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Over the years, several types of gaming platforms have been created to encourage a 

more organised and friendly atmosphere for game lovers in various works of life, 

culture, and environment. 

This thesis focuses on the concept of interactive programming using Python. It 

encourages the use of Python to create simple interactive games applications based 

on basic human concept and ideas. 

CodeSkulptor is a browser-based IDE programming environment and uses the Python 

programming language. Originally designed by Scott Rixner of Rice University, 

CodeSkulptor is based upon CodeMirror and Skulpt.  

The method of carrying out the thesis was first to study the CodeSkulptor environment 

and the various modules available for the Python language and then delve into the 

development process. A total of five example games were written for this thesis.  
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1 INTRODUCTION 

1.1 Project Goal 

The goal of this thesis is to demonstrate how CodeSkulptor is used for game 

programming. All of the program coding will be done via CodeSkulptor. 

CodeSkulptor is an online Python interpreter that runs on a browser. More 

details about CodeSkulptor will be discussed in chapter 3. 

1.2 Project Scope 

The scope of this thesis is to enable the development and implementation of the 

following topics: 

 Programming using Functions, Logic, conditionals 

 Event-driven programming, local and global variables, buttons and input 

fields 

 Using canvas, static drawing, timers, interactive drawing 

 List, keyboard input, motion positional/velocity control 

 Acceleration and friction, spaceship class, sprite class, sound 

 Sets, groups of sprite, collisions, sprite animation 

1.3 Thesis Overview 

Chapter 2: Computer programming languages 

 

This chapter defines a program and discusses the types of programming 

languages. In addition, it introduces object-oriented languages and categories 

of programming languages. 

 

Chapter 3: Programming Environments  

 

This chapter sheds more light on the types of programming environments, IDEs 

and the CodeSkulptor environment. It also emphasizes more on the SimpleGui 

modules and how it can be applied in the reviewed games.  
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Chapter 4: Computer Games 

 

This chapter highlights the process involved in the development of several 

games. The following games were reviewed and they include: 

 

1. Rock-Paper-Scissors-Lizard-Spock:  

Randomly selects one of the choices and chooses a winner made on 

certain criteria’s (see Chapter 4.1). 

2. Guess The Number:  

A program randomly chooses a number and the player guesses the 

number chosen in a range of guesses. 

3. Stopwatch:  

Time should be stopped exactly on a zero mark e.g. (should be x.xx.0) 

4. Memory Game:  

A player picks cards/numbers with same number and finds all the 8 pairs 

to win in less number of turns. 

5. RiceRocks (Asteroids): 

A ship hits as many asteroids as possible within 3 lives. 

 

Chapter 5: Conclusion 

This chapter concludes the entire thesis. 
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2 COMPUTER PROGRAMMING LANGUAGES 

2.1 Programming languages 

The collection of details instructions that is given when expecting a computer to 

perform a specific task is known as a program (Perry, G. 1994). Without 

detailed instructions, a computer is rendered useless. Computers cannot decide 

on their own to do what it wants except detailed instructions are given to it. This 

is where programming as a term is derived. 

 

Programming languages are used to create programs that define computer 

behaviours and also provide the means for programmers to express computer 

algorithms. In other words, “a programming language is therefore a practical 

way for humans to give instructions to a computer” (Kioskea 2014). There are 

various types of programming Languages available for uses by both computers 

and people. 

2.1.1 Machine language 

A machine language is a low level programming language and it is complicated 

to read by humans but easily understood by computer. Processors use machine 

code which consists of 0s and 1s (Binary data). Codes written in this language 

are transformed into machine code for processing by the processor. 

2.1.2 Assembly language 

The “assembler” is very similar to the machine code but better understood by 

developers. Although assembly language statements are readable, they are still 

regarded as low-level programming languages.  

 

One major disadvantage of an assembly language is that it is not portable from 

one machine to the other. The term “portability” describes the ability of a 

software program to be used on different types of machine. 
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2.1.3 High-level languages 

In contrast to the machine and assembly languages, high-level languages 

“focus more on the programming logics rather than the underlying hardware 

components such as memory addressing and register utilization” (Janssen, C. 

2013). These are languages that allow the development of a program in a 

simpler programming context regardless of the computer’s hardware 

architecture. They are designed to make programming far easier and less error-

prone. 

 

Over the year various high-level languages have been developed which are 

closer to human language. Fortran II, one of the first languages, was introduced 

in 1958. In Fortran II the program would be written as; “C = A + B” which is 

quicker to write and more readable (O’Regan, G. 2012).  

 

Many high level languages have existed since Fortran II, below are examples of 

widely used languages: 

 Java 

 C 

 PHP 

 Python 

 C# 

 JavaScript 

 Perl 

2.2 Object-oriented programming language 

Object-oriented programming, or OOP, is a programming model organised 

around objects. Objects, which are usually specific realization of any object of 

classes, are used to communicate with one another  to design applications and 

computer program. There are various examples of programming languages that 

contain object-oriented programming features; C++, C#, Java, Python, PHP, 

Ruby, etc. 
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Computer languages are regarded as object-oriented if the following 

fundamental concepts are included. 

 Object:  

An object is an instance of a class. 

 Class:  

A Class defines the characteristics of an object. These characteristics 

include attributes (fields or properties) and behaviours (methods or 

operations). 

 Method:  

A method refers to the behaviour of an object and it affects one particular 

object within a program. 

 Polymorphism:  

This is where one object can be treated and used like another object. 

Polymorphism allows two or more objects to respond to the same 

message. 

 Inheritance is the ability to reuse existing objects where structure and 

methods in a particular class are passed down the hierarchy since 

classes are created in hierarchies. In other words, less programming is 

required when functions are added to complex systems. 

 Encapsulation allows the separation of an object’s implementation from 

its behaviour. It conceals the internal state of one object from other. 

2.3 Interpretation and Compilation 

There are two categories of programming languages which exist and some that 

make use of the combination of both categories. They are: 

Interpreted languages  

Complied languages 

Intermediary languages 
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2.3.1 Interpreted language 

This is a programming language that requires an external program called “the 

interpreter” which enables translation in order for the processor to understand 

the code. Codes written in this language are saved in the same format that they 

were entered (Vanguard 2012). 

2.3.2 Compiled language 

Programs written in complied language require and additional program called a 

“compiler”. This “compiler” creates a new stand-alone file (set of machine 

specific instructions) which requires no other program to execute itself. 

Compiled programs run faster that the interpreted ones because interpreted 

programs must be reduced to machine code at runtime (Vanguard 2012). 

2.3.3 Intermediary language 

Many languages make use of both the compiler and the interpreter (such as 

Pascal, C, BASIC, Python) as the programs written in these languages may 

undergo an intermediary compilation phase into a file where the source file is 

different from the language it was written in and still requiring an interpreter 

(non-executable) (Kioskea 2014). 
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3 PROGRAMMING ENVIRONMENTS 

There are various programming environments available for programming but it 

is advisable for a learner to choose an environment that allows programs to be 

created and run at the same time. Programming environments can be broken 

down into two different types: integrated development environments and 

command-line environments (Eck, D. 2004). 

Integrated development environments, or IDE, have been created over the 

years to help facilitate software development. An IDE, is a graphic user 

interface  program that combines all aspects of programming and includes in 

most cases a debugger, a visual interface builder and project management. 

Some of these IDEs are built in such a way that they contain a compiler, 

interpreter or both as the case maybe (Eck, D. 2004). A command-line 

environment, on the other hand, is just a collection of commands that can be 

typed in to run programs, edit files, and compile source code. 

3.1 Integrated Development Environments  

There are various types of sophisticated IDE’s available in various programming 

language and can be used for software development. Below are a few: 

 Eric -- an IDE written in Python with PyQt and contains some familiar Qt 

tools such as Designer and Linguist (Eric 2014). 

 Eclipse IDE -- a very popular professional development tool that supports 

Java development (The Eclipse Foundation 2014). 

 IDLE -- a Python IDE built with the Tkinter GUI toolkit and comes with 

most distributions of Python (Python Software Foundation 2014).  

 NetBeans IDE – a free “open source” program that should run on any 

system with Java 1.3 or later (Oracle Corporation 2013) 

 JCreator -- for Windows and a lighter-weight IDE that works on top of 

Sun’s SDK (Xinox Software 2014).  

http://eric-ide.python-projects.org/index.html
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://qt-project.org/
https://www.eclipse.org/
https://docs.python.org/2/library/idle.html
http://en.wikipedia.org/wiki/Tkinter
https://netbeans.org/
http://www.jcreator.com/
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 CodeSkulptor – a browser based IDE developed for creation of Python 

GUI apps using a self-maintained library: SimpleGui. Applications written 

can be saved and shared via a URL to friend or colleagues. 

3.2 CodeSkulptor 

CodeSkulptor is a browser-based programming environment for programming in 

the Python language and it implements a subset of Python2. In addition, three 

graphical libraries were added. These libraries include: SimpleGui, SimpleMap 

and SimplePlot.  

 

 

Figure 1. CodeSkulptor Environment 
 

The figure below shows the CodeSkulptor environment (can be opened via 

www.codeskulptor.org) which is made of several sections. They are: 

 

 Control area (upper Left) - This area contains buttons that allows the 

control of the application 

http://www.codeskulptor.org/
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Figure 2. Control Area 

 

 Editor (Lower Left) -  Python programs are written directly in this area. 

 Console area (Lower right) – This is where the textual output of the 

program are displayed 

 Documentation area (Upper right) – This area allows the user access to 

all documentations, videos and demonstrations that facilitate the use of 

CodeSkulptor. The “Coursera” button links the user/the developer to the 

course page on coursera’s site. It contains examples and exercises. 

 
Figure 3. Documentation Area 
  

Chrome 18+, Mozilla Firefox 11+, Apple Safari 6+ are the recommended 

browsers used for CodeSkulptor. Microsoft Internet Explorer has poor 

functionality (Warren et al. 2014). 

3.3 Modules 

If the Python interpreter is exited and then re-launched again, all the functions 

and variable definitions are lost. In order to avoid such occurrence in cases 

where longer programs are written, a script is created using a text editor to 

prepare input for the interpreter and running it with that file as input. 

 

Such occurrence as described in the above paragraph is supported by Python, 

whereby definitions (functions and variables) are put in a file and used in an 

interactive instance of the interpreter. Such a file is referred to as a module. 

”A module is a file containing Python definitions and statements”  

(Python Modules 2014). 
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3.3.1 Standard module 

The following subset of Python standard library was implemented in 

CodeSkulptor. These modules are imported using the import statement 

Math Module:  

This module contains mathematical operations and they contain several 

operations like;  

 Trigonometric Functions (math.sin(), math.cos(), math.tan()),   

 Exponentiation (math.pow(), math.exp()), Square Root (math.sqrt()),  

 Logarithm (math.log()), etc., 

 Syntax: 

math.pow (x, y), 

math.pi 

Table 1. Math module examples 
 

 

 

 

 

 

 

Random Module: 

This module contains functions that involve randomness and they include:  

 Random integer (random.randint(), random.randrange()),  

 Permute List (random.shuffle()),  

 Random Element of Sequence (random.choice()), etc., 

Syntax:  

random.choice(a_seq) 

random.shuffle(a_list) 

Code Output 

import math 
 
print math.pow(2, 3) 

8 

import math 
 
print math.pi 

3.141592653589793 
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random.randrange(start, stop, step) 

 

Table 2. Random choice, randrange examples 
 

 

 

 

 

3.3.2 Graphical module 

There are three (3) custom modules implemented by CodeSkulptor for graphics 

in a browser. The appropriate module is imported using the import statement as 

described in the previous module. The following graphical modules are 

described below: 

 

SimpleGUI module:  

This is specifically used for interactive games and drawings. It was written in 

JavaScript allowing users to use the web browser. Most of the games featured 

in this thesis use the SimpleGui module (Warren, J. et al. 2014). 

 

Figure 4. SimpleGui frame 
 

Code Output 

import random 
 
 
print random.choice([1, 2, 3, 4, 5]) 

#result is one of 

the sequence’s 

element 

import random 

 
print random.randrange(0, 10, 2) 

#results are:  

0, 2, 4, 6, 8 
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The SimpleGui frame is broken into 3 parts as seen in Figure 4 and they 

include: 

1. Control Area (Red colour) 

It contains buttons, text inputs and text labels that allow printing of status 

information from the application back to the frame. 

2. Status Area (Yellow colour) 

It gives feedback about keyboard and mouse events that happen in the 

canvas and aids debugging simpler in SimpleGui. 

3. Canvas (Green colour) 

The interesting part of the frame where images, text, shapes are drawn 

and respond to keyboard and mouse events 

SimpleMap Module:  

This particular module is used for drawing map features and contains several 

superclass objects. They include: Maps, Markers and Lines. 

SimplePlot module: 

This is used for plotting of numeric data.  

3.3.3 Other module 

Numeric Module:  

This module is not a part the standard Python but a smaller module just like the 

common NumPy module (Numpy developers 2014). It is one of the modules 

used for mathematical with two-dimensional matrices and provides basic linear 

algebra operations. 

CodeSkulptor module: 

This is a small collection of miscellaneous operations not available in standard 

Python. 



18 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi 

4 COMPUTER GAMES 

4.1 Rock-Paper-Scissors-Lizard-Spock(RPSLS) 

This is an amplified version of the hand game “Rock-paper-scissors” but this 

particular game allows five choices. The rule is that any choice loses to its 

clockwise opponent and beats its counter-clockwise opponent. 

 

In this case, each name is represented by a number form 0 – 4. Example: 

0 - rock 

1 - Spock 

2 - paper 

3 - lizard 

4 - scissors 

 

 

Scissors cut paper. 

Paper covers rock. 

Rock crushes lizard. 

Lizard poisons Spock. 

Spock smashes scissors. 

Scissors decapitate lizard. 

Lizard eats paper. 

Paper disproves Spock. 

Spock vaporises rock. 

Rock crushes scissors. 

 

Development process: 

 A helper function that converts numbers between 0 - 4 into string (names): 

 

def number_to_name(number): 

    if number == 0: 

        name = "rock" 

rock 

Spock 

 

paper 

scissor

s 

lizard 

Figure 5. RPSLS counter-clockwise diagram 
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    elif number == 1: 

        name = "Spock" 

    elif number == 2: 

        name = "paper" 

    elif number == 3: 

        name = "lizard" 

    elif number == 4: 

        name = "scissors" 

    else: 

        print "#error: No name associated with the number" 

    return name 

 

 A helper function that converts strings(names) into number between 0 and 4 

is coded: 

 

def name_to_number(name): 

    if name == "rock": 

        number = 0 

    elif name == "Spock": 

        number = 1 

    elif name == "paper": 

        number = 2 

    elif name == "lizard": 

        number = 3 

    elif name == "scissors": 

        number = 4 

    else: 

        print "#error: No number associated with name" 

    return number 

         

 The first part of the main function rpsls(name) is constructed. It uses the helper 

function name_to_number to convert name into player number. 
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def rpsls(name): 

player number = name_to_number(name) 

  …. 

  

 The second part of the main function rpsls(name) randomly generates a number 

(comp number) between 0 – 4 using one of the random module described in 

chapter 4 (random. Range()). 

 

def rpsls(name): 

  … 

  comp_number = random.randrange(0,5) 

  … 

 The final part of the main function rpsls(name) determines the winner and 

displays it via the print method. 

 

def rpsls(name): 

   … 

   … 

difference = player_number - comp_number 

                 difference_modulo_five = difference % 5 

    

The difference is calculated as seen and a remainder operation (%) is used to 

determine the distance between the comp_number and player_number.   

 

The winner is calculated thus: 

   … 

 if 1 <= difference_modulo_five <= 2: 

         print "Player wins!" 

     elif 3 <= difference_modulo_five: 

         print "Computer wins!" 

    elif difference_modulo_five == 0: 
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          print "Player and computer tie!" 

… 

 

Output: 

rpsls("rock") 

rpsls("Spock") 

rpsls("paper") 

rpsls("lizard") 

rpsls("scissors") 

 

 

Figure 6. Console output for RSPLS 

4.2 Guess the number 

This game is a simple two-player game. The concept, however, is for one player 

to think of a secret number and the second player to guess it. A range is drawn 

initially so the guesser can have an idea of the range to guess from.  

 

To make the game much more appealing, the thinker tells the guesser if he 

should go “higher, lower or correct!” if the guess is right. The guesser has to 
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make an attempt to guess right before he uses all available guesses. E.g. “7” or 

“10” guesses for a range between “0 – 100” and “0 – 1000” respectively. 

 

For this game, “Guess your number”, we will be using one of the graphics 

modules: simpleGui and two standard modules: math and random module as 

described in chapter 3 

 

Development process: 

 Initialize and decide global variables that control the state of the game. E.g. 

Number generated by the program, the guess number that assigns the 

number of guesses for each game range. 

 

low = 0 

high = 100 

 

global number 

global guessNumber 

 

 Generate random secret number in a giving range. This is generated 

between a giving range, low or high. 

 

number = random.randint (low, high) 

 

 In other to create an input text box, the simpleGui module is imported. 

 

import simplegui 

 

 Take the input “guess” from the user by writing the event handler. The 

function “input_guess(guess)” compares the guess to the secret number and 

prints out an appropriate message as written in the code. 

 

def input_guess(guess): 
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          global guessNum 

 

     guessNum -= 1 

      guess = int(guess) 

     

      print "" 

     print "Guess was", guess 

      print "Number of remaining guesses is", guessNum 

     

     if guessNum > 0: 

                    if guessNum >= 1: 

             if guess == number: 

                 print "Correct!" 

                 print"" 

                 new_game() 

                           elif guess > number: 

                  print "Lower!" 

                           elif guess < number: 

                  print "Higher!" 

      elif guessNum == 0 and guess == number: 

            print "Correct!" 

                   print"" 

                   new_game() 

      else: 

     print "You ran out of guesses. The number was", 

number 

     print "" 

     new_game() 

 

 Create a function “new_game()”. This function computes the generation of 

the secret number as well as the number of guesses for each range and 

assigns it to global variables. 
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def new_game(): 

     ***find code in appendix 1*** 

 

Buttons and input field 

 

 

Figure 7. Guess the number frame 
 

To make the game more entertaining, two buttons were created. These buttons 

allow the player to switch between two different ranges: “0 – 100” and “0 – 

1000”.  Each button resets the secret number and prints an appropriate 

message informing the player of the range in which the guess should be made. 

 

   # register event handler for control elements 

frame.add_button("Range is (0, 100)", range100, 200) 

frame.add_button("Range is (0, 1000)", range1000, 200) 

 

The input field registers the guess made by the player. Each guess is 

automatically registered after the “Enter Key” is pressed. 

 

 # register event handler for control elements 

frame.add_input("Enter a guess", input_guess, 200) 

 

Output: 
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The final outcome of the output is printed on the console: 

 

Figure 8. Guess the number console output 

4.3 Stop Watch game 

This project involves the building of a simple digital stopwatch that keeps track 

of time in tenths of a second. For this game, we will focus more on combining 

text drawing in the canvas. 

 

Figure 9. Stopwatch game frame 
 

The stopwatch in Figure 9 contains three buttons: Start, Stop and Reset. 

 

In addition, two green zeros with a slash in between located at the top right of 

the canvas. This area of the game was used to test the reflexes of the player 

and used to show the number is “hits” per “tries”. The number of “hits” can be 
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explained further as the number times the player hits a zero mark, i.e., 0:02.0, 

0:15.0, etc. while the number of “tries” is the number of times the game was 

played. 

 

Development process: 

 Firstly a timer is created whose event handler is incremented by a global 

integer. The timer has an interval of 0.1 sec. 

 

# define event handler for timer with 0.1 sec interval 

def timer(): 

global t 

t+=1 

 

# register event handlers 

timer = simplegui.create_timer(100, timer) 

 

 Draw the current time in the middle of the canvas by using an event handler 

function 

 

# define draw handler 

def draw(canvas): 

    canvas.draw_text(format(t), (50, 100), 56, "White") 

    canvas.draw_text(str(wins) + "/" + str(tries), (210,20), 20, 

"Green")  

 

 Add “Start: to start the time”, “Stop: to stop the time” and “Reset: stops and 

resets the current time to zero” buttons. 

 

def start(): 

    ***find code in appendix 2*** 

    

def stop(): 



27 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi 

    ***find code in appendix 2*** 

     

def reset(): 

    ***find code in appendix 2*** 

  

 # register event handlers 

start = frame.add_button("Start", start, 50) 

stop = frame.add_button("Stop", stop, 50) 

reset = frame.add_button("Reset", reset, 50) 

 

 Write a helper function format(t) that returns a string in the form of 

“A:BC:D”. String A, C and D are digits in the range 0-9 and B is between 0-5. 

 

def format(t): 

    a = t // 600 

    b = ((t // 100) % 6) 

    c = ((t // 10) % 10) 

    d = t % 10 

     return str(a) + ":" + str(b) + str(c) + "." + str(d 

4.4 Memory Game 

This is a simple card game where a player is expected to pick cards with the 

same number in pairs. In one turn, two of the cards are flipped over. If they 

match, they are left revealed by keeping them face up. If they do not match, 

both cards are flipped back down. The aim behind the game is to match all the 

pairs of cards flipped facing up in the minimum number of turns. 

Development process: 

 Create a deck of cards as a list consisting of 16 numbers. Each number 

should lie in the range(0,8) and appearing twice. 

card_List = [i % 8 for i in range(16)] 
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 Create a draw handler that iterates through the card_List using a for loop 

and draws the numbers on the canvas 

 

def draw(canvas): 

    …. 

    a = -35 

    for i in range(len(card_List)): 

        a += 50 

        canvas.draw_text(str(card_List[i]), [a, 60], 35, "White")     

 

  Shuffle the cards using random.shuffle() module 

random.shuffle(card_List) 

 Modify the draw handler created in second list, of the development process, 

to draw a bank Green rectangle (or colour of your choice) or card value. 

 

def draw(canvas): 

    ………….. 

    ………….. 

    ………….. 

    b = -50 

    for i in exposed: 

        b += 50 

        if not i: 

            canvas.draw_polygon([(b, 0), (b + 50, 0), (b + 50, 100), (b + 

0, 100)], 2, "White", "Green") 

 

For proper implementation of this behaviour, a second list should be created 

called exposed.  

 

 exposed = [False for i in range(16)] 

 



29 

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi 

In the exposed list,  

the ith entry = True if the card faces up and its value visible  

the ith entry = False if the card faces down and its value hidden 

by default all entries are set to False. 

 

 Create an event handler mouseclick and modify it to flip cards based on the 

location of the mouse click, whereby, a players click on the ith card and the 

value of exposed[i] be changed from “False” to “True”. 

 

def mouseclick(pos): 

There are 3 states to the mouse click: 

First state (counter = 0): The card is clicked to expose the card value (False 

to True) and the counter is increased 1. 

Second state (counter = 1): The 2nd card is clicked to expose the 2nd card 

value (False to True) and the counter is increased 1. If exposed card are 

clicked it mouseclick is ignored 

Third state (counter = 2): The 3rd card list is clicked to expose the card value 

(False to True) and the counter is decreased 1. If the 1st and 2nd cards are 

not equal they return back False (Hidden) and your back again at the first 

state. 

 

It goes on to the last until all cards are appended. 

 

if counter == 0: 

        card.append(pos[0]/50) 

        exposed[pos[0]/50] = True 

        counter += 1 

        turns = 1 

         

    elif counter == 1: 
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        if not (pos[0]/50 in card): 

            card.append(pos[0]/50) 

            counter += 1 

        exposed[pos[0]/50] = True 

        

    elif counter == 2: 

        if not (pos[0]/50 in card): 

            if card_List[card[-1]] != card_List[card[-2]]: 

                exposed[card[-1]] = False 

                exposed[card[-2]] = False 

                card.pop() 

                card.pop() 

            counter -= 1 

            turns += 1 

            exposed[pos[0]//50] = True 

            card.append(pos[0]//50) 

  

 A counter is added to keep track of the number of turns. During the first state 

the number of turns is incremented by 1 and also at the third state. 

def draw(canvas): 

     label.set_text("Turns = " + str(turns)) 

 

 Implement a new_game() function that restarts the game via the “Reset 

button” 

 

def new_game(): 

    global card_List, exposed, card, counter, turns 

    ***see appendix 3*** 

 

frame.add_button("Restart", new_game) 
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Output: 

 

Figure 10. Guess the number - Initial screen 
 

 

Figure 11. Guess the number - playing mode 
 

4.5 RiceRocks (Asteroids) game 

The game RiceRocks is an implementation of the classic game, Asteroids, 

released in November 1979. The object of the game is to shoot and destroy 

asteroids (rocks) while the player avoids colliding or being hit by them. 

This game uses event-driven programming to handle ”clicks” and ”pressing / 

releasing” from the mouse and keyboard respectively. Objects for the game are 

drawn on the canvas by a draw procedure. This procedure runs at a rate of 60 

times per second, updating object position and redraws them in a new position 

(Al-hindi, M.  2013).   

In other to make the development of this game possible a ricerocks program 

template (check references) was made available. The following were 

implemented to bring out the game: 

i. To make sure multiple rocks are spawn randomly and at different points 

of the game and all rocks spawn on the canvas must not be greater than 

12 rocks. If a particular rock is destroyed or at a point it moved out of the 
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screen, a new one will be spawn. A rock must not spawn at the position 

on the ship. 

ii. Explosion should occur when: 

a. Missile hits rock (a rock set is deletes from the set) 

b. Rock hits ship or vice versa. 

iii. Scores accumulated and the number of lives should be updated each 

time and explosion occurs. When score is equal to zero, the splash 

screen appears and the game is reset to its initial state. 

iv. Each missile should have a lifespan so it does not keep looping forever 

in the game. 

 

Figure 12. RiceRocks (Asteroids) - Splash screen 

Development process: 

Multiple Rocks 

 Initialize the rock group to an empty set and program the rock_spawner 

function to  create a new rock and add it to rock_group 

rock_group = set([]) 

# timer handler that spawns a rock     
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def rock_spawner(): 

    global rock_group  

    rock_pos = [random.randrange(0, WIDTH), random.randrange(0, 

HEIGHT)] 

    rock_vel = [random.random() * .6 - .3, random.random() * .6 - .3] 

    rock_avel = random.random() * .2 - .1 

    a_rock = Sprite([WIDTH * random.random(), HEIGHT * 

random.random()], [random.random() * 3 - 

1.5,random.random() * 3 - 1.5], 0, (random.random() - 

.5) / 8, asteroid_image, asteroid_info) 

    if len(rock_group) < 12 and started == True: 

        if dist(a_rock.pos, my_ship.get_position()) > 150: 

            rock_group.add(a_rock) 

 

 Create a helper function process_sprite_group which is responsible for 

calling update and draw methods for each sprite in the group 

#updates sprites and removes them at the end of lifespan 

def process_sprite_group(a_set, canvas): 

    for sprite in a_set: 

        if sprite.update() == False: 

           a_set.remove(sprite) 

        sprite.draw(canvas) 

 

 Call the process_sprite_group function in the draw handler on rock_group 

# draw ship and sprites 

process_sprite_group(rock_group, canvas) 

Collisions 

 A collide method is added to the Sprite class which takes and argument 

“other_object”. If there is a collision “True” is returned otherwise “False” 

 # Sprite class 
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class Sprite: 

    .......      

    def collide(self, other_object): 

        if dist(self.get_position(), other_object.get_position()) <=  

 (self.radius + other_object.radius): 

            return True 

        else: 

            return False 

  

 The helper function group_collide is implemented. This function takes 2 

arguments: (a set group and a sprite other_object) and checks for collision 

between the elements of the group and other_group. The collided object is 

removed from the group is there is a collision detected. 

#checks for collisions between one set and one object 

def group_collide(group_set, other_object): 

    remove_collided = set([]) 

    for item in group_set: 

        if item.collide(other_object): 

            remove_collided.add(item) 

            new_explosion = Sprite(item.pos, (0,0), 0, 0,  

explosion_image, explosion_info, explosion_sound) 

            explosion_group.add(new_explosion) 

    if len(remove_collided) > 0: 

        group_set.difference_update(remove_collided) 

    return len(remove_collided) 

 

 Include in the draw handler the helper function group_collide. If a ship hits 

any of the rock, the number of lives is reduced by one. 

 

if group_collide(rock_group, my_ship) > 0: 

        explosion_group.add(Sprite(my_ship.get_position(), [0, 0], 0, 

 0, explosion_image, explosion_info)) 
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        lives -= 1 

Missiles 

 Initialize the missile group to an empty set and modify the shoot method of 

the ship class to create new missile and add it to the missile_group. The 

firing sound should play each time a missile is spawned. 

 

missile_group = set([]) 

 

 Use the process_sprite_group helper function to process the 

missile_group  in the draw handler. 

 

process_sprite_group(missile_group, canvas) 

 

 Every time update is called there is an increment in the age of the sprite, in 

the update method of the Sprite class. False is returned if the age is less 

than the lifespan and True otherwise. 

 

def update(self): 

        # update angle 

        self.angle += self.angle_vel 

         

        # update position 

        self.pos[0] = (self.pos[0] + self.vel[0]) % WIDTH 

        self.pos[1] = (self.pos[1] + self.vel[1]) % HEIGHT 

         

        #update age 

        self.age += 1 

        if self.age < self.lifespan: 

            return True 

        else: 

            return False 
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The aim for the missiles is to destroy rock. Due to this fact, a helper function 

group_group_collide is implemented that takes two groups as input. It returns 

the number of elements in the first group that collides with the second and 

deletes these elements in the first.  

Game Control 

The spaceship is controlled using various keys on the keyboard as defined by 

the game programmer. Two key handlers: keydown(key) and keyup(key) to 

help in controlling the spaceship were created. For this particular game, the 

spacebar is used to shoot missiles, ”left/right” arrow keys on the keyboard 

rotates spaceship, while the ”up” arrow key is used for acceleration. 

 

Figure 13. RiceRocks (Asteroids) - Play Mode 
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5 CONCLUSION 

In the introduction of this thesis, the project goal and scope were highlighted 

and specific detail of the implementation of several listed topics were listed. 

CodeSkulptor has served and accomplished the purpose of game 

implementation. Most of the game development processes mentioned are 

reusable over and over again in so many ways to accomplish a better gaming 

programming experience. 

In this thesis, the author successfully implemented 5 games (See Chapter 4 of 

this thesis). The games can be accessed and played via links provided in the 

References (pg. 38 – 40). All the games were developed using the 

CodeSkulptor environment. Out of the three graphical modules mentioned in 

Chapter 3, SimpleGUI was the only one used in all the games implemented 

because it is specifically used for interactive games and drawing.  

Interactive game programming using Python (CodeSkulptor) has helped to 

demonstrate how several topics like functions, conditional statement, 

local/global variables, buttons/input field, using canvas, motion controls, sprite 

class, sprite animation, sound, groups of sprite, sets, etc., can be written to give 

a great game programming experience. 
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APPENDICES 
 

Appendix 1. Helper function to start and restart the game (Guess the number) 

 
 

def new_game(): 
    global number 
    global guessNum 
     
    number = random.randint(low,high) 
    guessNum = int(math.ceil(math.log(high - low + 1, 2))) 
    print "" 
    print "New game. Range is from", low, "to", high 
    print "Number of remaining guesses is", guessNum 
    print "" 
 

 

Appendix 2. Event handlers for buttons; "Start", "Stop", "Reset" (Stop watch) 

 
def start(): 
    timer.start() 
    
 
def stop(): 
    global wins 
    global tries 
    if not timer.is_running(): 
        return 
    timer.stop() 
    tries += 1 
    if t % 10 == 0: 
        wins += 1 
     
def reset(): 
    global t 
    global wins 
    global tries 
    t = 0 
    wins = 0 
    tries = 0 
    timer.stop() 
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Appendix 3. Helper function to initialize globals (Memory game) 
 
 

def new_game(): 
    global card_List, exposed, card, counter, turns 
    card_List = [i % 8 for i in range(16)] 
    random.shuffle(card_List) 
    exposed = [False for i in range(16)] 
    card = [] 
    counter = 0 
    turns = 0 
 

 
 


