

Javier Ochoa

Security for Java Web Applications
Using Apache Shiro

Helsinki Metropolia University of Applied Sciences

Master’s Degree

Information Technology

Master’s Thesis

28 November 2014

Author(s)
Title

Number of Pages
Date

Javier Ochoa
Security for Java Web Applications Using Apache Shiro

74 pages
28 November 2014

Degree Master of Engineering

Degree Programme Information Technology

Instructor(s)

Peeter Kitsnik

Web applications have become a necessity to almost any organization worldwide, but the-

se applications can considerably weak the corporation’s security network since they may

be turned into security breaches by people with malicious intentions, causing damage to

finances and to a company’s reputation.

Apache Shiro is a Java security framework built as a solution for developers to easily inte-

grate security features such as authentication, authorization, cryptography, and session

management, on any type of Java application. Its main objective is to reduce the complexi-

ty regarding to the management of an application’s security.

This study examined the integration and usability of Apache Shiro as a security framework

for Java applications and it reached for an understanding of the framework where custom

behavior was needed, instead of sensible defaults.

As practical work, a prototype was created to supply a security solution for a Java web

application. The goal was to provide user management features requested, such as user

role control access and the possibility of authentication through the use of user data stored

within a rational database.

Besides the prototype being a success, this study has helped to gain a wider view of secu-

rity and user management within Java web applications and further study will be placed to

accomplish more reliable and secure applications.

Keywords Java, security, user management, Apache Shiro

Contents

Abstract

List of Figures

List of Listings

List of Abbreviations

1. Introduction 1

1.1 Objective, Scope and Structure of the Thesis 2

1.2 Company and Project Background 2

1.3 Research Question 4

2. Security in Java 5

2.1 Security in Web Applications 6

2.2 Java Security Frameworks 9

3. Apache Shiro Overview 11

3.1 Architecture 12

3.2 Configuration 15

3.2.1 Programmatic Configuration 15

3.2.2 INI Configuration 17

4. Apache Shiro Core 25

4.1 Authentication 25

4.1.1 Subject’s Authentication with Shiro 26

4.1.2 Distinction between “Remembered” and “Authenticated” 29

4.1.3 Logging Out 30

4.2 Authorization 31

4.2.1 Programmatic Authorization 35

4.2.2 Annotation-based Authorization 38

4.3 Realms 41

4.3.1 Configuration 41

4.3.2 Credentials Matching 42

4.4 Cryptography 43

4.4.1 Ciphers 46

4.4.2 Hashes 47

5. Apache Shiro Web Support 49

5.1 Configuration 49

5.1.1 Web INI Configuration 50

5.2 Remember Me Services 54

5.3 JSP/GSP Tag Library 56

6. Prototype for Project Proposal 62

6.1 Database Setup and Connection 62

6.2 Shiro Integration 63

6.3 Shiro INI Configuration File 63

7. Project Results and Future Development 67

8. Conclusions 68

References 69

List of Figures

Figure 1 - The access control classes of the java.security package 6

Figure 2 - Different paths through an application to do harm to the organization 7

Figure 3 - Apache Shiro features .. 11

Figure 4 - High-level architecture overview ... 12

Figure 5 – Apache Shiro's detailed architecture .. 13

Figure 6 - Apache Shiro's authentication sequence .. 25

Figure 7 - Apache Shiro's authorization sequence .. 31

Figure 8 - JCE architectural model and its cryptographic services 44

Figure 9 - Encryption using a symmetric cipher... 46

Figure 10 - Encryption using an asymmetric cipher ... 47

List of Listings

Listing 1 - Creation of DefaultSecurityManager .. 16

Listing 2 - Customization of DefaultSecurityManager .. 16

Listing 3 - SecurityManager instantiation... 17

Listing 4 - SecurityManager programatic instantiation ... 18

Listing 5 - Defining an object ... 19

Listing 6 – Setting primitive values .. 19

Listing 7 - Setting object values .. 20

Listing 8 - Setting a nested property .. 20

Listing 9 - Setting collections... 21

Listing 10 - Overriding an instance .. 22

Listing 11 - Defining users .. 22

Listing 12 - Encrypted password for users .. 23

Listing 13 - Different role cases ... 24

Listing 14 - Providing Subject's information programatically .. 26

Listing 15 - Enabling "Remember Me" capabilities programatically 27

Listing 16 - User authentication programatically .. 28

Listing 17 - Shiro's exception hierarchy ... 28

Listing 18 – Log out programatically .. 30

Listing 19 - Permissions .. 32

Listing 20 - Multiple permissions (multiple lines) ... 33

Listing 21 - Multiple permissions (comma separated).. 33

Listing 22 - Instance level access control .. 33

Listing 23 - Wildcard for permissions .. 34

Listing 24 - Role check programatically ... 35

Listing 25 - Role assertion check .. 36

Listing 26 - Permission check programatically... 36

Listing 27 - Permission-as-string check ... 37

Listing 28 - Permission assertion check .. 37

Listing 29 - Permission-as-string assertion check ... 37

Listing 30 - RequiresAuthentication annotation ... 38

Listing 31 - RequiresGuest annotation .. 39

Listing 32 - RequiresPermissions annotation .. 39

Listing 33 - RequiresRoles annotation .. 40

Listing 34 - RequiresUser annotation .. 40

Listing 35 - Realms configuration .. 41

Listing 36 - Setting CredentialMatcher for Realm .. 42

Listing 37 - Setting CredentialMatcher for Realm .. 43

Listing 38 - MD5 encryption using JCE ... 45

Listing 39 - MD5 encryption using Shiro .. 45

Listing 40 - Salts and repeated hash iterations.. 48

Listing 41 - Shiro configuration in web.xml .. 49

Listing 42 - Url section in INI file .. 50

Listing 43 - Url path expression ... 51

Listing 44 - Multiple url path expression .. 51

Listing 45 - Default filter configuration ... 52

Listing 46 - Setting login form page ... 54

Listing 47 - HTML login form ... 55

Listing 48 - Login form fields custom configuration .. 55

Listing 49 - JSP Shiro tag namespace .. 56

Listing 50 - Guest tag .. 56

Listing 51 - User tag .. 57

Listing 52 - Authenticated tag.. 57

Listing 53 - NotAuthenticated tag .. 58

Listing 54 - Principal tag .. 58

Listing 55 - HasRole tag .. 59

Listing 56 - LacksRole tag ... 59

Listing 57 - HasAnyRole tag.. 60

Listing 58 - HasPermission tag ... 60

Listing 59 - LacksPermission tag .. 61

Listing 60 - SQL script for user table ... 62

Listing 61 - INI file configuration for project ... 64

List of Abbreviations

AOP Aspect-Oriented Programming

API Application Programming Interface

DAO Data Access Object

GSP Groovy Server Pages

HTTP Hypertext Transfer Protocol

JAAS Java Authentication and Authorization Service

JCE Java Cryptography Extension

JDBC Java Database Connectivity

JDK Java Development Kit

JNDI Java Naming and Directory Interface

JSF Java Server Faces

JSP Java Server Pages

LDAP Lightweight Directory Access Protocol

JPA Java Persistence API

MAC Message Authentication Code

MVC Model-View-Controller

OWASP Open Web Application Security Project

POJO Plain Old Java Object

SSL Secure Sockets Layer

XML Extensible Markup Language

1 (74)

1. Introduction

Nowadays, web applications are becoming one of the basic and necessary tools on

business for enterprises, and at the same time, the biggest source of data breaches.

Security breaches can create good opportunities for attackers to steal valuable data,

such as customer information, to expose sensitive records or to go deeper into the or-

ganization network to reach internal resources and more, which can eventually ruin

business reputation.

Any business that handles sensible information can be a target for security breaches at

any time during its daily operations. Companies commonly implement many sophisti-

cated defense systems, as firewalls and SSL (Secure Sockets Layer) encryption, into

their web applications, which are useful for protecting application access, but that will

not fully block all security breaches.

People often relate security breaches to single events from website hacking to infor-

mation theft but in reality, security breaches have a wider range of an organization’s

data, covering any type of business’s assets. Though security vulnerabilities can affect

any business in terms of financial and data loss, strategic security measures and appli-

cation security can be taken in order to eliminate potential attacks, reduce unexpected

risks and help businesses retaining customers trust, and guarantee revenue.

Application security is a process that starts with the application development lifecycle to

make sure that the best possible security is applied to each of the steps of the devel-

opment process, including the hardware where the application may run on, or securing

the network that the application may use to authenticate and authorize users. Planning

software with application security in mind from the initial design leads to software with

less security-related issues and less potential for vulnerabilities. However, this does not

mean that applications which are designed with security in mind will ensure secure

software. It means that fewer flaws will be identified during development, testing and

production phases, and that fewer flaws related to the entire application are likely to be

found.

2 (74)

This Master’s Thesis examines, in detail, Apache Shiro, a Java security framework

which can be easily integrated into any Java application as a security solution. The aim

is that the outcome of this thesis would be a prototype of a Java web application which

integrates Apache Shiro as security framework.

1.1 Objective, Scope and Structure of the Thesis

The thesis sets the objective to investigate the integration of Apache Shiro in a Java

web application, requiring multiple user roles management and authentication through

credentials stored in a database.

An overview of Apache Shiro’s architecture is included as part of the research, as well

as a deeper analysis of its core and web support. Technical examples and code snap-

shots are included to help during the reading of the thesis. At the time of writing of this

thesis, Apache Shiro 1.2.3 is the official stable release available and so this is the re-

lease used for framework analysis, code snapshots and examples. This thesis is not a

guideline or tutorial for a full Java web application development, and no other pro-

gramming language besides Java is covered.

The thesis is written in seven sections. Section 1 describes the case company and fo-

cus of this study. Section 2 overviews the theory background and context for this the-

sis. Sections 3, 4 and 5 discuss the concepts and features of the current framework to

study. Section 6 presents the results of the study in the shape of a prototype for the

project proposal. Section 7 presents an evaluation and summary of the study, as well

as future steps for research and development. Section 8 summarizes this thesis with

conclusions.

1.2 Company and Project Background

Northscreen is a Finnish company which a focus on solutions for monitoring road sta-

tus through a solution called ArcticView. Currently Northscreen is developing a Java

web application that will be used for internal management purposes. Due to the im-

3 (74)

portance of data to be managed, the company requires the integration of a security

framework to secure this application. This framework is Apache Shiro and the choice of

it is due to the fact that this framework is already being used by the company in other

solutions they provide. In this way, the expertise of the company is re-used and im-

proved based on other requirements needed for this project.

This new application requires a wider and more advanced use of Apache Shiro in com-

parison to how the company is currently using it as their applications’ security frame-

work, demanding deeper understanding and more technical analysis of such tool for a

successful integration.

There are two main requirements that are needed for a successful integration of

Apache Shiro within this new project.

a) Multiple user roles management

A role, as explained in more detail in chapter 4 (section 2) is simply a title which defines

an authority level for the user. The role will determine which actions a user can and

cannot execute within the application. In this case, Northscreen needs two roles man-

agement, normal users and administrator users. As agreed with the company, both

users will be able to execute any action within the application with the only exception of

User Management. User Management is the feature within the application that allows

creating, editing or removing users from the system, and in this case, this feature is

allowed only for administrator users.

b) Authentication through credentials stored in a database

As agreed with the company, user credentials will be stored in a relational database

which will be accessed when the user wants to log into the system. The credentials

stored in the database include both user id and password. For security purposes, the

password will be encrypted using the SHA-256 hash algorithm. Cryptography and best

practices for storing credentials data are discussed in detail later in chapter 4 (section

4).

4 (74)

Research Question

How to integrate Apache Shiro as security framework for a Java web application, ena-

bling the possibilities of multiple user roles management and allowing authentication

through credentials stored in a database.

5 (74)

2. Security in Java

The use of Java security framework is the main focus of this thesis, and therefore it

seems necessary to define what security means within the Java context.

Oaks (2001) tell how Java attracted the attention of programmers from all around the

world when it was first released by Sun Microsystems, and how some of these devel-

opers were in fact attracted because of the security capabilities that Java came built

with. However, the phrase “Java is secure” brought to these developers certain expec-

tations which were not necessarily shared by the designers of Java itself [1].

Depending on the expectation, Oaks (2001) defines different meanings to the term “se-

curity” when applied to a Java application, including:

 Authenticated

The identity of users involved in the application should be verified.

 Encrypted

Data that the application may send and/or receive, over the network or through

a persistent store such as a file system or database, should be always encrypt-

ed.

 Audited

All potentially sensitive operations should always be logged.

 Well−defined

A well−defined security specification should be followed.

 Verified

Rules of operation should be set and verified. [1, 2]

These are important features that nowadays may be acknowledged and understood by

any modern Java developer, due to the fact that technology has evolved considerably

since the first release of Java.

6 (74)

Nevertheless it is important to mention that Java’s security model did not, and still does

not, implement all these features. For example, authentication was added to Java 1.1

release, and encryption is currently available to Java 2 platform as an extension.

Figure 1 - The access control classes of the java.security package [2]

The java.security package contains all the interfaces and classes employed for the

Java security architecture (see figure 1). These classes can be categorized in classes

that implement access control, also referred as authorization, which avoid non-trusted

code from performing delicate operations, and classes that implement authentication,

which enable message digests and digital signatures and can authenticate Java clas-

ses and other objects.

2.1 Security in Web Applications

Bayse (2004) provides a description of the security challenges introduced by the use

and implementation of web applications in its work A Security Checklist for Web Appli-

cation Design [3].

7 (74)

Bayse (2004) describes web applications to be highly valuable to corporations because

of the quick access they provide to internal resources and the fact that their deploy-

ment is almost effortless when executed remotely. However, these are the very same

reasons that can turn into serious security risks, since a non-secure web application

can provide quick and effortless access to private and valuable corporate data for un-

authorized users through many different paths, as illustrated in figure 2 [3, Abstract].

Figure 2 - Different paths through an application to do harm to the organization [4]

Bayse (2004) specifies a checklist of security concerns, which provide a basis for se-

curing web applications, and the data sources they connect to, from malicious and un-

intentional abuse.

 Risk Assessment

 Authentication

 Authorization and Access Control

 Session Management

 Data and Input Validation

 Cross Site Scripting (XSS)

 Command Injection Flaws

 Buffer Overflows

 Error Handling

 Logging

 Remote Administration

 Web Application and Server Configuration [3, Abstract]

8 (74)

Additionally, and in relation to security for web applications, there is a project called

OWASP Top Ten project [5], directed by Open Web Application Security Project

(OWASP) [6]. OWASP is a non-profit organization which objective is to help corpora-

tions and individuals to improve the security in their software, providing them with more

visibility over software security so that decisions can be made based on real software

security risks. The OWASP Top Ten project provides a document for web application

security, which list the ten most critical web application security risks considered by the

project.

On June 12, 2013 the OWASP Top Ten for 2013 was officially released and it is as

follows:

 A1 - Injection

 A2 - Broken Authentication and Session Management

 A3 - Cross-Site Scripting (XSS)

 A4 - Insecure Direct Object References

 A5 - Security Misconfiguration

 A6 - Sensitive Data Exposure

 A7 - Missing Function Level Access Control

 A8 - Cross-Site Request Forgery (CSRF)

 A9 - Using Components with Known Vulnerabilities

 A10 - Unvalidated Redirects and Forwards

The methodology of how this top ten is produced is documented on the OWASP web-

site [7].

9 (74)

2.2 Java Security Frameworks

There are several security frameworks available for Java applications besides Apache

Shiro. Here there is a brief overview of the most commonly used frameworks.

HDIV

HDIV is an open-source framework that aims to avoid or reduce web security risks that

currently exist in some of the most used JVM web frameworks because of their design.

HDIV integrates to work from within the application instead following the behavior of

traditional web applications working as firewalls. It is advertised that this framework

covers all web risks described by OWASP Top 10. As for web support, it can be inte-

grated with many web frameworks, including Spring, Grails, Struts and Java Server

Faces (JSF) [8].

Spring Security

Spring Security is a framework that focuses on providing both authentication and au-

thorization to Java applications. In its website it is announced that the real power of

Spring Security is found in how easily it can be extended to meet custom requirements

[9].

Some of the features described are:

 Comprehensive and extensible support for both Authentication and Authoriza-

tion.

 Protection against attacks like session fixation, clickjacking, cross site request

forgery, etc.

 Servlet API integration.

 Optional integration with Spring Web MVC [9].

10 (74)

Java Authentication and Authorization Service (JAAS)

JAAS is a security framework which provides a user-centric authentication and authori-

zation API, and that can be integrated in small applications as well as in enterprise ap-

plications. For authentication purposes, JAAS uses a service provider approach. This

means that the underlying authentication logic is something the application remains

unaware of, and so, it is then possible to configure multiple modules for login purposes

without requiring any code changes. JAAS was introduced with JDK 1.3 as an optional

package, and fully integrated as part of JDK 1.4 [10]

jGuard

jGuard is an open source library that provides easy authentication and authorization for

Java web and desktop applications, and it is built on JAAS framework. The primary

feature of jGuard is that it allows the security system to be independent of the persis-

tence choice for the credentials of the user to be stored: relational databases, XML

files, or accessed through LDAP servers. This opens up the possibility of easily shifting

from one data source to another at any time with minimum effort and changes [11].

11 (74)

3. Apache Shiro Overview

Apache Shiro (pronounced “shee-roh”, which means ‘castle’ in Japanese language) is

a powerful and flexible Java security framework that offers developers a comprehen-

sive solution to authentication, authorization, session management and cryptography,

and can be used to secure any type of Java applications, from command line applica-

tions to the largest web and enterprise applications, and even mobile applications [12].

One of its goals, if not the first and most important, is to be easy to use and under-

stand, since security can be quite complex at times. Thus, Apache Shiro masks com-

plexities where possible and exposes a clean and intuitive API that minimizes the de-

veloper's effort to turn any application into a secure application [12].

Figure 3 - Apache Shiro features [12]

Shiro provides the application security API to perform the following aspects as figure 3

illustrates:

 Authentication: to provide user identity, commonly known as user ‘login’.

 Authorization: to manage access control.

 Session management: per-user time-sensitive state.

 Cryptography: to protect and hide sensible data from curious eyes.

12 (74)

Shiro additionally supports certain auxiliary features, such as web application security,

unit testing, and multithreading support, but these mainly exist to boost the above four

primary concerns.

 Web Support: Shiro's web support APIs to easily help securing web applica-

tions.

 Caching: this feature ensures that security operations remain fast and efficient.

 Concurrency: Apache Shiro supports multi-threaded applications.

 Testing: Test support exists to help writing unit and integration tests and ensure

that any code is secured as expected.

 "Run As": A feature to allow users to assume another’s’ user identity, which can

be useful in certain scenarios.

 "Remember Me": Remember users' identities across sessions so that logging in

is only needed when mandatory [12].

3.1 Architecture

Apache Shiro's design goal is to reduce the complexity of securing an application

meanwhile being intuitive and easy to use. Shiro’s core is design following the tradi-

tional thought about application security within the context of someone (or something)

interacting with an application [13].

Figure 4 - High-level architecture overview [13]

13 (74)

As illustrated in figure 4, Shiro's architecture has three primary concepts: the Subject,

SecurityManager and Realms.

Figure 5 – Apache Shiro's detailed architecture [13]

Figure 5 provides as a detailed perspective of the interaction between all those primary

concepts.

Subject

“A Subject represents state and security operations for a single applica-

tion user. These operations include authentication (login/logout), authori-

zation (access control), and session access. It is Shiro's primary mecha-

nism for single-user security functionality.” [14]

14 (74)

For Apache Shiro, Subject is just a security term which basically means “the currently

executing user”. Subject is the term used for what is frequently called User, but the

reason why the term User is not used in Apache Shiro is because User is commonly

associated with a human being, when talking about application security, the term Sub-

ject can mean a human being, but also a 3rd party process, daemon account, cron job,

or anything similar. In other words, Subject simply means “the thing that is currently

interacting with the software”, regardless of being a human being or not [15].

SecurityManager

“A SecurityManager executes all security operations for all Subjects (aka

users) across a single application.” [16]

If the Subject represents security operations for the current user, the SecurityManager

manages security operations for all users. It is the main core of Shiro’s architecture and

acts as a hub for referencing internally nested security components. It is usually felt

alone once it is configured, since the Subject provides most of the functionality required

by developers [15].

Realms

“A Realm is a security component that can access application-specific

security entities such as users, roles, and permissions to determine au-

thentication and authorization operations.” [17]

A Realm acts as a connector between Shiro and the application’s security data. Shiro

can use one or multiple of the Realms which are already configured for an application

to perform authentication and/or authorization. These Realms will be used to interact

with security-related data when required and complete the authentication / authoriza-

tion requests [15].

15 (74)

In essence, a Realm can be considered as a DAO for security purposes. It contains the

details to connect to data sources and provides to Shiro with the available data associ-

ated to the request. It is important to remember that, in order to configure Shiro suc-

cessfully, at least one Realm must be specified.

Shiro provides some implemented Realms ready to be used and which represent some

of the most common security data sources such as LDAP, relational databases

(JDBC), text configuration sources (properties and ini files) and others. In case the de-

faults Realms do not meet the application developer needs, Shiro allows to plug-in any

custom Realm implementation which represents the required custom data source [15].

3.2 Configuration

Shiro can be used in any type of Java application, from a simple command-line applica-

tion to a large enterprise application, because it has been designed to work in any envi-

ronment. And it is because of the diversity of environments that Shiro supports a num-

ber of configuration mechanisms suitable for its own configuration. However, there are

mainly two types of configuration supported by Shiro core: Programmatic configuration

and INI configuration.

3.2.1 Programmatic Configuration

The simplest way to create a SecurityManager and make it available to the application

is to create a DefaultSecurityManager and wire it up in the code presented in listing 1.

16 (74)

Realm realm = //instantiate or acquire a Realm instance. We'll dis-

cuss Realms later.

SecurityManager securityManager = new DefaultSecurityManager(realm);

//Make the SecurityManager instance available to the entire applica-

tion via static memory

SecurityUtils.setSecurityManager(securityManager);

Listing 1 - Creation of DefaultSecurityManager [18]

Listing 1 shows how just a few lines of code enable and configure a functional Shiro

environment suitable for many applications.

Nevertheless, if custom configuration is needed, Shiro's SecurityManager implementa-

tions are essentially a modular object graph of nested security-specific components,

thus, it is possible to use the getter and setter methods of any of the components to

configure the SecurityManager and any of its internal object graphs.

DefaultSecurityManager securityManager = new DefaultSecurityManager(

realm);

SessionDAO sessionDAO = new CustomSessionDAO();

((DefaultSessionManager)securityManager.getSessionManager())

.setSessionDAO(sessionDAO);

Listing 2 - Customization of DefaultSecurityManager [18]

Listing 2 presents how to configure the SecurityManager instance in case that custom

Session Management is needed, with the use of a custom SessionDAO, setting the

SessionDAO directly with the nested SessionManager's setSessionDAO method.

17 (74)

3.2.2 INI Configuration

It is possible to build the SecurityManager object graph with the use of the INI format.

Shiro supports this format, and so it ensures a text-based mechanism that works in all

environments with almost no 3rd party dependencies. INI suits most applications well, it

is simple enough to read and configure, and it encapsulates the configuration logic so

that it is possible to modify it anytime without any changes on the source code. Fur-

thermore, it is possible to create the SecurityManager instance from an INI resource

path, where the path is configured via prefix keyword and file name. There are three

possible prefix options: ‘file:’ for file system, ‘classpath:’ for classpath or ‘url’ for a url

path.

Factory<SecurityManager> factory = new

IniSecurityManagerFactory("classpath:shiro.ini");

SecurityManager securityManager = factory.getInstance();

SecurityUtils.setSecurityManager(securityManager);

Listing 3 - SecurityManager instantiation [18]

If desired, the INI configuration can be built programmatically as well, via the Ini class

(see listing 4 below). This class works nearly the same than the Properties class in-

cluded in JDK, but additionally supports segmentation by section name.

18 (74)

Ini ini = new Ini();

//populate the Ini instance as necessary

...

Factory<SecurityManager> factory = new IniSecurityManagerFactory(ini);

SecurityManager securityManager = factory.getInstance();

SecurityUtils.setSecurityManager(securityManager);

Listing 4 - SecurityManager programatic instantiation [18]

The INI file used for Shiro’s configuration is a simple text file and its content is just a list

of key/value pairs group within sections, being those keys unique per section only, as

opposed to the common used properties files where the keys are unique over the entire

configuration.

There are four possible sections in Shiro’s INI file:

 main

 users

 roles

 urls

These four sections are described below.

[main]

The [main] section is where the configuration of the application's SecurityManager in-

stance, and any of its dependencies, occurs. It sounds a complex task to setup object

instances through the INI file, where it is only possible to use name/value pairs. How-

ever, Shiro uses a mechanism based on convention-over-configuration to enable a

simple and effective configuration mechanism.

19 (74)

Defining an object

The example below in listing 5 shows how to define an object through the INI file.

[main]

myRealm = com.company.shiro.realm.MyRealm

...

Listing 5 - Defining an object [18]

The example in listing 5 shows how to instantiate a new object instance of type

com.company.shiro.realm.MyRealm and how to relate myRealm name to that object

and make it available for future reference and configuration if needed.

Setting object properties

In the following example (listing 6), the lines of configuration are translated into setter

methods which are called in application runtime by Apache Shiro. This happens be-

cause of the assumption that all objects are Java POJOs and Beans-compatible,

through the use of convention as mentioned before in this section.

myRealm.connectionTimeout = 30000

myRealm.username = jochoa

Listing 6 – Setting primitive values [18]

For this mechanism to work, Shiro uses another Apache project called Apache Com-

mons BeanUtils, which converts the text values from the INI file into the proper primi-

tive types and invoke the setter methods.

20 (74)

Reference values

With Apache Shiro, it is possible to set not only primitive values but also objects.

sha256Matcher =

org.apache.shiro.authc.credential.Sha256CredentialsMatcher

...

myRealm.credentialsMatcher = $sha256Matcher

Listing 7 - Setting object values [18]

As shown in listing 7, the use of a dollar sign ($) enables a mechanism to reference a

previously-defined instance. For this “magic” to happen, Shiro takes advantage of

BeanUtils once more and it sets the object defined by the name sha256Matcher to the

object on the myRealm instance by calling the setter method for that property.

Nested properties

There may be cases where the final object or property to set is not directly a

subelement of the main object in hand.

securityManager.sessionManager.globalSessionTimeout = 1800000

Listing 8 - Setting a nested property [18]

For those cases, Shiro is prepared to understand a multiple dotted notation, and if

founded, it will navigate the object graph until it gets the real final object or property to

set (see listing 8 for an example).

21 (74)

Collection properties

Lists, Sets and Maps are taken into consideration by Apache Shiro and can be set like

any other property.

sessionListener1 = com.company.my.SessionListenerImplementation

...

sessionListener2 = com.company.my.other.SessionListenerImplementation

...

securityManager.sessionManager.sessionListeners = $sessionListener1,

$sessionListener2

...

object1 = com.company.some.class

object2 = com.company.another.class

...

anObject = some.class.with.a.Map.property

anObject.mapProperty = key1:$object1, key2:$object2

Listing 9 - Setting collections [18]

Listing 9 presents several examples of how to configure collections using the INI file.

Order matters

As shown in listing 9, Apache Shiro uses formats and conventions to easy the use of

the INI file for configuration purposes. But it is very important to understand that the

order of the lines in INI file matters. Apache Shiro executes each instantiation and as-

signment in the order it reads them from the [main] section of the INI file, since each

line will be translated to setter and getter method calls and then executed.

22 (74)

Overriding instances

Because the order of the INI file lines matters, an object will be overwritten if the same

name is used to define a new instance within the same configuration.

myRealm = com.company.security.MyRealm

...

myRealm = com.company.security.DatabaseRealm

Listing 10 - Overriding an instance [18]

Listing 10 shows how the object myRealm is being instanced twice, being the value of

the second instance the one that remains for application purposes. The first instantia-

tion is never used and is considered as if never existed.

[users]

The [users] section allows defining a collection of user accounts. This mechanism is

very useful in applications with a small number of user accounts or where user ac-

counts do not need to be created dynamically.

[users]

admin = jsmith

simpsons = homer, marge, bart

flinstones = wilma, fred

Listing 11 - Defining users [18]

Each line in the user section must follow the conventional format understood by Shiro

(listing 11 shows an example of this format):

username = password, roleName1, roleName2, ..., roleNameN

23 (74)

In the previous expression there can be only one value on the left side of the equals

sign, and this value would be considered as the username. On the right side of the

equals sign there can be multiple comma-separated values. The first value would be

taken as the user's password, and it is always required. Any other values after the

password are understood as the names of roles assigned to that user and these values

are optional. It is possible to encrypt the passwords using any hash algorithm (MD5,

Sha1, Sha256, etc.) and use the final result string as the password instead plain-text.

Listing 12 shows a simple example of how to use encrypted passwords for user within

INI file.

[main]

...

sha256Matcher =

org.apache.shiro.authc.credential.Sha256CredentialsMatcher

...

iniRealm.credentialsMatcher = $sha256Matcher

...

[users]

user1 = <sha256 encoded password>, role1, role2, ...

Listing 12 - Encrypted password for users [18]

In order to use encrypted passwords in INI file, it is required to configure the implicitly

created iniRealm in the [main] section. This will indicate Shiro that the passwords are

encrypted and which hash algorithm implementation to use (done through the instantia-

tion of the CredentialsMatcher).

[roles]

The [roles] section is where the association of Permissions with the roles is defined.

Similar to [users] section, [role] section is useful in applications with a small number of

roles or where roles don't need to be created dynamically.

24 (74)

[roles]

'admin' role has all permissions, indicated by the wildcard '*'

admin = *

The 'simpsons' role can do anything (*) with any donut:

simpsons = donut:*

The 'flinstones' role is allowed to 'drive' (action) the footcar

(type) with license plate 'fredrock' (instance specific id)

flinstones = footcar:drive:fredrock

Listing 13 - Different role cases [18]

Each line in this section has to define a role-to-permission(s) key/value mapping

through the following conventional format (see listing 13 above):

rolename = permissionDefinition1, permissionDefinition2, ..., permissionDefinitionN

If a role does not require any association to permissions, it will not be needed to list it.

[urls]

This section is described in the Apache Shiro Web Support chapter 5.

25 (74)

4. Apache Shiro Core

4.1 Authentication

Authentication is the process that verifies identities. For users to prove their identities,

some identity-related information is needed so that systems can understand and trust

that user.

Figure 6 - Apache Shiro's authentication sequence [19]

In Shiro, the process is done by submitting what is called the user’s principals and cre-

dentials, so that Shiro can match those against what is expected by the application

(figure 6 graphically illustrates this process).

Les Hazlewood, one of the founders of Apache Shiro, explains these two terms as fol-

lows [19]:

 Principals are attributes that identify a Subject, such as a first name, a

username, Social Security Number, etc.

26 (74)

 Credentials are secret values which normally are only known by the Subject it-

self and which are used to verify that the Subject is the actual real owner of that

identity. Credentials can have multiple forms such as passwords, fingerprints or

certificates.

One of the most common examples of a principal and credential combination, if not the

most common, is the username and password pair. The username is considered as the

identity being claimed and the password is then considered as the proof that matches

the username or claimed identity. Once the password matches what the application is

expecting, Shiro will assume that the user really is who claims to be (out of the as-

sumption that no one else should know what that password is) [19].

4.1.1 Subject’s Authentication with Shiro

There are certain steps to take in order to fulfill the process of Subject’s authentication

using Shiro’s API. First, Shiro needs to be provided with both, Subject's principals and

credentials. Shiro does not care how the information for authentication is acquired. The

process of collecting information from an application end-user is completely separated.

An example of how to easily provide Shiro with Subject’s information can be done

through UsernamePasswordToken class (see listing 14), which supports the most

common username/password authentication approach.

//Most common scenario of username/password

UsernamePasswordToken token = new UsernamePasswordToken(username,

password);

Listing 14 - Providing Subject's information programatically [19]

27 (74)

The official documentation of Shiro defines UsernamePasswordToken as follows:

A simple username/password authentication token to support the most

widely-used authentication mechanism. This class also implements the

RememberMeAuthenticationToken interface to support "Remember Me"

services across user sessions as well as the HostAuthenticationToken in-

terface to retain the host name or IP address location from where the au-

thentication attempt is occurring.

"Remember Me" authentications are disabled by default, but if the appli-

cation developer wishes to allow it for a login attempt, it is as easy as to

call setRememberMe(true). If the underlying SecurityManager implemen-

tation also supports RememberMe services, the user's identity will be re-

membered across sessions [20].

Listing 15 presents the same example as in listing 14 with “Remember Me” capabilities

enabled. This example ensures that Shiro will remember the user identity when it re-

turns to the application later on.

//Most common scenario of username/password

UsernamePasswordToken token = new UsernamePasswordToken(username,

password);

//”Remember Me” functionality enabled

token.setRememberMe(true);

Listing 15 - Enabling "Remember Me" capabilities programatically [19]

The next step to authenticate a Subject through Shiro, is to submit the collected infor-

mation (principals and credentials represented as an AuthenticationToken instance).

To perform the authentication attempt, it is required to gather the current Subject and

call its method login, passing the token with the Subject’s information.

28 (74)

Subject currentUser = SecurityUtils.getSubject();

currentUser.login(token);

Listing 16 - User authentication programatically [19]

An invocation to the login method always represents an authentication attempt, as

seen in listing 16. Finally, the last step is to handle the result of that authentication at-

tempt, which may be a success or a failure. If the call to the login method returns quiet-

ly, then the Subject has been successfully authenticated. From this moment, any call to

getSubject method in Shiro’s SecurityUtils will return an instance of that authenticated

Subject.

However, it is possible that the authentication attempt failed, and to help in such a situ-

ation, Shiro supplies a full exception hierarchy to catch and indicate exactly what the

problem was when authenticating the Subject.

try {

 currentUser.login(token);

} catch (UnknownAccountException uae) { ...

} catch (IncorrectCredentialsException ice) { ...

} catch (LockedAccountException lae) { ...

} catch (ExcessiveAttemptsException eae) { ...

} ... catch own exception ...

} catch (AuthenticationException ae) {

 //unexpected error?

}

//No problems in authentication, continue on as expected…

Listing 17 - Shiro's exception hierarchy [19]

Additionally, Shiro’s AuthenticationException class can be used for those cases when

none of the exception classes in listing 17 handle the needs of the authentication fail-

ure as required by the application.

29 (74)

4.1.2 Distinction between “Remembered” and “Authenticated”

As shown in section 4.1.1, Shiro supports "Remember Me" and so it makes a distinc-

tion between the notion of remembered Subject and the notion of authenticat-

ed Subject.

Hazlewood (2010) defines these two concepts as:

 Remembered Subject is such Subject that has a known identity, but which iden-

tity is remembered because it did authenticate successfully in

a previous session.

 Authenticated Subject is a Subject that has been successfully authenticated

during the current session [19].

Shiro provides with the needed API to know if the Subject is remembered or authenti-

cated.

 A subject is considered remembered if the call to Subject instance’s method

isRemembered returns true.

 A subject is considered authenticated if the call to Subject instance’s method

isAuthenticated returns true [19].

Even after explaining both concepts, it may still be somewhat unclear where the differ-

ence between them lays. Hazlewood uses Amazon.com as an example to illustrate this

difference.

Let us say that a user logs in successfully into Amazon.com from and adds some

books to the shopping cart. However, the user leaves for a meeting and forgets to log

out, and by the time the meeting is over it is late and the user decides to go home and

leave the office. The next day, when the user comes back to work, the user realizes

that the purchase of the books is incomplete and goes back to Amazon.com. This time,

Amazon.com remembers who the user is, greeting the user name and shows the

shopping cart with the selected books and some additional recommendations. To Am-

30 (74)

azon.com, the user is remembered. The user accesses the shopping cart and wants to

update the credit card information, in order to finish the order at hand. At this point,

even though Amazon.com remembers who the user is, it cannot guarantee that, in fact,

the user is who the system remembers (for example a co-worker might be using the

same computer). So to perform that kind of sensitive action, such as updating credit

card information, Amazon.com will request to the user to login so that it can guarantee

the identity of the user. After a successful login, the user will be verified and Ama-

zon.com will then take the user as authenticated [19].

Even though Shiro provides users with a solution for this type of scenarios, it depends

on the developers how the workflows and views will respond when Subjects are re-

membered or authenticated.

4.1.3 Logging Out

Once the Subject does not need any further interaction with the application, a logout

action should be performed in order to release all known identifying state.

Shiro’s Subject instance provides a logout method (see listing 18) that will invalidate

any existing Session and disassociate any identity information from the Subject.

currentUser.logout();

Listing 18 – Log out programatically [19]

After a log out, the Subject instance is considered, once again, anonymous again and

can login again if wanted.

31 (74)

4.2 Authorization

Authorization, also known as Access Control, is the process of regulating access to

resources and control “who can do what” (Figure 7 illustrates this process). Allowing or

denying access resources and functions will depend on the roles and permissions as-

signed to the Subject during authentication.

Figure 7 - Apache Shiro's authorization sequence [21]

Authorization in Shiro uses three core elements [21]:

 Permissions

 Roles

 Users

The core elements will be described below.

32 (74)

Permissions

Shiro interprets Permissions as statements that describe behavior and raw functionality

in an application, representing explicitly what can be done. Permissions are the lowest-

level of granularity within security policies. A well-formed permission statement essen-

tially defines the junction between resources and the possible actions that a Subject

can execute against those resources. Probably the most important thing to realize

about permissions is that they represent only behavior and they have no notion of who

can perform that behavior.

Some examples of permission statements include the following:

 Open a file

 View the '/user/list' web page

 Print documents

 Delete the 'jsmith' user

Shiro provides a powerful and intuitive permission syntax, which is known as the

WildcardPermission, to enable easy-to-process permission statements, being human

readable at the same time.

printer:print

Listing 19 – Permissions

Listing 19 example grants a user with the permission to print in a printer (The colon is

the special character to delimit the different parts of a permission string).

33 (74)

It is possible to add multiple permissions over the same resource:

printer:print

printer:manage

...

Listing 20 - Multiple permissions (multiple lines)

The number of parts that can be used is limitless, so each part can contain multiple

values. This means that the example in listing 20 can be written as:

printer:print, manage

Listing 21 - Multiple permissions (comma separated)

Both listing 20 and listing 21 grants the user a unique permission that allows printing

and managing a printer.

Additionally, wildcard permissions can be used to model instance-level Access Control

Lists. In this case the permissions will have three parts: the domain, the action(s), and

the instance(s) to act upon.

printer:manage:lp7200

printer:print:epsoncolor

Listing 22 - Instance level access control

In listing 22, the first permission defines the behavior to allow the management

of the printer with id lp7200. The second permission defines the behavior to al-

low printing in the printer with id epsoncolor. When these permissions are granted to

users, they will be allowed to specific behavior on specific instances.

34 (74)

And the wildcard token (*) can be use in any part of a wildcard permission string.

*:manage

Listing 23 - Wildcard for permissions

If listing 23 example is included to Ini file, any user will be able to use the “manage”

action across all domains (not just printers), if granted with such permission.

Roles

Shiro interprets a role as an application unique name integrating a set of behaviors or

responsibilities, that is, one or more Permission declarations. Roles are normally as-

signed to user accounts and so, users are allowed to do those actions attributed to the

roles which have been assigned to them.

Shiro supports two types of Roles:

 Implicit Roles: Roles which define what set of behaviors the user is allowed to

perform (for example a user with role X assigned to it is then allowed to perform

behavior A, B and C) [21].

 Explicit Roles: Roles which are used as reference for a collection of permis-

sions which then define what type of actions the user is allowed to perform. It is

then the application’s job to know what means for a user to have certain role

[21].

35 (74)

Users (Subjects)

Subject is the real Shiro’s User concept, which essentially is the “who” of an applica-

tion. Users (Subjects) can perform actions in the application depending on their associ-

ations with roles or direct permissions. It is in the application's data model where it is

defined exactly when and how a Subject is allowed to do something or not.

4.2.1 Programmatic Authorization

Interacting directly with the current Subject instance is probably the easiest way to per-

form authorization and preferred one among developers. A subject instance provides

methods to execute role checks, and to enable control access via implicit role names

(see listing 24 below).

Subject currentUser = SecurityUtils.getSubject();

if (currentUser.hasRole("administrator")) {

 //do some administration

} else {

 //avoid any administration

}

Listing 24 - Role check programatically [21]

As an alternative, Shiro’s Subject instance provides methods to assert that the Subject

has an expected role before certain logic is executed. The assertion will execute quietly

if the Subject has the expected role (see listing 25). If not, an AuthorizationException

will be thrown stopping any further action.

36 (74)

Subject currentUser = SecurityUtils.getSubject();

//guarantee that the current user is an administrator and

//therefore allowed to create a user

currentUser.checkRole("administrator");

createUser();

Listing 25 - Role assertion check [21]

Shiro implements similar behavior for Permissions to the one explained above for

Roles. To check if a Subject is permitted to do a certain action, Subject instance pro-

vides the method isPermitted.

Permission printPermission = new PrinterPermission("laserjet4400n",

"print");

Subject currentUser = SecurityUtils.getSubject();

if (currentUser.isPermitted(printPermission)) {

 //show the Print button

} else {

 //don't show the button

}

Listing 26 - Permission check programatically [21]

Listing 26 shows how to instantiate an instance of Shiro’s Permission interface and

pass it to the user to verify if it accepts that permission instance. At the same time, as

listing 26 shows, Shiro has the ability to restrict behavior using instance-level access

control checks, based on individual data instances. Because this approach can feel a

bit too complex for some applications, Shiro allows the use of strings for permission

checking (see listing 27).

37 (74)

Subject currentUser = SecurityUtils.getSubject();

if (currentUser.isPermitted("printer:print:laserjet4400n")) {

 //show the Print button

} else {

 //don't show the button

}

Listing 27 - Permission-as-string check [21]

As with Roles, Shiro’s Subject instance provides methods to assert that the Subject

has an expected permission before certain logic is executed. Again, the assertion will

execute quietly if the expected permission is supported by the Subject, but if not, an

AuthorizationException will be thrown.

Subject currentUser = SecurityUtils.getSubject();

//guarantee that the current user is permitted to create a user

Permission p = new UserPermission("create");

currentUser.checkPermission(p);

createUser();

Listing 28 - Permission assertion check [21]

This is the same checking example than listing 28 but using the string permission.

Subject currentUser = SecurityUtils.getSubject();

//guarantee that the current user is permitted to create a user

currentUser.checkPermission("user:create");

createUser ();

Listing 29 - Permission-as-string assertion check [21]

38 (74)

Listing 29 reveals a solution for permission checking that is easier for human readabil-

ity.

4.2.2 Annotation-based Authorization

Besides the Subject API calls, Shiro provides a collection of Java annotations, but it is

necessary to enable AOP support in the application prior to the use of these annota-

tions.

The RequiresAuthentication annotation

A method annotated with RequiresAuthentication will only be invoked if it is guaranteed

that the Subject is authenticated [22].

@RequiresAuthentication

public void updateAccount(Account userAccount) {

 ...

}

Listing 30 - RequiresAuthentication annotation [21]

Listing 30 shows an example use of this annotation.

39 (74)

The RequiresGuest annotation

A method annotated with RequiresGuest will only be invoked if the Subject is unknown

or anonymous [23].

@RequiresGuest

public void signUp(User newUser) {

 ...

}

Listing 31 - RequiresGuest annotation [21]

Listing 31 shows an example use of this annotation.

The RequiresPermissions annotation

A method annotated with RequiresPermissions will only be invoked if the Subject is

guaranteed with the permission specified as argument in the annotation [24].

@RequiresPermissions("account:create")

public void createAccount(Account account) {

 ...

}

Listing 32 - RequiresPermissions annotation [21]

Listing 32 shows an example use of this annotation.

40 (74)

The RequiresRoles annotation

A method annotated with RequiresRoles will only be invoked if the Subject is guaran-

teed with the role specified as an argument in the annotation [25].

@RequiresRoles("administrator")

public void deleteUser(User user) {

 ...

}

Listing 33 - RequiresRoles annotation [21]

Listing 33 shows an example use of this annotation.

The RequiresUser annotation

A method annotated with RequiresUser will only be invoked if the Subject is guaran-

teed to have a known identity, either because of being authenticated during the current

session or because the application remembers the user from a previous session [26].

@RequiresUser

public void updateAccount(Account account) {

 ...

}

Listing 34 - RequiresUser annotation [21]

Listing 34 shows an example use of this annotation.

41 (74)

4.3 Realms

“A Realm is essentially a security-specific Data Access Object (DAO)”

[17]

As specified in Shiro’s official documentation, a Realm is a component that access se-

curity data which is specific to the application such as users, roles or permissions.

Once the Realm reaches this data, it translates it into a format that can be understood

by Shiro, enabling the possibility to provide with a unique Subject API without depend-

encies to the amount of data sources used or the security data structure that each of

those sources provide.

Usually, a Realm is associated to one data source only, such as file system, relational

database or other type of resource. This association requires that, to be able to discov-

er the authorization data, the Realm must be implemented using APIs which are specif-

ic to the data source, such as JDBC, File IO and other Data Access APIs.

4.3.1 Configuration

Realms’ configuration is defined and referenced using Shiro’s INI configuration, specifi-

cally into [main] section, and configured as part of the securityManager.

fooRealm = com.company.foo.Realm

barRealm = com.company.bar.Realm

bazRealm = com.company.baz.Realm

securityManager.realms = $fooRealm, $barRealm, $bazRealm

Listing 35 - Realms configuration [27]

For a simple Realm configuration, a definition of one or more Realms is needed, fol-

lowed by setting them as a collection property on the securityManager object, as seen

42 (74)

in listing 35. This configuration allows full control of which realm is used and in which

order they will be used.

4.3.2 Credentials Matching

When a Realm is used for Subject’s authentication, is its job to make sure that the cre-

dentials being submitted by the Subject are a match to the credentials stored in the

data store. As specified in Shiro’s authentication workflow, if credentials match what

the application is expecting then the authentication is considered successful and the

system has verified the identity of the user. If not, an AuthenticationException is

thrown.

For authentication purposes and due to the fact that credentials matching process is

almost identical in all applications, Shiro provides a set of classes

(AuthenticatingRealm and subclasses) which support the concept of a

CredentialsMatcher to perform credentials comparison. A CredentialsMatcher is an

interface that can determine if the credentials provided by a certain

AuthenticationToken are a match to a corresponding account's credentials stored in the

system.

Listing 36 provides an example of how to set a CredentialMatcher for a Realm:

[main]

...

customMatcher = com.company.shiro.realm.CustomCredentialsMatcher

myRealm = com.company.shiro.realm.MyRealm

myRealm.credentialsMatcher = $customMatcher

...

Listing 36 - Setting CredentialMatcher for Realm [27]

Shiro uses SimpleCredentialsMatcher class by default for its Realm implementations.

The SimpleCredentialsMatcher class verifies that the credentials submitted in the

43 (74)

AuthenticationToken are equals to the stored account credentials by doing a plain di-

rect equality check. It can perform direct quality comparison using most of the tradition-

al byte sources, such as Strings, byte arrays, Files or InputStreams.

In any case, it is more secure to hash any end-user's credentials when storing them in

the data store. Shiro provides HashedCredentialsMatcher implementations to support

the preferred cryptographic hashing strategies, and Realms can be configured to use

implementations instead the SimpleCredentialsMatcher .

[main]

...

credentialsMatcher =

org.apache.shiro.authc.credential.Sha256CredentialsMatcher

...

myRealm = com.company.shiro.realm.MyRealm

myRealm.credentialsMatcher = $credentialsMatcher

...

Listing 37 - Setting CredentialMatcher for Realm [27]

Listing 37 explains how to configure a Realm to use a SHA-256 algorithm

CredentialsMatcher. Shiro provides, out-of-the-box, CredentialsMatcher implementa-

tions for many other hash algorithms such as SHA-512, MD5 and others.

4.4 Cryptography

Cryptography is the practice of protecting information through methods such as hiding

it or converting it into nonsense, and this way keep it safe from undesired access. The

methods for applying Cryptography within Java field has being, traditionally, using Java

Cryptography Extension (JCE). JCE is an API that provides a framework to easy the

implementation of security features within Java applications. It enables features such

as encryption, key generation and key agreement, and MAC algorithms.

44 (74)

JCE can be complicated and difficult to use and may require a certain level of expertise

(JCE architecture is illustrated in Figure 8. Thus, Shiro implements a Cryptography API

which is much easier to understand and use, simplifying JCE concepts, without sacrific-

ing any functionality, since it is still possible to access to more complicated JCE options

if needed.

One of the examples that show the complexity in the use of JCE architecture is the

Cipher class. The Cipher class is an abstract class, which means that it is needed to

use some of the obtuse factory methods provided by JCE to acquire an instance in

order to use it. This process can be confusing and it requires type-unsafe string argu-

ments.

Figure 8 - JCE architectural model and its cryptographic services [28]

Listing 38 shows how to encrypt a simple string with an MD5 algorithm using JCE and

getting the final result as a hexadecimal string.

45 (74)

String str = "example";

StringBuffer hexString = new StringBuffer();

MessageDigest md = MessageDigest.getInstance("MD5");

byte[] hash = md.digest(str);

for (int i = 0; i < hash.length; i++) {

 if ((0xff & hash[i]) < 0x10) {

 hexString.append("0" + Integer.toHexString((0xFF & hash[i])));

 } else {

 hexString.append(Integer.toHexString(0xFF & hash[i]));

 }

}

Listing 38 - MD5 encryption using JCE

Shiro bases its Ciphers and Hashes on a clean object hierarchy, allowing their use by

simply instantiation. Listing 39 shows the same case than listing 38, but using Shiro’s

Cryptography API.

String str = "example";

StringBuffer hexString = new MD5Hash(str).toHex();

Listing 39 - MD5 encryption using Shiro

Shiro takes Cryptography, a traditionally extremely complex field, and makes it easy for

any developer, experienced or not in cryptography, while providing a robust set of cryp-

tography features.

For cryptography, Shiro focuses on two core elements:

 Ciphers

 Hashes

The core elements will be briefly described in the following.

46 (74)

4.4.1 Ciphers

A cipher is an algorithm to perform encryption or decryption. The algorithm usually re-

quires of a piece of information named as key, which directly affects in the encryption

of the data. The encryption will vary depending on the key making the decryption ex-

tremely difficult without it.

There are different variations of ciphers:

 A Block Cipher is an encrypting method that requires a cryptographic key and

the algorithm to use, and which is applied to the whole block of data at once

[29, 93].

 A Stream Cipher is an encrypting method that requires a cryptographic key

and the algorithm to use, and which is applied to each of the binary digits con-

tained in the data stream independently [29, 93].

 A Symmetric Cipher uses the same (necessarily secret) key to encrypt mes-

sages as it does to decrypt messages (see figure 9) [30, 751].

Figure 9 - Encryption using a symmetric cipher [28]

47 (74)

 An Asymmetric Ciphers uses different keys to encrypt and decrypt messages.

In case that is not possible to derived one key from the other, then one of the

keys can be shared publicly just by creating public/private key pairs (see figure

10) [30, 751].

Figure 10 - Encryption using an asymmetric cipher [28]

Unlike JCE, the representation of the different Ciphers within Shiro follows an Object-

Oriented class hierarchy, matching the mathematical concepts of each of them, which

provides an easy way to extend functionality simply by overriding existing classes.

Shiro Ciphers’ usability is easier than the ones provide by JCE. With Shiro, an instanti-

ation of a class, with an optional simple configuration with JavaBeans properties, is

enough to start using any type of Cipher; meanwhile JCE requires confusing factory

methods using type-unsafe string token arguments [31].

Shiro incorporate more secure default settings than JCE does. By default, Shiro Cipher

instances will automatically enable the most secure options available as opposed to

JCE Cipher instances, which assume defaults by the ‘lowest common denominator’.

Shiro makes sure that any data is as safe as possible and prevents from accidental

security holes [31].

4.4.2 Hashes

A Hash function is a conversion of a given input source into an encoded hash value. It

is a one-way irreversible method and it is often used to encrypt sensible data such as

passwords or digital fingerprints. The input source is usually called “message” and the

48 (74)

output hash value is called “message digest”. Java Development Kit addresses Hashes

as Messages Digests [32].

Shiro provides default Hash implementations out-of-the-box, including the most com-

mon ones like MD5, SHA1, SHA-256, etc., with type-safe construction methods, in-

stead of being forced to use type-unsafe string factory methods, and additional meth-

ods to encode hash data to Hex and Base-64. Furthermore, Shiro's Hash implementa-

tions support salts and multiple hash iterations [31].

Salts are random data which are often used in hash functions as additional input.

new MD5Hash("my-password", "my-secret-salt", 1024).toBase64();

Listing 40 - Salts and repeated hash iterations

Listing 40 shows how Shiro simplifies and helps using salts and hash iterations, two

valuable tools when it comes to hashing data, especially in cases such as user pass-

words.

49 (74)

5. Apache Shiro Web Support

5.1 Configuration

There are many ways to integrate Shiro into any web application, but possibly the easi-

est way is to configure a Servlet ContextListener and Filter in the web.xml file, which

teaches the application how to read Shiro's INI configuration.

<listener>

 <listener-class>

 org.apache.shiro.web.env.EnvironmentLoaderListener

 </listener-class>

</listener>

...

<filter>

 <filter-name>ShiroFilter</filter-name>

 <filter-class>

 org.apache.shiro.web.servlet.ShiroFilter

 </filter-class>

</filter>

<filter-mapping>

 <filter-name>ShiroFilter</filter-name>

 <url-pattern>/*</url-pattern>

 <dispatcher>REQUEST</dispatcher>

 <dispatcher>FORWARD</dispatcher>

 <dispatcher>INCLUDE</dispatcher>

 <dispatcher>ERROR</dispatcher>

</filter-mapping>

Listing 41 - Shiro configuration in web.xml [33]

Listing 41 includes the required code-lines in web.xml file for standard web applications

to initialize Shiro.

50 (74)

Shiro’s initialization process has three steps:

1. With the help of the EnvironmentLoaderListener, a Shiro WebEnvironment in-

stance gets initialized and accessible in the ServletContext. This instance con-

tains all configurations needed by Shiro to operate.

2. After initialization, ShiroFilter uses the WebEnvironment to perform all neces-

sary security operations for any filtered request.

3. Finally, the filter-mapping definition ensures that all requests are filtered by the

ShiroFilter.

Apache Shiro assumes that the INI Configuration file is located at one of the following

two locations, and it uses the one which is found first:

 /WEB-INF/shiro.ini

 shiro.ini file at the root of the classpath.

5.1.1 Web INI Configuration

Besides the standard sections, it is possible to add an additional [url] section in shiro.ini

file, which is used for specific web purposes (see listing 42 below).

[main], [users] and [roles] above here

...

[urls]

/index.html = anon

/user/create = anon

/user/** = authc

/admin/** = authc, roles[administrator]

Listing 42 - Url section in INI file [33]

51 (74)

Each of the url paths of the application added to the [url] section are automatically ref-

erenced to the filter chain specified in the same line. The lines in the [url] section must

follow the following format:

Url_Path_Expression = Path_Specific_Filter_Chain

Url Path Expressions

Url path expressions are divided using the equal sign (=) as tokenizer character. The

left token is the path expression relative to the web application’s context root.

/user/** = authc

Listing 43 - Url path expression [33]

The expression in listing 43 is understood for Shiro so that any request to the applica-

tion’s path of “/user” or any of its sub paths, as “/user/list”, “/user /add”, etc., will trigger

the authc filter chain.

/user/** = authc

/user/list/** = anon

Listing 44 - Multiple url path expression [33]

Shiro does evaluate url path expressions following the order in which they are defined

and it selects the first match which is found. In listing 44, if an anonymous user intends

to reach the url “/user/list” within the application context, the incoming request will nev-

er be handled, and this anonymous user will not be allowed to reach that url. The rea-

son is that the “/user/**” pattern matches the incoming request first, and so it will re-

quire authentication in order to reach any sub path of the pattern, including the re-

quested “/user/list” url.

52 (74)

Filter Chain Definitions

The right token of a url path expression is a comma-delimited list of filters which are

executed for the request that specifically matches that same path, and which are exe-

cuted in the same order they are defined. This list of filters must follow this format:

filter1[optional_config1], filter2[optional_config2], ..., filterN[optional_configN]

filterN represents the name of a filter bean which must be previously defined within the

[main] section. [optional_configN] is an optional string which has a specific meaning in

the context of that filter and only for that particular path.

As with url path expressions, the order matters because the filter tokens define a list of

filters to use. The comma-delimited filter tokens must be defined in the order that the

request has to be handled. Shiro creates some default filter instances in case of web

applications, and makes them available in the [main] section automatically. These fil-

ters can be configured as any other bean in [main] section and reference in the chain

definitions.

[main]

...

authc.loginUrl = /login.jsp

...

[urls]

...

/user/** = authc

...

Listing 45 - Default filter configuration [33]

It is important to note that listing 45 there is no definition of any class for the

FormAuthenticationFilter (authc), but it is already instantiated and available for configu-

ration. If any anonymous user intents to access the path “/user” or any sub path of it, it

will be redirected to the page that authc.loginUrl parameter is configured with.

53 (74)

The default filter instances that Shiro provides are:

 anon: Allows immediate access to a path without the need of performing any

kind of security checks [34].

 authc: It requires the user to be authenticated to continue with the request. In

case the user is not authenticated, this filter redirects the user to the configured

loginUrl [35].

 authcBasic: It requires the user to be authenticated to continue with the request.

In case the user is not authenticated, it forces the user to login via the HTTP

Basic protocol challenge. The user is then allowed to continue on to the re-

quested resource/url once it successfully logs in [36].

 logout: Immediately log out the currently executing subject and then redirect

them to a configured redirectUrl. [37].

 noSessionCreation: Disables creating new Sessions during the request [38].

 perms: The user is only given access if it has all the permissions specified by

the mapped value. If not, the access is denied [39].

 port: The request must be using the port defined for this filter. If not, the request

is redirected to the same url on that specified port [40].

 rest: Translates an HTTP Request's Method into a corresponding action and

constructs a permission that will be checked to determine access [41].

 roles: The user is only given access if it has all the roles specified by the

mapped value. If not, the access is denied [42].

 ssl: Requires a request to be over SSL. Access is allowed if the request is re-

ceived on the configured server port and the request is secure [43].

54 (74)

 user: Access is granted to the user only in the case of being a known user. In

order for this to happen, the user needs to be authenticated or to be remem-

bered via the 'remember me' feature [44].

5.2 Remember Me Services

Shiro will automatically perform 'rememberMe' services if the AuthenticationToken

used in the login process implements the RememberMeAuthenticationToken interface.

This interface specifies the isRememberMe method, which tells Shiro to remember, or

not, the end-user's identity across sessions.

RememberMe services can be used programmatically with just setting the value to true

in any class that supports such configuration (for an example, please check listing 15).

Additionally, RememberMe services are also support in Shiro by reading the boolean

value of the parameter ‘RememberMe’ which comes from the form or request. In web

applications, FormAuthenticationFilter is the default class for the authc filter.

[main]

authc.loginUrl = /login.jsp

[urls]

This line indicates which is the login form page

login.jsp = authc

Listing 46 - Setting login form page [33]

Listing 47 contains the required HTML code within the web form configured in listing

46, which must have a checkbox named 'rememberMe'.

55 (74)

<form ...>

 Username: <input type="text" name="username"/>

 Password: <input type="password" name="password"/>

 ...

 <input type="checkbox" name="rememberMe" value = "true"/>

 Remember Me?

 ...

</form>

Listing 47 - HTML login form [33]

FormAuthenticationFilter looks by default for the parameters ‘username’, ‘password’

and ‘rememberMe’ from within the request parameters.

[main]

...

authc.loginUrl = /someOtherLoginPage.jsp

authc.usernameParam = somethingOtherThanUsername

authc.passwordParam = somethingOtherThanPassword

authc.rememberMeParam = somethingOtherThanRememberMe

...

Listing 48 - Login form fields custom configuration [33]

If the requested parameters are different than the field names used in the web form, a

customize configuration will be needed, as presented in listing 48.

56 (74)

5.3 JSP/GSP Tag Library

Apache Shiro provides a tag library compatible with JSP and GSP technologies, which

allows customization of the page output based on the current Subject’s state. With this

tool, Shiro enables the capabilities to personalize views based on the current user,

through its identity and authorization state. These tags get activated and ready to use

by simply adding the following line to the top of the page (or any other customize place

page directives are defined):

<%@ taglib prefix="shiro" uri="http://shiro.apache.org/tags" %>

Listing 49 - JSP Shiro tag namespace [33]

Listing 49 uses the “shiro” prefix to indicate the shiro tag library namespace, but it is

possible to assign any other name as namespace for the tag library. A review of each

tag and the functionality they provide will be given in the following.

The guest tag

The guest tag displays its content only in case the current Subject is considered a

'guest', meaning that the Subject that does not have an identity. This happens if the

user is neither authenticated nor remembered from a previous site visit [33].

<shiro:guest>

 Wrapped content to be displayed!

</shiro:guest>

Listing 50 - Guest tag [33]

Listing 50 presents an example of how to use this tag.

57 (74)

The user tag

The user tag displays its content only in case the current Subject is considered a ‘user’,

meaning that the Subject has a known identity. This happens either because the user

did a successful authentication or because it is remembered from a previous visit via

the 'RememberMe' services [33].

<shiro:user>

 Wrapped content to be displayed!

</shiro:user>

Listing 51 - User tag [33]

Listing 51 presents an example of how to use this tag.

The authenticated tag

The authenticated tag displays its content only in case the current Subject has authen-

ticated successfully during the current session. By definition, this tag is more restrictive

than the user tag, and it is recommended to use when the user identity needs to be

guaranteed [33].

<shiro:authenticated>

 Wrapped content to be displayed!

</shiro:authenticated>

Listing 52 - Authenticated tag [33]

Listing 52 presents an example of how to use this tag.

58 (74)

The notAuthenticated tag

The notAuthenticated tag displays its content only in case the current Subject has not

yet authenticated during the current session [33].

<shiro: notAuthenticated>

 Wrapped content to be displayed!

</shiro:notAuthenticated>

Listing 53 - NotAuthenticated tag [33]

Listing 53 presents an example of how to use this tag.

The principal tag

The principal tag simply displays the user’s principal (identifying attribute) or a property

of the user's principal [33].

Hello, <shiro:principal/>, how are you today?

Hello, <shiro:principal property="firstName"/>, how are you

today?

Listing 54 - Principal tag [33]

Listing 54 presents an example of how to use this tag.

59 (74)

The hasRole tag

The hasRole tag displays its content only in case the current Subject is assigned with

the role defined in the tag [33].

<shiro:hasRole name="administrator">

 Wrapped content to be displayed!

</shiro:hasRole>

Listing 55 - HasRole tag [33]

Listing 55 presents an example of how to use this tag.

The lacksRole tag

The lacksRole tag displays its content only in case the current Subject is not assigned

with the role defined in the tag [33].

<shiro:lacksRole name="administrator">

 Wrapped content to be displayed!

</shiro:lacksRole>

Listing 56 - LacksRole tag [33]

Listing 56 presents an example of how to use this tag.

60 (74)

The hasAnyRole tag

The hasAnyRole tag displays its content only in case the current Subject is assigned

with any of the roles defined in the tag. These roles must be defined as a comma-

delimited list of role names [33].

<shiro:hasAnyRoles name="developer, project manager, administrator">

 Wrapped content to be displayed!

</shiro:hasAnyRoles>

Listing 57 - HasAnyRole tag [33]

Listing 57 presents an example of how to use this tag.

The hasPermission tag

The hasPermission tag displays its content only in case the current Subject is allowed

to perform the ability specified by the permission defined in the tag [33].

<shiro:hasPermission name="user:create">

 Wrapped content to be displayed!

</shiro:hasPermission>

Listing 58 - HasPermission tag [33]

Listing 58 presents an example of how to use this tag.

61 (74)

The lacksPermission tag

The lacksPermission tag displays its content only in case the current Subject is not

allowed to perform the ability specified by the permission defined in the tag [33].

<shiro:lacksPermission name="user:create">

 Wrapped content to be displayed!

</shiro:lacksPermission>

Listing 59 - LacksPermission tag [33]

Listing 59 presents an example of how to use this tag.

62 (74)

6. Prototype for Project Proposal

This section describes the practical use of Apache Shiro to provide a prototype of solu-

tion to the problem of how to integrate Apache Shiro in a Java web application, requir-

ing multiple user roles management and authentication through credentials stored in a

database, as instantiated in chapter 1, section 3.

6.1 Database Setup and Connection

One of the requirements for the prototype to have is the possibility of authentication

through credentials stored in the database. In order to fulfill such a requirement, the

application will require a database already prepared for such functionality.

Apache Shiro does not depend on any specific database vendor, since through the use

of JDBC (Java Database Connectivity) technology, Shiro will access whichever data-

base configured for such purposes of authentication and authorization.

JDBC and database setups are subjects which are beyond the scope of this thesis and

so it is expected that the reader has certain level of knowledge about those subjects.

Listing 60 presents the script used to create the table to store user authentication data.

create table users (

 id int not null auto_increment primary key,

 username varchar(255) unique not null,

 first_name varchar(255) not null,

 last_name varchar(255) not null,

 password varchar(255) not null,

 role varchar(255) not null,

 email varchar(255) not null

);

Listing 60 - SQL script for user table

63 (74)

In this case, the database vendor chosen is MySQL database (release 5.5) for the only

reason that the company uses this same database vendor in all its applications and

they already have the expertise for such a technology (please note that the script in

listing 60 will possibly fail to work with any other database vendor besides MySQL).

There are several columns created for the ‘users’ table but it is important to note the

column ‘role’. This column is the one that will determine which access control each

user will have within the application.

6.2 Shiro Integration

In order for the application to read Shiro’s INI configuration, it is necessary to configure

a Servlet ContextListener and Filter in the web.xml file. This configuration is a way of

making the application to understand that Shiro is integrated and should be used when

url mapping is required. Listing 61 shows an example of a web.xml configuration.

Once Shiro is enabled, it has its own mechanism to, by default, search for the INI file in

certain specific paths of the application, and if found, to configure itself based on the

file content.

6.3 Shiro INI Configuration File

Listing 61 contains all Shiro configuration required for authentication and authorization.

Either the [users] section or the [roles] section is required, since the user authentication

data is stored in a database or the web application does not require a granular control

over the actions of the users.

64 (74)

[main]

authc.loginUrl = /login.xhtml

roles = org.apache.shiro.web.filter.authz.RolesAuthorizationFilter

roles.unauthorizedUrl=/accessDenied.xhtml

dataSource = org.apache.shiro.jndi.JndiObjectFactory

dataSource.resourceName = java:/comp/env/jdbc/<your-database-name>

sha256Matcher =

org.apache.shiro.authc.credential.HashedCredentialsMatcher

sha256Matcher.hashAlgorithmName=SHA-256

jdbcRealm = org.apache.shiro.realm.jdbc.JdbcRealm

jdbcRealm.permissionsLookupEnabled=false

jdbcRealm.authenticationQuery=select password from users where

username = ?

jdbcRealm.userRolesQuery=select role from users where username = ?

jdbcRealm.dataSource = $dataSource

jdbcRealm.credentialsMatcher = $sha256Matcher

[urls]

/resources/** = anon

/accessDenied.xhtml = anon

/pageNotFound.xhtml = anon

/logout = logout

/login.xhtml = authc

/user/** = roles[ROLE_ADMIN]

/** = authc

Listing 61 - INI file configuration for project

65 (74)

Filters Initialization

Shiro automatically detects that the Java application at hand is a Web application and

so it will initialize the SecurityManager with a FormAuthenticationFilter. This filter al-

ways requires the user to be authenticated to continue with the request, and if not, it

redirects the user to the login url configured, forcing the user to log in. Additionally the

default loginUrl value is overwritten to point to the expected login url.

There is a second filter initialized, RolesAuthorizationFilter, which allows access if the

current user is assigned with the roles specified by the mapped value, denying the ac-

cess in case the user does not have assigned all the roles specified. If the access is

denied, the user will be redirected to the unauthorized url, which value is being over-

written to point to the expected unauthorized url.

JDBCRealm initialization

JDBCRealm is an implementation of the Realm interface that implements authentica-

tion support (log-in) operations and authorization (access control) behavior through the

use of JDBC calls. After the JDBCRealm is instantiated, there will be several variables

which are being overwritten.

The variable permissionsLookupEnabled indicates if the realm needs to execute a que-

ry to retrieve permissions information related to roles and users. As indicated at the

beginning of this chapter, no permissions are used, so this variable is set as false.

AuthenticationQuery is a string variable which reflects the query to be triggered by the

realm when user authentication data is required. If left unset, the default query will be

used. UserRolesQuery variable will be used when role data is required, and again, if

left unset, it will use its own default string value.

A JDBCRealm requires of a datasource which will provide the necessary information

about the database where to connect. To help development, Shiro provides a factory

implementation intended to be used to look up objects in JNDI. A JDBC datasource

can be configured in multiple ways but the configuration of such objects is beyond the

scope of this thesis.

66 (74)

To provide an encryption mechanism for the JDBCRealm, so that passwords are en-

crypted, it is possible to configure a CredentialMatcher object for the realm. Shiro in-

cludes multiple options for an encryption algorithm where to choose, including the most

common ones, such as MD5 or SHA-256.

Url access via user roles

The last of the sections in the INI file is the [url] section. This section contains different

url pattern strings which are mapped to different filter chains, which defines the acces-

sibility of such urls. For most of the web applications there are some urls which do not

need of access control since they are always accessible by any user. In Shiro, those

urls are mapped to the keyword “anon”. Those urls which will logout the user and redi-

rect to the login url are mapped to the keyword “logout”.

If there is a requirement to get access control depending on the user role, it will be

possible to define which roles can have specific access to certain urls, just by mapping

those url patterns to the keyword chain “roles[<role-goes-in-here>]”. If the user does

not have that specific user, it will not be allowed to access that specific url pattern even

though it may be already authenticated in the application. This user may get access to

any other url pattern mapped to “authc” keyword or mapped to any specific role he may

have.

As seen in listing 61, the url pattern “/user/**” is mapped to “roles[ROLE_ADMIN]”. This

will produce that only users with the role ROLE_ADMIN are able to access to all url

pages located within that url path.

67 (74)

7. Project Results and Future Development

Due to the limited scope of the thesis and the company needs, this project was left as a

full prototype project. In the future, the company will decide whether to move forward

with the project or cancel it. The company situation is changing and they need to use

their efforts and resources in other projects which require more attention at the mo-

ment.

However, the integration of Apache Shiro into a Java application following the require-

ments initially asked was completed, and is fully working now. The main requirements

were developed and the application is now able to authenticate users through the use

of data stored in a database combined with the management of multiple user roles.

This study has helped to better understand the wide range of possibilities that Apache

Shiro offers as a security framework for Java applications. This is reflected in the fact

that the company is considering using the prototype developed during this thesis as

guidelines to implement security capabilities in their current and future applications.

A few ideas were presented in relation to the prototype developed in this study. The

company is considering the possibility to replace INI file configuration to a full Java in-

tegrated configuration. This means that Apache Shiro would be fully integrated and

configured through Java technology, avoiding any type of XML or INI files. Further-

more, the company may consider the option to fully replace any local authorization

mechanism for a cloud system. This would mean that instead of managing user au-

thentication data using a database, a cloud system would be used, avoiding any need

of local resources.

68 (74)

8. Conclusions

Web applications improve business processes and offer expanded and competitive

opportunities providing the complex and rich experience that users demand. However,

production software is continuously under attack and only an effort to produce more

stable and reliable applications will prevent attackers and bring users the confident

feeling that they are protected from exploitation. Developers should be responsible for

security, just as they are responsible for functionality and quality. Furthermore, vulner-

abilities in custom applications need to be discovered and resolved in the most efficient

manner possible.

Apache Shiro is a flexible security framework for Java applications that supports the

four cornerstones of application security: authentication, authorization, enterprise ses-

sion management, and cryptography. It is in use at all types of organizations, from big

government to tiny applications, and has an extremely active community and well-

documented codebase.

The goal of this thesis was a prototype integration of Apache Shiro within a Java web

application enabling user management features such as multiple user role manage-

ment and user authentication through data stored in a database. Such a prototype was

developed successfully thanks to the extreme flexibility and easily adaptation of

Apache Shiro to any kind of Java application. With just a minimum configuration setup,

Shiro provides not only database authentication mechanisms and user role control ac-

cess, but an extensive additional stack of security and user management capabilities.

Additionally, the study and integration of Apache Shiro has brought up discussion

about the current design patterns and the future of security within Java applications

which will reflect in more reliable and secure applications.

69 (74)

References

1. Scott Oaks (2001), Java Security, 2nd Edition, O’Reilly Media

2. David Flanagan (1999), Java in a nutshell, 3rd Edition, O’Reilly Media

3. Gail Zemanek Bayse (2004), A Security Checklist for Web Application Design,

SANS Institute

http://www.sans.org/reading-room/whitepapers/securecode/security-checklist-

web-application-design-1389

[Access date: February 2014]

4. OWASP Top Ten Project, Top 10 2013/Risk, Open Web Application Security

Project (OWASP)

https://www.owasp.org/index.php/Top_10_2013-Risk

[Access date: February 2014]

5. OWASP Top Ten Project, Top 10 2013, Open Web Application Security Project

(OWASP)

https://www.owasp.org/index.php/Top_10_2013

[Access date: February 2014]

6. OWASP Top Ten Project, Introduction, Open Web Application Security Project

(OWASP)

https://www.owasp.org/index.php/Main_Page

[Access date: February 2014]

7. OWASP Top Ten Project, Top 10 2013/ProjectMethodology, Open Web Appli-

cation Security Project (OWASP)

https://www.owasp.org/index.php/Top_10_2013/ProjectMethodology

[Access date: February 2014]

8. HDIV: Java Web Application Security Framework

http://hdiv.org/

[Access date: February 2014]

70 (74)

9. Spring Security

http://projects.spring.io/spring-security/

[Access date: February 2014]

10. Java Authentication and Authorization Service

http://www.oracle.com/technetwork/java/javase/jaas/index.html

[Access date: February 2014]

11. JGuard

http://www.jguard.net/

[Access date: February 2014]

12. Apache Shiro Website, Introduction (2014)

http://shiro.apache.org/introduction.html

[Access date: February 2014]

13. Apache Shiro Website, Architecture (2014)

http://shiro.apache.org/architecture.html

[Access date: February 2014]

14. Apache Shiro API Documentation, Subject Interface

http://shiro.apache.org/static/current/apidocs/org/apache/shiro/subject/Subject.h

tml

[Access date: April 2014]

15. Application Security With Apache Shiro

http://www.infoq.com/articles/apache-shiro

[Access date: April 2014]

16. Apache Shiro API Documentation, SecurityManager Interface

http://shiro.apache.org/static/current/apidocs/org/apache/shiro/mgt/SecurityMan

ager.html

[Access date: April 2014]

71 (74)

17. Apache Shiro API Documentation, Realm Interface

http://shiro.apache.org/static/current/apidocs/org/apache/shiro/realm/Realm.htm

l

[Access date: April 2014]

18. Apache Shiro Website, Configuration (2014)

http://shiro.apache.org/configuration.html

[Access date: April 2014]

19. Apache Shiro Website, Authentication (2014)

http://shiro.apache.org/authentication.html

[Access date: April 2014]

20. Apache Shiro API Documentation, UsernamePasswordToken Class

https://shiro.apache.org/static/current/apidocs/org/apache/shiro/authc/Usernam

ePasswordToken.html

[Access date: April 2014]

21. Apache Shiro Website, Authorization (2014)

http://shiro.apache.org/authorization.html

[Access date: May 2014]

22. Apache Shiro API Documentation, RequiresAuthentication Annotation Type

http://shiro.apache.org/static/current/apidocs/org/apache/shiro/authz/annotation/

RequiresGuest.html

[Access date: June 2014]

23. Apache Shiro API Documentation, RequiresGuest Annotation Type

http://shiro.apache.org/static/current/apidocs/org/apache/shiro/authz/annotation/

RequiresGuest.html

[Access date: June 2014]

72 (74)

24. Apache Shiro API Documentation, RequiresPermissions Annotation Type

http://shiro.apache.org/static/current/apidocs/org/apache/shiro/authz/annotation/

RequiresPermissions.html

[Access date: June 2014]

25. Apache Shiro API Documentation, RequiresRoles Annotation Type

http://shiro.apache.org/static/current/apidocs/org/apache/shiro/authz/annotation/

RequiresRoles.html

[Access date: June 2014]

26. Apache Shiro API Documentation, RequiresUser Annotation Type

http://shiro.apache.org/static/current/apidocs/org/apache/shiro/authz/annotation/

RequiresUser.html

[Access date: June 2014]

27. Apache Shiro Website, Realms (2014)

http://shiro.apache.org/realm.html

[Access date: June 2014]

28.Mikalai Zaikin (2007), Sun Certified Enterprise Architect for Java EE 5

Study Guide, Revision 0.3, Chapter 08

http://java.boot.by/scea5-guide/ch08s02.html

[Access date: June 2014]

29. April J. Wells (2007), Grid Application Systems Design, 1st Edition, CRC Press

30. Peter J. Ashenden (2008), The Designer's Guide to VHDL, 3rd Edition, Morgan

Kaufmann

31. Apache Shiro Website, Cryptography Features (2014)

http://shiro.apache.org/cryptography-features.html

[Access date: June 2014]

73 (74)

32. Apache Shiro Website, Terminology (2014)

http://shiro.apache.org/terminology.html

[Access date: June 2014]

33. Apache Shiro Website, Web Support (2014)

http://shiro.apache.org/web.html

[Access date: June 2014]

34. Apache Shiro API Documentation, AnonymousFilter Class

https://shiro.apache.org/static/current/apidocs/org/apache/shiro/web/filter/authc/

AnonymousFilter.html

[Access date: June 2014]

35. Apache Shiro API Documentation, FormAuthenticationFilter Class

https://shiro.apache.org/static/current/apidocs/org/apache/shiro/web/filter/authc/

FormAuthenticationFilter.html

[Access date: June 2014]

36. Apache Shiro API Documentation, BasicHttpAuthenticationFilter Class

https://shiro.apache.org/static/current/apidocs/org/apache/shiro/web/filter/authc/

BasicHttpAuthenticationFilter.html

[Access date: June 2014]

37. Apache Shiro API Documentation, LogoutFilter Class

https://shiro.apache.org/static/current/apidocs/org/apache/shiro/web/filter/authc/

LogoutFilter.html

[Access date: June 2014]

38. Apache Shiro API Documentation, NoSessionCreationFilter Class

https://shiro.apache.org/static/current/apidocs/org/apache/shiro/web/filter/sessio

n/NoSessionCreationFilter.html

[Access date: June 2014]

74 (74)

39. Apache Shiro API Documentation, PermissionsAuthorizationFilter Class

https://shiro.apache.org/static/current/apidocs/org/apache/shiro/web/filter/authz/

PermissionsAuthorizationFilter.html

[Access date: June 2014]

40. Apache Shiro API Documentation, PortFilter Class

https://shiro.apache.org/static/current/apidocs/org/apache/shiro/web/filter/authz/

PortFilter.html

[Access date: June 2014]

41. Apache Shiro API Documentation, HttpMethodPermissionFilter Class

https://shiro.apache.org/static/current/apidocs/org/apache/shiro/web/filter/authz/

HttpMethodPermissionFilter.html

[Access date: June 2014]

42. Apache Shiro API Documentation, RolesAuthorizationFilter Class

https://shiro.apache.org/static/current/apidocs/org/apache/shiro/web/filter/authz/

RolesAuthorizationFilter.html

[Access date: June 2014]

43. Apache Shiro API Documentation, SslFilter Class

https://shiro.apache.org/static/current/apidocs/org/apache/shiro/web/filter/authz/

SslFilter.html

[Access date: June 2014]

44. Apache Shiro API Documentation, UserFilter Class

https://shiro.apache.org/static/current/apidocs/org/apache/shiro/web/filter/authc/

UserFilter.html

[Access date: June 2014]

