameters to visualise GBM prediction

results, as shown in Figure 4.27.
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Figure 4.27 Confusion Matrix of GBM (GridSearchCV optimization)

Analysis of Gradient Boosting Machine results

Classification Report

Upon initial inspection, it was noted that the Gradient Boosting Machine (GBM)
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model with default parameters performed marginally better in terms of accuracy,

precision, recall, and f1-score than the optimized model.

The default GBMmodel had an accuracy score of 92.56%, while the weighted average

precision, recall, and f1-score values were 0.9305, 0.9256, and 0.9262, respectively.

However, after optimizing the model using GridSearchCV, the accuracy score slightly

decreased to 91.83%. The weighted average precision, recall, and f1-score values for

the optimized model were 0.9199, 0.9183, and 0.9182, respectively.

Confusion Matrix

During the initial testing of the GBM with default parameters, significant misclas-

sifications were observed between classes 1 and 8, occurring 6 times, and between

classes 8 and 1, occurring 13 times. However, relatively good performance was ob-

served with classes 7 and 9, where class 9 had a slightly higher misclassification rate

compared to class 7.

After the model was optimized with GridSearchCV, a slight increase in misclassifica-

tions between class 1 and 8 was observed, which occurred 8 times, compared to the

default model. The misclassification rate between classes 8 and 1 remained almost

the same, with 12 instances. Additionally, a few new misclassifications between class

1 and 7 and between class 8 and 7 were observed, but they were minimal.

Conclusion

To conclude, upon comparing the metrics of the classification report, it appears

that the GBM with default parameters outperforms the optimized model slightly.

Furthermore, the optimized model seems to have a slightly higher rate of misclassi-

fication between certain classes.

It is important to note that GridSearchCV, which is used to find the best hyper-

parameters for a model, is limited to the predefined hyperparameter space given
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during the search. In this case, the optimization performed by GridSearchCV did

not result in an improved model when compared to the default parameters.

4.4.4 Applied machine learning models

Logistic Regression, Random Forest, and Gradient Boosting Machine models were

used for both training and test datasets. The models were tested with default

parameters and with optimized parameters using GridSearchCV. The table 4.2

summarizes the accuracy of machine learning models:

Model Accuracy Precision Recall F1-Score
LR (default) 0.9220 0.9176 0.9172 0.9145
LR (GridSearchCV) 0.9238 0.9248 0.9226 0.9209
RF (default) 0.9074 0.8960 0.8786 0.8843
RF (GridSearchCV) 0.9165 0.9025 0.8909 0.8943
GBM (default) 0.9256 0.9227 0.9021 0.9083
GBM (GridSearchCV) 0.9183 0.8986 0.8937 0.8943

Table 4.2 Comparison of different models’ performance metrics.

Analyzing the performance of machine learning models, particularly for behavioral

authentication that recognizes users through time-series data using accelerometer

and gyroscope data, requires considering a combination of factors such as model

performance metrics, underlying assumptions, and computational complexities. Be-

low is a detailed analysis explaining these factors in detail:

Accuracy

After performing hyperparameter tuning on the models using GridSearchCV, it was

found that LR had the highest accuracy among all the models, with an accuracy

score of 0.9238. Following optimization, both the RF and GBM models showed an

increase in accuracy, with RF achieving an accuracy of 0.9165.

Notably, the default GBM model, without hyperparameter tuning, performed better

than its GridSearchCV counterpart, achieving the highest overall accuracy of 0.9256.
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Precision and Recall

Among the models, LR with GridSearchCV optimization has the highest precision

when identifying users. This means that the model can correctly identify users most

of the time. LR also has a relatively high recall, which signifies the proportion of

actual positive cases predicted correctly.

In comparison, RF with GridSearchCV and GBM with default settings have similar

precision and recall. After optimization, RF has slightly higher precision, while

GBM with default settings has better recall.

Overall, LR is the best performer when it comes to precision and recall. This

showcases its robustness in correctly identifying users and not missing any actual

users.

F1-Score

The F1-Score is a metric that assesses a model’s accuracy and completeness by

combining precision and recall.

Among the models optimized with GridSearchCV, LR has the highest F1-Score,

which is 0.9209. After optimization, RF and GBM have similar F1-Scores.

Computational Complexities

Different machine learning models have varying levels of computational demands.

LR is a lightweight model with linear complexity and uses minimal computational

power and memory. However, if the dataset is too large, the training time may

become an issue.

RF is more computationally intensive as it uses an ensemble of decision trees, which

can lead to increased memory usage and training time, especially if the number of

trees or depth of the trees is high. Additionally, when using GridSearchCV, the
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computational demand of RF can increase significantly.

GBM is a computationally intensive algorithm. The boosting process involves build-

ing trees sequentially, which can take a significant amount of time. Consequently,

when using GridSearchCV, the complexity of GBM can increase even further, re-

sulting in a considerable amount of time required for the algorithm to execute. For

instance, it took quite many hours to run on a PC that was employed for the calcu-

lations in this thesis.

Task-specific Considerations

When working with time-series data, it is essential to consider the intricate rela-

tionships and non-linearities that might exist. Models such RF and GBM may be

advantageous in these situations because of their ability to handle such complexities.

However, in real-time applications like behavioral authentication, computation speed

is a critical factor. Even if LR provides slightly lower accuracy, its efficiency may

make it the preferred choice in such scenarios.

Conclusion

Recognizing users from time-series data using accelerometer and gyroscope data

is a crucial task. In this regard, the best combination of performance (accuracy,

precision, recall, and F1-score) and computational efficiency is offered by LR with

GridSearchCV.

However, if abundant computational resources are available and small increases in

accuracy are important, the GBM or RF with GridSearchCV may be considered.

When making the final decision, the deployment scenario, such as real-time versus

batch processing, should be taken into account. Therefore, it is recommended to

choose the appropriate model according to the specific use case.
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4.5 Interpreting LR model result using SHAP

SHAP (SHapley Additive exPlanations) is a method that provides a comprehensive

way to measure the importance of features within a model. The values are derived

from game theory and are based on the concept of Shapley values. SHAP values

allocate the discrepancy between a model’s prediction and the average prediction

to each feature in a consistent and equitable manner. This makes it easier to un-

derstand the importance of each feature in the model and how it contributes to the

final outcome.

The provided Python code visualizes LR model (with GridSearchCV optimisation)

result using SHAP:

1 import shap

2 import matplotlib.pyplot as plt

3 from tqdm.notebook import tqdm

4

5 print(f’x_train_data_lr len: {len(x_train_data_lr)}’)

6 print(f’x_test_data_lr len: {len(x_test_data_lr)}’)

7

8 # Take a random sample of the training data

9 # as the background dataset

10 background_data = shap.sample(x_train_data_lr , 400)

11 explainer = shap.KernelExplainer(best_model.predict_proba ,

background_data)

12

13 # Compute SHAP values for a subset of

14 # the test data (to save computation time)

15 sample_test_data = shap.sample(x_test_data_lr , 200)

16 shap_values = explainer.shap_values(sample_test_data)

17

18 shap.initjs ()

19 shap.force_plot(explainer.expected_value [0], shap_values [0][0] ,

sample_test_data [0])
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20 feature_names = training_data_df.columns

21 shap.summary_plot(shap_values , sample_test_data , feature_names=

feature_names)

The figure 4.28 provides a summary of the features that influence the predictions of

LR(GridSearchCV):
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Figure 4.28 Summary of the features that affect the LR(GridSearchCV) predictions

4.5.1 Top 10 feature contributions

Top 10 feature contributions that highly influenced the model’s prediction are listed

below:
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1. Gyroscope Z-axis peak count (gyr_z_peak_count).

2. Count of positive values on the Y-axis of accelerometer (acc_y_pos_count).

3. Count of negative values on the Y-axis of accelerometer (acc_y_neg_count).

4. Gyroscope Y-axis peak count (gyr_y_peak_count).

5. Accelerometer Y-axis peak count (acc_y_peak_count).

6. Count of positive values on the X-axis of accelerometer (acc_x_pos_count).

7. Count of negative values on the X-axis of accelerometer (acc_x_neg_count).

8. Minimum value on the Z-axis of accelerometer (acc_z_min).

9. Energy of X-axis gyroscope (gyr_x_energy).

10. Accelerometer X-axis peak count (acc_x_peak_count).

4.5.2 Conclusion

After analyzing the model’s predictions, it was found that the Z-axis of the gyroscope

and the Y-axis of the accelerometer have the greatest impact on peak counts, positive

and negative value counts, and energy metrics. It is noteworthy that relying on these

features improves the computational efficiency of the model.

Additionally, these features are relatively easy to obtain, which ensures that the

model’s performance is not compromised while enhancing its efficiency and speed.

The balance between the model’s accuracy and computational simplicity makes

it highly effective for real-time applications or situations where computational re-

sources are limited.

4.6 Data Collection and Analysis with Galaxy S21 Ultra

The quality and authenticity of data plays a pivotal role in understanding and

modeling human activities through sensors. A project was undertaken to gather
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raw sensor readings during various activities using the state-of-the-art Galaxy S21

Ultra smartphone. Specifically, the focus was on collecting data for the ”Walking”

activity of 5 users.

The data collection process was facilitated by the Sensor Logger Android app,

which provided a seamless interface to record and export the necessary sensor data.

In this chapter, the intricacies of this dataset, its characteristics, and the insights

drawn from it will be discussed in detail.

4.6.1 Data Format Conversion

In order to simplify and standardize the processing of data, it was crucial that all

datasets be in a consistent format. Therefore, the data files generated by the Sensor

Logger application were converted to match the original data format used in this

thesis. A generic Python code demonstrating this conversion process is presented

below:

1 def convert_sensor_format_2_to_1(df_format_2 , username):

2 df_converted = df_format_2.copy()

3

4 # Rename the columns

5 df_converted.rename(columns ={

6 ’time’: ’timestamp ’,

7 ’z’: ’sensor_z_axis ’,

8 ’y’: ’sensor_y_axis ’,

9 ’x’: ’sensor_x_axis ’

10 }, inplace=True)

11

12 # Add the new columns

13 # For "id", generate an incremental series of numbers starting

from 0

14 df_converted[’id’] = range(len(df_converted))

15
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16 # Set "username", "activity_id", and "activity" to the

specified values

17 df_converted[’username ’] = username

18 df_converted[’activity_id ’] = -499

19 df_converted[’activity ’] = ’Walking ’

20

21 # Reorder columns to match Format 1

22 column_order = [

23 ’id’,

24 ’username ’,

25 ’timestamp ’,

26 ’sensor_x_axis ’,

27 ’sensor_y_axis ’,

28 ’sensor_z_axis ’,

29 ’activity_id ’,

30 ’activity ’]

31 df_converted = df_converted[column_order]

32 return df_converted

4.6.2 Sampling Rate Evaluation

Figures 4.29 to 4.38 display histograms of sampling periods for the ”Walking” seg-

ments for both sensors datasets:
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Figure 4.29 Histograms of sampling periods, dataset: 1, user ID: 1
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Figure 4.30 Histograms of sampling periods, dataset: 2, user ID: 1
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Figure 4.31 Histograms of sampling periods, dataset: 1, user ID: 2

Upon analyzing the sampling period histograms for the datasets collected using the

Galaxy S21 Ultra smartphone, certain discrepancies in sampling rates were observed

across different datasets. The statistics for each dataset are presented below:

• Dataframe 0: 3.4% outliers; average sampling rate: 48.4 Hz

• Dataframe 1: 2.7% outliers; average sampling rate: 58.3 Hz

• Dataframe 2: 3.6% outliers; average sampling rate: 45.7 Hz

• Dataframe 3: 4.2% outliers; average sampling rate: 33.1 Hz

• Dataframe 4: 2.5% outliers; average sampling rate: 67.8 Hz

• Dataframe 5: 3.6% outliers; average sampling rate: 57.0 Hz
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Figure 4.32 Histograms of sampling periods, dataset: 2, user ID: 2
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Figure 4.33 Histograms of sampling periods, dataset: 1, user ID: 3

• Dataframe 6: 3.3% outliers; average sampling rate: 56.0 Hz

• Dataframe 7: 2.5% outliers; average sampling rate: 62.3 Hz

• Dataframe 8: 3.7% outliers; average sampling rate: 54.5 Hz

• Dataframe 9: 3.6% outliers; average sampling rate: 55.8 Hz

Due to variations in sampling rates and the presence of outliers, it was decided to

analyze the datasets ”as is” using the LR model, without performing any resampling

procedures. This approach aims to maintain the authenticity of the analysis and

predictions, ensuring that they remain as close to real-life conditions as possible.

The primary objective is to determine how the model performs with raw data,
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Figure 4.34 Histograms of sampling periods, dataset: 2, user ID: 3
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Figure 4.35 Histograms of sampling periods, dataset: 1, user ID: 4

embracing the inherent variability and real-world imperfections present in data col-

lection.

4.6.3 Applying the LR model

Classification Report

LR model training (with default parameters) classification report:

1 precision recall f1-score support

2

3 1 0.9414 0.8968 0.9186 1396

4 2 0.6283 0.7380 0.6788 355

5 3 0.6295 0.9524 0.7580 273
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Figure 4.36 Histograms of sampling periods, dataset: 2, user ID: 4
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Figure 4.37 Histograms of sampling periods, dataset: 1, user ID: 5

6 4 0.6297 0.8535 0.7247 273

7 5 0.9389 0.8187 0.8747 1820

8

9 accuracy 0.8494 4117

10 macro avg 0.7536 0.8519 0.7909 4117

11 weighted avg 0.8719 0.8494 0.8550 4117

The overall accuracy of the model on the dataset was found to be 84.94%. In terms

of macro average, the model demonstrated a precision of 75.36%, recall of 85.19%,

and F1-Score of 79.09%.

Furthermore, the weighted average values for precision, recall, and F1-Score are

87.19%, 84.94%, and 79.09%, respectively.
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Figure 4.38 Histograms of sampling periods, dataset: 2, user ID: 5
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Figure 4.39 Logistic Regression with default parameters

Looking at the confusion matrix, it is evident that some of the classes were predicted

accurately, while others, especially Class 5, had a high number of false positives.

The LR model’s performance is impressive, given the dataset’s inherent challenges.

However, the discrepancies in precision and recall values across the classes emphasize

the impact of sampling rates and outliers in the data. This highlights the importance

of having a well-prepared dataset or adapting machine learning models to handle
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real-world, raw data effectively.

Conclusion

After thoroughly analyzing the results obtained from applying the LR model on

a relatively short and unprepared dataset (without cleaning up the outliers and

resampling), some conclusions can be made. Despite the challenges posed by the

differences in sampling rates and outlier presence, the model performed well on mul-

tiple metrics. The model’s accuracy rates were high, and it showed robust precision,

recall, and F1-Score values for several classes, which demonstrated its resilience and

adaptability.

It is important to note that many advanced models require carefully curated data

to perform at their best. However, in real-world situations, obtaining such pristine

data is often a luxury that is not always feasible. The LR model’s ability to pro-

duce satisfactory results on unprocessed data highlights its suitability for practical

applications where data preprocessing might be limited or even unwanted.
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5. GLOBAL CONCLUSION ON LOGISTIC

REGRESSION IN BEHAVIORAL BIOMETRICS

Biometrics is an evolving landscape, and gait analysis is a unique modality that

uses the natural walking patterns of individuals. The data is captured through

devices equipped with accelerometers and gyroscopes, and gait-based data is rich in

behavioral traits that are inherently distinct for each individual.

Various machine learning models can be applied to analyze and distinguish between

these walking patterns. However, it has been shown through research that LR is

the most effective model for this task. The intrinsic dynamics of gait are efficiently

captured and classified by LR, which involves intricate patterns of acceleration and

angular rotations.

Computational Efficiency : Computational efficiency is one of the most significant

advantages of LR. This model is not only capable of detecting subtle behaviors but

also has a simple computing approach. This trait is especially crucial for applications

that require real-time processing or have limited computational resources. While RF

and GBM are alternative models that can capture complex patterns, they may not

be the most efficient choice due to their high computational intensity. This can

be a disadvantage, particularly when using GridSearchCV for exhaustive parameter

tuning.

Task-specific Consideration: It is important to consider the type of biometrics when

choosing an authentication mechanism. For BB, LR is the best choice for quick

authentication due to its real-time processing speed. Although RF and GBM models
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can analyze complex time-series patterns, they are not as fast as LR.

Feature Importance: After a SHAP analysis had been conducted, it was discovered

that the model’s decisions were most influenced by certain simple features. These

features included peak counts, positive and negative value counts, and energy metrics

from the Z-axis gyroscope and Y-axis accelerometer. It is noteworthy that these

features are both informative and computationally efficient.

Model Performance on Personalized Data: Assessing the effectiveness of a behavioral

biometric system requires evaluating its ability to adjust to individual datasets. The

LR model has demonstrated remarkable adaptability and reliability, boasting an

accuracy rate of approximately 85%. This makes it a viable and dependable option

for personalized authentication.

In the future, the integration of security with user experience will be seamlessly

achieved. To accomplish this, a balance between computational efficiency, model

interpretability, and performance is crucially needed. LR has been recognized as a

strong contender because of its combination of speed, simplicity, and effective perfor-

mance. In particular, for real-time applications like BB, secure system maintenance

and prevention of compromise requires quick and accurate user authentication. The

user experience is enhanced while security is bolstered by this frictionless authenti-

cation method. Customers are not required to perform any specific actions as their

natural walking behavior is sufficient to confirm their identity. A secure and user-

friendly authentication system is provided by the fact that it is challenging to mimic

or replicate another person’s unique gait.

It is important to note that many sophisticated models often require well-curated

data to function at their best. However, in real-world scenarios, such pristine data

is a luxury that is not always feasible. The ability of the LR model to deliver

appreciable results on unprocessed data makes it suitable for practical applications

where data preprocessing might be limited or even undesirable.
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In conclusion, the LR model has proven to be not only versatile but also robust,

making it an excellent choice for applications that involve raw and unprepared data.

Its performance amidst the dataset’s imperfections highlights its potential as a reli-

able tool for real-world data analytics tasks, especially when striving for results that

are as close as possible to real-life conditions.
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