

Bachelor's thesis

Information Technology

2014

Richard Olugbenga Ajayi

INTERACTIVE GAME
PROGRAMMING WITH PYTHON
(CODESKULPTOR)

BACHELOR´S THESIS | ABSTRACT
TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology | Networking

2014| 41 pages

Instructor: Patric Granholm

Richard Olugbenga Ajayi

INTERACTIVE GAME PROGRAMMING WITH
PYTHON (CODESKULPTOR)

Over the years, several types of gaming platforms have been created to encourage a

more organised and friendly atmosphere for game lovers in various works of life,

culture, and environment.

This thesis focuses on the concept of interactive programming using Python. It

encourages the use of Python to create simple interactive games applications based

on basic human concept and ideas.

CodeSkulptor is a browser-based IDE programming environment and uses the Python

programming language. Originally designed by Scott Rixner of Rice University,

CodeSkulptor is based upon CodeMirror and Skulpt.

The method of carrying out the thesis was first to study the CodeSkulptor environment

and the various modules available for the Python language and then delve into the

development process. A total of five example games were written for this thesis.

KEYWORDS:

Gaming platforms, Python, browser-based programming, modules, CodeSkulptor, IDE.

http://www.cs.rice.edu/~rixner/
http://www.rice.edu/

CONTENTS

1 INTRODUCTION 6

1.1 Project Goal 6

1.2 Project Scope 6

1.3 Thesis Overview 6

2 COMPUTER PROGRAMMING LANGUAGES 8

2.1 Programming languages 8

2.2 Object-oriented programming language 9

2.3 Interpretation and Compilation 10

3 PROGRAMMING ENVIRONMENTS 12

3.1 Integrated Development Environments 12

3.2 CodeSkulptor 13

3.3 Modules 14

4 COMPUTER GAMES 18

4.1 Rock-Paper-Scissors-Lizard-Spock(RPSLS) 18

4.2 Guess the number 21

4.3 Stop Watch game 25

4.4 Memory Game 27

4.5 RiceRocks (Asteroids) game 31

5 CONCLUSION 37

REFERENCES 38

APPENDICES

Appendix 1. Helper function to start and restart the game (Guess the number)
Appendix 2. Event handlers for buttons; "Start", "Stop", "Reset" (Stop watch)

2.1.1 Machine language 8

2.1.2 Assembly language 8

2.1.3 High-level languages 9

2.3.1 Interpreted language 11

2.3.2 Compiled language 11

2.3.3 Intermediary language 11

3.3.1 Standard module 15

3.3.2 Graphical module 16

3.3.3 Other module 17

Appendix 3. Helper function to initialize globals (Memory game)

FIGURES

Figure 1. CodeSkulptor Environment 13
Figure 2. Control Area 14
Figure 3. Documentation Area 14
Figure 4. SimpleGui frame 16
Figure 5. RPSLS counter-clockwise diagram 18
Figure 6. Console output for RSPLS 21
Figure 7. Guess the number frame 24
Figure 8. Guess the number console output 25
Figure 9. Stopwatch game frame 25
Figure 10. Guess the number - Initial screen 31
Figure 11. Guess the number - playing mode 31
Figure 12. RiceRocks (Asteroids) - Splash screen 32
Figure 13. RiceRocks (Asteroids) - Play Mode 36

TABLES

Table 1. Math module examples 15
Table 2. Random choice, randrange examples 16

file:///C:/Users/Richard/Desktop/Richard..doc%23_Toc402440010

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

1 INTRODUCTION

1.1 Project Goal

The goal of this thesis is to demonstrate how CodeSkulptor is used for game

programming. All of the program coding will be done via CodeSkulptor.

CodeSkulptor is an online Python interpreter that runs on a browser. More

details about CodeSkulptor will be discussed in chapter 3.

1.2 Project Scope

The scope of this thesis is to enable the development and implementation of the

following topics:

 Programming using Functions, Logic, conditionals

 Event-driven programming, local and global variables, buttons and input

fields

 Using canvas, static drawing, timers, interactive drawing

 List, keyboard input, motion positional/velocity control

 Acceleration and friction, spaceship class, sprite class, sound

 Sets, groups of sprite, collisions, sprite animation

1.3 Thesis Overview

Chapter 2: Computer programming languages

This chapter defines a program and discusses the types of programming

languages. In addition, it introduces object-oriented languages and categories

of programming languages.

Chapter 3: Programming Environments

This chapter sheds more light on the types of programming environments, IDEs

and the CodeSkulptor environment. It also emphasizes more on the SimpleGui

modules and how it can be applied in the reviewed games.

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

Chapter 4: Computer Games

This chapter highlights the process involved in the development of several

games. The following games were reviewed and they include:

1. Rock-Paper-Scissors-Lizard-Spock:

Randomly selects one of the choices and chooses a winner made on

certain criteria’s (see Chapter 4.1).

2. Guess The Number:

A program randomly chooses a number and the player guesses the

number chosen in a range of guesses.

3. Stopwatch:

Time should be stopped exactly on a zero mark e.g. (should be x.xx.0)

4. Memory Game:

A player picks cards/numbers with same number and finds all the 8 pairs

to win in less number of turns.

5. RiceRocks (Asteroids):

A ship hits as many asteroids as possible within 3 lives.

Chapter 5: Conclusion

This chapter concludes the entire thesis.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

2 COMPUTER PROGRAMMING LANGUAGES

2.1 Programming languages

The collection of details instructions that is given when expecting a computer to

perform a specific task is known as a program (Perry, G. 1994). Without

detailed instructions, a computer is rendered useless. Computers cannot decide

on their own to do what it wants except detailed instructions are given to it. This

is where programming as a term is derived.

Programming languages are used to create programs that define computer

behaviours and also provide the means for programmers to express computer

algorithms. In other words, “a programming language is therefore a practical

way for humans to give instructions to a computer” (Kioskea 2014). There are

various types of programming Languages available for uses by both computers

and people.

2.1.1 Machine language

A machine language is a low level programming language and it is complicated

to read by humans but easily understood by computer. Processors use machine

code which consists of 0s and 1s (Binary data). Codes written in this language

are transformed into machine code for processing by the processor.

2.1.2 Assembly language

The “assembler” is very similar to the machine code but better understood by

developers. Although assembly language statements are readable, they are still

regarded as low-level programming languages.

One major disadvantage of an assembly language is that it is not portable from

one machine to the other. The term “portability” describes the ability of a

software program to be used on different types of machine.

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

2.1.3 High-level languages

In contrast to the machine and assembly languages, high-level languages

“focus more on the programming logics rather than the underlying hardware

components such as memory addressing and register utilization” (Janssen, C.

2013). These are languages that allow the development of a program in a

simpler programming context regardless of the computer’s hardware

architecture. They are designed to make programming far easier and less error-

prone.

Over the year various high-level languages have been developed which are

closer to human language. Fortran II, one of the first languages, was introduced

in 1958. In Fortran II the program would be written as; “C = A + B” which is

quicker to write and more readable (O’Regan, G. 2012).

Many high level languages have existed since Fortran II, below are examples of

widely used languages:

 Java

 C

 PHP

 Python

 C#

 JavaScript

 Perl

2.2 Object-oriented programming language

Object-oriented programming, or OOP, is a programming model organised

around objects. Objects, which are usually specific realization of any object of

classes, are used to communicate with one another to design applications and

computer program. There are various examples of programming languages that

contain object-oriented programming features; C++, C#, Java, Python, PHP,

Ruby, etc.

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

Computer languages are regarded as object-oriented if the following

fundamental concepts are included.

 Object:

An object is an instance of a class.

 Class:

A Class defines the characteristics of an object. These characteristics

include attributes (fields or properties) and behaviours (methods or

operations).

 Method:

A method refers to the behaviour of an object and it affects one particular

object within a program.

 Polymorphism:

This is where one object can be treated and used like another object.

Polymorphism allows two or more objects to respond to the same

message.

 Inheritance is the ability to reuse existing objects where structure and

methods in a particular class are passed down the hierarchy since

classes are created in hierarchies. In other words, less programming is

required when functions are added to complex systems.

 Encapsulation allows the separation of an object’s implementation from

its behaviour. It conceals the internal state of one object from other.

2.3 Interpretation and Compilation

There are two categories of programming languages which exist and some that

make use of the combination of both categories. They are:

Interpreted languages

Complied languages

Intermediary languages

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

2.3.1 Interpreted language

This is a programming language that requires an external program called “the

interpreter” which enables translation in order for the processor to understand

the code. Codes written in this language are saved in the same format that they

were entered (Vanguard 2012).

2.3.2 Compiled language

Programs written in complied language require and additional program called a

“compiler”. This “compiler” creates a new stand-alone file (set of machine

specific instructions) which requires no other program to execute itself.

Compiled programs run faster that the interpreted ones because interpreted

programs must be reduced to machine code at runtime (Vanguard 2012).

2.3.3 Intermediary language

Many languages make use of both the compiler and the interpreter (such as

Pascal, C, BASIC, Python) as the programs written in these languages may

undergo an intermediary compilation phase into a file where the source file is

different from the language it was written in and still requiring an interpreter

(non-executable) (Kioskea 2014).

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

3 PROGRAMMING ENVIRONMENTS

There are various programming environments available for programming but it

is advisable for a learner to choose an environment that allows programs to be

created and run at the same time. Programming environments can be broken

down into two different types: integrated development environments and

command-line environments (Eck, D. 2004).

Integrated development environments, or IDE, have been created over the

years to help facilitate software development. An IDE, is a graphic user

interface program that combines all aspects of programming and includes in

most cases a debugger, a visual interface builder and project management.

Some of these IDEs are built in such a way that they contain a compiler,

interpreter or both as the case maybe (Eck, D. 2004). A command-line

environment, on the other hand, is just a collection of commands that can be

typed in to run programs, edit files, and compile source code.

3.1 Integrated Development Environments

There are various types of sophisticated IDE’s available in various programming

language and can be used for software development. Below are a few:

 Eric -- an IDE written in Python with PyQt and contains some familiar Qt

tools such as Designer and Linguist (Eric 2014).

 Eclipse IDE -- a very popular professional development tool that supports

Java development (The Eclipse Foundation 2014).

 IDLE -- a Python IDE built with the Tkinter GUI toolkit and comes with

most distributions of Python (Python Software Foundation 2014).

 NetBeans IDE – a free “open source” program that should run on any

system with Java 1.3 or later (Oracle Corporation 2013)

 JCreator -- for Windows and a lighter-weight IDE that works on top of

Sun’s SDK (Xinox Software 2014).

http://eric-ide.python-projects.org/index.html
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://qt-project.org/
https://www.eclipse.org/
https://docs.python.org/2/library/idle.html
http://en.wikipedia.org/wiki/Tkinter
https://netbeans.org/
http://www.jcreator.com/

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

 CodeSkulptor – a browser based IDE developed for creation of Python

GUI apps using a self-maintained library: SimpleGui. Applications written

can be saved and shared via a URL to friend or colleagues.

3.2 CodeSkulptor

CodeSkulptor is a browser-based programming environment for programming in

the Python language and it implements a subset of Python2. In addition, three

graphical libraries were added. These libraries include: SimpleGui, SimpleMap

and SimplePlot.

Figure 1. CodeSkulptor Environment

The figure below shows the CodeSkulptor environment (can be opened via

www.codeskulptor.org) which is made of several sections. They are:

 Control area (upper Left) - This area contains buttons that allows the

control of the application

http://www.codeskulptor.org/

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

Figure 2. Control Area

 Editor (Lower Left) - Python programs are written directly in this area.

 Console area (Lower right) – This is where the textual output of the

program are displayed

 Documentation area (Upper right) – This area allows the user access to

all documentations, videos and demonstrations that facilitate the use of

CodeSkulptor. The “Coursera” button links the user/the developer to the

course page on coursera’s site. It contains examples and exercises.

Figure 3. Documentation Area

Chrome 18+, Mozilla Firefox 11+, Apple Safari 6+ are the recommended

browsers used for CodeSkulptor. Microsoft Internet Explorer has poor

functionality (Warren et al. 2014).

3.3 Modules

If the Python interpreter is exited and then re-launched again, all the functions

and variable definitions are lost. In order to avoid such occurrence in cases

where longer programs are written, a script is created using a text editor to

prepare input for the interpreter and running it with that file as input.

Such occurrence as described in the above paragraph is supported by Python,

whereby definitions (functions and variables) are put in a file and used in an

interactive instance of the interpreter. Such a file is referred to as a module.

”A module is a file containing Python definitions and statements”

(Python Modules 2014).

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

3.3.1 Standard module

The following subset of Python standard library was implemented in

CodeSkulptor. These modules are imported using the import statement

Math Module:

This module contains mathematical operations and they contain several

operations like;

 Trigonometric Functions (math.sin(), math.cos(), math.tan()),

 Exponentiation (math.pow(), math.exp()), Square Root (math.sqrt()),

 Logarithm (math.log()), etc.,

 Syntax:

math.pow (x, y),

math.pi

Table 1. Math module examples

Random Module:

This module contains functions that involve randomness and they include:

 Random integer (random.randint(), random.randrange()),

 Permute List (random.shuffle()),

 Random Element of Sequence (random.choice()), etc.,

Syntax:

random.choice(a_seq)

random.shuffle(a_list)

Code Output

import math

print math.pow(2, 3)

8

import math

print math.pi

3.141592653589793

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

random.randrange(start, stop, step)

Table 2. Random choice, randrange examples

3.3.2 Graphical module

There are three (3) custom modules implemented by CodeSkulptor for graphics

in a browser. The appropriate module is imported using the import statement as

described in the previous module. The following graphical modules are

described below:

SimpleGUI module:

This is specifically used for interactive games and drawings. It was written in

JavaScript allowing users to use the web browser. Most of the games featured

in this thesis use the SimpleGui module (Warren, J. et al. 2014).

Figure 4. SimpleGui frame

Code Output

import random

print random.choice([1, 2, 3, 4, 5])

#result is one of

the sequence’s

element

import random

print random.randrange(0, 10, 2)

#results are:

0, 2, 4, 6, 8

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

The SimpleGui frame is broken into 3 parts as seen in Figure 4 and they

include:

1. Control Area (Red colour)

It contains buttons, text inputs and text labels that allow printing of status

information from the application back to the frame.

2. Status Area (Yellow colour)

It gives feedback about keyboard and mouse events that happen in the

canvas and aids debugging simpler in SimpleGui.

3. Canvas (Green colour)

The interesting part of the frame where images, text, shapes are drawn

and respond to keyboard and mouse events

SimpleMap Module:

This particular module is used for drawing map features and contains several

superclass objects. They include: Maps, Markers and Lines.

SimplePlot module:

This is used for plotting of numeric data.

3.3.3 Other module

Numeric Module:

This module is not a part the standard Python but a smaller module just like the

common NumPy module (Numpy developers 2014). It is one of the modules

used for mathematical with two-dimensional matrices and provides basic linear

algebra operations.

CodeSkulptor module:

This is a small collection of miscellaneous operations not available in standard

Python.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

4 COMPUTER GAMES

4.1 Rock-Paper-Scissors-Lizard-Spock(RPSLS)

This is an amplified version of the hand game “Rock-paper-scissors” but this

particular game allows five choices. The rule is that any choice loses to its

clockwise opponent and beats its counter-clockwise opponent.

In this case, each name is represented by a number form 0 – 4. Example:

0 - rock

1 - Spock

2 - paper

3 - lizard

4 - scissors

Scissors cut paper.

Paper covers rock.

Rock crushes lizard.

Lizard poisons Spock.

Spock smashes scissors.

Scissors decapitate lizard.

Lizard eats paper.

Paper disproves Spock.

Spock vaporises rock.

Rock crushes scissors.

Development process:

 A helper function that converts numbers between 0 - 4 into string (names):

def number_to_name(number):

 if number == 0:

 name = "rock"

rock

Spock

paper

scissor

s

lizard

Figure 5. RPSLS counter-clockwise diagram

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

 elif number == 1:

 name = "Spock"

 elif number == 2:

 name = "paper"

 elif number == 3:

 name = "lizard"

 elif number == 4:

 name = "scissors"

 else:

 print "#error: No name associated with the number"

 return name

 A helper function that converts strings(names) into number between 0 and 4

is coded:

def name_to_number(name):

 if name == "rock":

 number = 0

 elif name == "Spock":

 number = 1

 elif name == "paper":

 number = 2

 elif name == "lizard":

 number = 3

 elif name == "scissors":

 number = 4

 else:

 print "#error: No number associated with name"

 return number

 The first part of the main function rpsls(name) is constructed. It uses the helper

function name_to_number to convert name into player number.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

def rpsls(name):

player number = name_to_number(name)

 ….

 The second part of the main function rpsls(name) randomly generates a number

(comp number) between 0 – 4 using one of the random module described in

chapter 4 (random. Range()).

def rpsls(name):

 …

 comp_number = random.randrange(0,5)

 …

 The final part of the main function rpsls(name) determines the winner and

displays it via the print method.

def rpsls(name):

 …

 …

difference = player_number - comp_number

 difference_modulo_five = difference % 5

The difference is calculated as seen and a remainder operation (%) is used to

determine the distance between the comp_number and player_number.

The winner is calculated thus:

 …

 if 1 <= difference_modulo_five <= 2:

 print "Player wins!"

 elif 3 <= difference_modulo_five:

 print "Computer wins!"

 elif difference_modulo_five == 0:

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

 print "Player and computer tie!"

…

Output:

rpsls("rock")

rpsls("Spock")

rpsls("paper")

rpsls("lizard")

rpsls("scissors")

Figure 6. Console output for RSPLS

4.2 Guess the number

This game is a simple two-player game. The concept, however, is for one player

to think of a secret number and the second player to guess it. A range is drawn

initially so the guesser can have an idea of the range to guess from.

To make the game much more appealing, the thinker tells the guesser if he

should go “higher, lower or correct!” if the guess is right. The guesser has to

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

make an attempt to guess right before he uses all available guesses. E.g. “7” or

“10” guesses for a range between “0 – 100” and “0 – 1000” respectively.

For this game, “Guess your number”, we will be using one of the graphics

modules: simpleGui and two standard modules: math and random module as

described in chapter 3

Development process:

 Initialize and decide global variables that control the state of the game. E.g.

Number generated by the program, the guess number that assigns the

number of guesses for each game range.

low = 0

high = 100

global number

global guessNumber

 Generate random secret number in a giving range. This is generated

between a giving range, low or high.

number = random.randint (low, high)

 In other to create an input text box, the simpleGui module is imported.

import simplegui

 Take the input “guess” from the user by writing the event handler. The

function “input_guess(guess)” compares the guess to the secret number and

prints out an appropriate message as written in the code.

def input_guess(guess):

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

 global guessNum

 guessNum -= 1

 guess = int(guess)

 print ""

 print "Guess was", guess

 print "Number of remaining guesses is", guessNum

 if guessNum > 0:

 if guessNum >= 1:

 if guess == number:

 print "Correct!"

 print""

 new_game()

 elif guess > number:

 print "Lower!"

 elif guess < number:

 print "Higher!"

 elif guessNum == 0 and guess == number:

 print "Correct!"

 print""

 new_game()

 else:

 print "You ran out of guesses. The number was",

number

 print ""

 new_game()

 Create a function “new_game()”. This function computes the generation of

the secret number as well as the number of guesses for each range and

assigns it to global variables.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

def new_game():

 find code in appendix 1

Buttons and input field

Figure 7. Guess the number frame

To make the game more entertaining, two buttons were created. These buttons

allow the player to switch between two different ranges: “0 – 100” and “0 –

1000”. Each button resets the secret number and prints an appropriate

message informing the player of the range in which the guess should be made.

 # register event handler for control elements

frame.add_button("Range is (0, 100)", range100, 200)

frame.add_button("Range is (0, 1000)", range1000, 200)

The input field registers the guess made by the player. Each guess is

automatically registered after the “Enter Key” is pressed.

 # register event handler for control elements

frame.add_input("Enter a guess", input_guess, 200)

Output:

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

The final outcome of the output is printed on the console:

Figure 8. Guess the number console output

4.3 Stop Watch game

This project involves the building of a simple digital stopwatch that keeps track

of time in tenths of a second. For this game, we will focus more on combining

text drawing in the canvas.

Figure 9. Stopwatch game frame

The stopwatch in Figure 9 contains three buttons: Start, Stop and Reset.

In addition, two green zeros with a slash in between located at the top right of

the canvas. This area of the game was used to test the reflexes of the player

and used to show the number is “hits” per “tries”. The number of “hits” can be

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

explained further as the number times the player hits a zero mark, i.e., 0:02.0,

0:15.0, etc. while the number of “tries” is the number of times the game was

played.

Development process:

 Firstly a timer is created whose event handler is incremented by a global

integer. The timer has an interval of 0.1 sec.

define event handler for timer with 0.1 sec interval

def timer():

global t

t+=1

register event handlers

timer = simplegui.create_timer(100, timer)

 Draw the current time in the middle of the canvas by using an event handler

function

define draw handler

def draw(canvas):

 canvas.draw_text(format(t), (50, 100), 56, "White")

 canvas.draw_text(str(wins) + "/" + str(tries), (210,20), 20,

"Green")

 Add “Start: to start the time”, “Stop: to stop the time” and “Reset: stops and

resets the current time to zero” buttons.

def start():

 find code in appendix 2

def stop():

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

 find code in appendix 2

def reset():

 find code in appendix 2

 # register event handlers

start = frame.add_button("Start", start, 50)

stop = frame.add_button("Stop", stop, 50)

reset = frame.add_button("Reset", reset, 50)

 Write a helper function format(t) that returns a string in the form of

“A:BC:D”. String A, C and D are digits in the range 0-9 and B is between 0-5.

def format(t):

 a = t // 600

 b = ((t // 100) % 6)

 c = ((t // 10) % 10)

 d = t % 10

 return str(a) + ":" + str(b) + str(c) + "." + str(d

4.4 Memory Game

This is a simple card game where a player is expected to pick cards with the

same number in pairs. In one turn, two of the cards are flipped over. If they

match, they are left revealed by keeping them face up. If they do not match,

both cards are flipped back down. The aim behind the game is to match all the

pairs of cards flipped facing up in the minimum number of turns.

Development process:

 Create a deck of cards as a list consisting of 16 numbers. Each number

should lie in the range(0,8) and appearing twice.

card_List = [i % 8 for i in range(16)]

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

 Create a draw handler that iterates through the card_List using a for loop

and draws the numbers on the canvas

def draw(canvas):

 ….

 a = -35

 for i in range(len(card_List)):

 a += 50

 canvas.draw_text(str(card_List[i]), [a, 60], 35, "White")

 Shuffle the cards using random.shuffle() module

random.shuffle(card_List)

 Modify the draw handler created in second list, of the development process,

to draw a bank Green rectangle (or colour of your choice) or card value.

def draw(canvas):

 …………..

 …………..

 …………..

 b = -50

 for i in exposed:

 b += 50

 if not i:

 canvas.draw_polygon([(b, 0), (b + 50, 0), (b + 50, 100), (b +

0, 100)], 2, "White", "Green")

For proper implementation of this behaviour, a second list should be created

called exposed.

 exposed = [False for i in range(16)]

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

In the exposed list,

the ith entry = True if the card faces up and its value visible

the ith entry = False if the card faces down and its value hidden

by default all entries are set to False.

 Create an event handler mouseclick and modify it to flip cards based on the

location of the mouse click, whereby, a players click on the ith card and the

value of exposed[i] be changed from “False” to “True”.

def mouseclick(pos):

There are 3 states to the mouse click:

First state (counter = 0): The card is clicked to expose the card value (False

to True) and the counter is increased 1.

Second state (counter = 1): The 2nd card is clicked to expose the 2nd card

value (False to True) and the counter is increased 1. If exposed card are

clicked it mouseclick is ignored

Third state (counter = 2): The 3rd card list is clicked to expose the card value

(False to True) and the counter is decreased 1. If the 1st and 2nd cards are

not equal they return back False (Hidden) and your back again at the first

state.

It goes on to the last until all cards are appended.

if counter == 0:

 card.append(pos[0]/50)

 exposed[pos[0]/50] = True

 counter += 1

 turns = 1

 elif counter == 1:

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

 if not (pos[0]/50 in card):

 card.append(pos[0]/50)

 counter += 1

 exposed[pos[0]/50] = True

 elif counter == 2:

 if not (pos[0]/50 in card):

 if card_List[card[-1]] != card_List[card[-2]]:

 exposed[card[-1]] = False

 exposed[card[-2]] = False

 card.pop()

 card.pop()

 counter -= 1

 turns += 1

 exposed[pos[0]//50] = True

 card.append(pos[0]//50)

 A counter is added to keep track of the number of turns. During the first state

the number of turns is incremented by 1 and also at the third state.

def draw(canvas):

 label.set_text("Turns = " + str(turns))

 Implement a new_game() function that restarts the game via the “Reset

button”

def new_game():

 global card_List, exposed, card, counter, turns

 see appendix 3

frame.add_button("Restart", new_game)

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

Output:

Figure 10. Guess the number - Initial screen

Figure 11. Guess the number - playing mode

4.5 RiceRocks (Asteroids) game

The game RiceRocks is an implementation of the classic game, Asteroids,

released in November 1979. The object of the game is to shoot and destroy

asteroids (rocks) while the player avoids colliding or being hit by them.

This game uses event-driven programming to handle ”clicks” and ”pressing /

releasing” from the mouse and keyboard respectively. Objects for the game are

drawn on the canvas by a draw procedure. This procedure runs at a rate of 60

times per second, updating object position and redraws them in a new position

(Al-hindi, M. 2013).

In other to make the development of this game possible a ricerocks program

template (check references) was made available. The following were

implemented to bring out the game:

i. To make sure multiple rocks are spawn randomly and at different points

of the game and all rocks spawn on the canvas must not be greater than

12 rocks. If a particular rock is destroyed or at a point it moved out of the

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

screen, a new one will be spawn. A rock must not spawn at the position

on the ship.

ii. Explosion should occur when:

a. Missile hits rock (a rock set is deletes from the set)

b. Rock hits ship or vice versa.

iii. Scores accumulated and the number of lives should be updated each

time and explosion occurs. When score is equal to zero, the splash

screen appears and the game is reset to its initial state.

iv. Each missile should have a lifespan so it does not keep looping forever

in the game.

Figure 12. RiceRocks (Asteroids) - Splash screen

Development process:

Multiple Rocks

 Initialize the rock group to an empty set and program the rock_spawner

function to create a new rock and add it to rock_group

rock_group = set([])

timer handler that spawns a rock

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

def rock_spawner():

 global rock_group

 rock_pos = [random.randrange(0, WIDTH), random.randrange(0,

HEIGHT)]

 rock_vel = [random.random() * .6 - .3, random.random() * .6 - .3]

 rock_avel = random.random() * .2 - .1

 a_rock = Sprite([WIDTH * random.random(), HEIGHT *

random.random()], [random.random() * 3 -

1.5,random.random() * 3 - 1.5], 0, (random.random() -

.5) / 8, asteroid_image, asteroid_info)

 if len(rock_group) < 12 and started == True:

 if dist(a_rock.pos, my_ship.get_position()) > 150:

 rock_group.add(a_rock)

 Create a helper function process_sprite_group which is responsible for

calling update and draw methods for each sprite in the group

#updates sprites and removes them at the end of lifespan

def process_sprite_group(a_set, canvas):

 for sprite in a_set:

 if sprite.update() == False:

 a_set.remove(sprite)

 sprite.draw(canvas)

 Call the process_sprite_group function in the draw handler on rock_group

draw ship and sprites

process_sprite_group(rock_group, canvas)

Collisions

 A collide method is added to the Sprite class which takes and argument

“other_object”. If there is a collision “True” is returned otherwise “False”

 # Sprite class

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

class Sprite:

 def collide(self, other_object):

 if dist(self.get_position(), other_object.get_position()) <=

 (self.radius + other_object.radius):

 return True

 else:

 return False

 The helper function group_collide is implemented. This function takes 2

arguments: (a set group and a sprite other_object) and checks for collision

between the elements of the group and other_group. The collided object is

removed from the group is there is a collision detected.

#checks for collisions between one set and one object

def group_collide(group_set, other_object):

 remove_collided = set([])

 for item in group_set:

 if item.collide(other_object):

 remove_collided.add(item)

 new_explosion = Sprite(item.pos, (0,0), 0, 0,

explosion_image, explosion_info, explosion_sound)

 explosion_group.add(new_explosion)

 if len(remove_collided) > 0:

 group_set.difference_update(remove_collided)

 return len(remove_collided)

 Include in the draw handler the helper function group_collide. If a ship hits

any of the rock, the number of lives is reduced by one.

if group_collide(rock_group, my_ship) > 0:

 explosion_group.add(Sprite(my_ship.get_position(), [0, 0], 0,

 0, explosion_image, explosion_info))

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

 lives -= 1

Missiles

 Initialize the missile group to an empty set and modify the shoot method of

the ship class to create new missile and add it to the missile_group. The

firing sound should play each time a missile is spawned.

missile_group = set([])

 Use the process_sprite_group helper function to process the

missile_group in the draw handler.

process_sprite_group(missile_group, canvas)

 Every time update is called there is an increment in the age of the sprite, in

the update method of the Sprite class. False is returned if the age is less

than the lifespan and True otherwise.

def update(self):

 # update angle

 self.angle += self.angle_vel

 # update position

 self.pos[0] = (self.pos[0] + self.vel[0]) % WIDTH

 self.pos[1] = (self.pos[1] + self.vel[1]) % HEIGHT

 #update age

 self.age += 1

 if self.age < self.lifespan:

 return True

 else:

 return False

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

The aim for the missiles is to destroy rock. Due to this fact, a helper function

group_group_collide is implemented that takes two groups as input. It returns

the number of elements in the first group that collides with the second and

deletes these elements in the first.

Game Control

The spaceship is controlled using various keys on the keyboard as defined by

the game programmer. Two key handlers: keydown(key) and keyup(key) to

help in controlling the spaceship were created. For this particular game, the

spacebar is used to shoot missiles, ”left/right” arrow keys on the keyboard

rotates spaceship, while the ”up” arrow key is used for acceleration.

Figure 13. RiceRocks (Asteroids) - Play Mode

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

5 CONCLUSION

In the introduction of this thesis, the project goal and scope were highlighted

and specific detail of the implementation of several listed topics were listed.

CodeSkulptor has served and accomplished the purpose of game

implementation. Most of the game development processes mentioned are

reusable over and over again in so many ways to accomplish a better gaming

programming experience.

In this thesis, the author successfully implemented 5 games (See Chapter 4 of

this thesis). The games can be accessed and played via links provided in the

References (pg. 38 – 40). All the games were developed using the

CodeSkulptor environment. Out of the three graphical modules mentioned in

Chapter 3, SimpleGUI was the only one used in all the games implemented

because it is specifically used for interactive games and drawing.

Interactive game programming using Python (CodeSkulptor) has helped to

demonstrate how several topics like functions, conditional statement,

local/global variables, buttons/input field, using canvas, motion controls, sprite

class, sprite animation, sound, groups of sprite, sets, etc., can be written to give

a great game programming experience.

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

REFERENCES

Al-hindi, M. 2013, , RiceRock Asteroids, “Retrieved: 20 May 2014” http://python-
alhindi.blogspot.fi/2013/12/mini-project-8-ricerocks-asteroids.html edn.

Asteroids 2014, , Asteroids. “Retrieved: 20 May 2014”
http://en.wikipedia.org/wiki/Asteroids_(video_game).

Eck, D. 2004, , Introduction to Programming Using Java. “Retrieved: 12 October
2014” http://math.hws.edu/eck/cs124/javanotes4/progenv.html.

Eric 2014, , Eric Python IDE. “Retrieved: 12 October 2014” http://eric-
ide.python-projects.org/index.html [2014, .

Fruit, J. 2013, , Comparison of Python IDEs for Development. “Retrieved: 11
September 2014” http://pythoncentral.org/comparison-of-python-ides-
development/.

Game1 2013, , RPSLS. “Retrieved: 11 September 2014”
http://www.codeskulptor.org/#user20_3P2RlV5wIuMQg54.py.

Game2 2013, , Guess the number. “Retrieved: 11 September 2014”
http://www.codeskulptor.org/#user21_wOQOKjw6zCRFkiX.py.

Game3 2013, , Stop Watch. “Retrieved: 11 September 2014”
http://www.codeskulptor.org/#user22_VJnCieTAvXDodwL.py.

Game4 2013, , Memory. Retrieved: 11 September 2014
http://www.codeskulptor.org/#user24_QhHeGE4Ogc_0.py.

Game5 2013, , Ricerocks Game. Retrieved: 11 September 2014
http://www.codeskulptor.org/#user27_QDvK0PYBnbuT0zu.py.

Giampaolo, R. 2014, , GUI. “Retrieved: 20 May 2014”
https://wiki.python.org/moin/UsefulModules#GUI.

Greiner, J. 2012, , CodeSkulptor documentation. “Retrieved: 20 May 2014”
http://www.codeskulptor.org/docs.html#tabs-Python.

IDE 2014, , Integrated development environment. “Retrieved: 12 October 2014”
http://en.wikipedia.org/wiki/Integrated_development_environment.

Interpreted Language 2014, , Interpreted language. “Retrieved: 20 May 2014”
http://en.wikipedia.org/wiki/Interpreted_language.

Janssen, C. 2013, , High-Level Language (HLL). “Retrieved: 20 May 2014”
http://www.techopedia.com/definition/3925/high-level-language-hll.

http://python-alhindi.blogspot.fi/2013/12/mini-project-8-ricerocks-asteroids.html
http://python-alhindi.blogspot.fi/2013/12/mini-project-8-ricerocks-asteroids.html
http://en.wikipedia.org/wiki/Asteroids_(video_game)
http://math.hws.edu/eck/cs124/javanotes4/progenv.html
http://eric-ide.python-projects.org/index.html
http://eric-ide.python-projects.org/index.html
http://pythoncentral.org/comparison-of-python-ides-development/
http://pythoncentral.org/comparison-of-python-ides-development/
http://www.codeskulptor.org/#user20_3P2RlV5wIuMQg54.py
http://www.codeskulptor.org/#user21_wOQOKjw6zCRFkiX.py
http://www.codeskulptor.org/#user22_VJnCieTAvXDodwL.py
http://www.codeskulptor.org/#user24_QhHeGE4Ogc_0.py
http://www.codeskulptor.org/#user27_QDvK0PYBnbuT0zu.py
https://wiki.python.org/moin/UsefulModules#GUI
http://www.codeskulptor.org/docs.html#tabs-Python
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Interpreted_language
http://www.techopedia.com/definition/3925/high-level-language-hll

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

Kioskea 2014, , Programming Languages. “Retrieved: 20 May 2014” Available:
http://en.kioskea.net/contents/315-programming-languages.

Lucas 2012, , INFORMATION TECHNOLOGY, INFORMATION SYSTEMS,
ETC. “Retrieved: 20 May 2014” http://it-is-etc.blogspot.fi/2012/12/python-
interactive-programming.html.

Numpy developers 2013, , Numpy module. “Retrieved: 20 May 2014”
http://www.numpy.org/.

O’Regan, G. 2012, A Brief Histroy of Computing, Second edn, .

Oak, M. 2008, , Programming Languages. “Retrieved: 20 May 2014”
http://www.buzzle.com/articles/list-of-programming-languages.html.

Oracle Corporation 2013, , NetBeans IDE. “Retrieved: 11 September 2014”
https://netbeans.org/.

Perry, G. 1994, Absolute Beginner’s Guide to C , Second edn, Richard K.
Swadley.

Python Documentation 2014, , Python 3.4.1 documentation. “Retrieved: 20 May
2014” https://docs.python.org/3/.

Python Game Libraries 2013, , Python Game Libraries. “Retrieved: 20 May
2014” https://wiki.python.org/moin/PythonGameLibraries.

Python Modules 2014, , Modules. “Retrieved: 20 May 2014”
http://docs.python.org/2/tutorial/modules.html#.

Python Software Foundation 2014, , IDLE. “Retrieved: 10 October 2014”
https://docs.python.org/2/library/idle.html.

Qt 2014, , Qt-Project. “Retrieved: 10 October 2014” http://qt-project.org/ [2014, .

Rao, A. 2012, , My projects in Codeskulptor. “Retrieved: 20 May 2014”
http://www.ak-droid.com/my-projects-in-codeskulptor/.

Ricerocks 2012, , Ricerocks program template. “Retrieved: 11 September 2014”
http://www.codeskulptor.org/#examples-ricerocks_template.py.

Riverbank Computing Limited 2014, , PyQt. “Retrieved: 10 October 2014”
http://www.riverbankcomputing.co.uk/software/pyqt/intro [2014, .

Rizos, Y. & Badar 2012, , stack exchange, inc;. “Retrieved: 20 May 2014”
http://programmers.stackexchange.com/questions/17976/how-many-types-
of-programming-languages-are-there.

http://en.kioskea.net/contents/315-programming-languages
http://it-is-etc.blogspot.fi/2012/12/python-interactive-programming.html
http://it-is-etc.blogspot.fi/2012/12/python-interactive-programming.html
http://www.numpy.org/
http://www.buzzle.com/articles/list-of-programming-languages.html
https://netbeans.org/
https://docs.python.org/3/
https://wiki.python.org/moin/PythonGameLibraries
http://docs.python.org/2/tutorial/modules.html
https://docs.python.org/2/library/idle.html
http://qt-project.org/
http://www.ak-droid.com/my-projects-in-codeskulptor/
http://www.codeskulptor.org/#examples-ricerocks_template.py
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://programmers.stackexchange.com/questions/17976/how-many-types-of-programming-languages-are-there
http://programmers.stackexchange.com/questions/17976/how-many-types-of-programming-languages-are-there

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

The Eclipse Foundation 2014, , Eclipse. “Retrieved: 10 October 2014”
https://www.eclipse.org/ [2014, .

Tkinter 2014, Tkinter GUI toolkit. “Retrieved: 10 October 2014”Available:
http://en.wikipedia.org/wiki/Tkinter.

Vanguard Software Corporation 2012, , Compiled vs. Interpreted Languages.
“Retrieved: 20 May 2014”
http://www.vanguardsw.com/dphelp4/dph00296.htm.

Warren, J., Rixner, S., Greiner, J. & Wang, S. 2014, , An Introduction to
Interactive Programming in Python. “Retrieved: 20 May 2014”
http://www.codeskulptor.org/#examples-simplegui-0.py.

Xinox Software 2014, , JCreator IDE. “Retrieved: 10 October 2014”
http://www.jcreator.com/.

https://www.eclipse.org/
http://en.wikipedia.org/wiki/Tkinter
http://www.vanguardsw.com/dphelp4/dph00296.htm
http://www.codeskulptor.org/#examples-simplegui-0.py
http://www.jcreator.com/

 Appendices

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

APPENDICES

Appendix 1. Helper function to start and restart the game (Guess the number)

def new_game():
 global number
 global guessNum

 number = random.randint(low,high)
 guessNum = int(math.ceil(math.log(high - low + 1, 2)))
 print ""
 print "New game. Range is from", low, "to", high
 print "Number of remaining guesses is", guessNum
 print ""

Appendix 2. Event handlers for buttons; "Start", "Stop", "Reset" (Stop watch)

def start():
 timer.start()

def stop():
 global wins
 global tries
 if not timer.is_running():
 return
 timer.stop()
 tries += 1
 if t % 10 == 0:
 wins += 1

def reset():
 global t
 global wins
 global tries
 t = 0
 wins = 0
 tries = 0
 timer.stop()

 Appendices

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Richard Olugbenga Ajayi

Appendix 3. Helper function to initialize globals (Memory game)

def new_game():
 global card_List, exposed, card, counter, turns
 card_List = [i % 8 for i in range(16)]
 random.shuffle(card_List)
 exposed = [False for i in range(16)]
 card = []
 counter = 0
 turns = 0

