

REST API

Implementation with Flask-Python

Alemu Musse Bekabil

Thesis
Degree Program in Information Technology

2014

2

Communication, Transport and
Technology
Degree Programme in Information
Technology

Abstract of thesis

Author Musse Alemu Year 2014
Supervisor Mattila Erkki
Commissioned by Oy Aurora Data and Systems Ltd.
Title of thesis REST API
No. of pages + app. 44 + 2

Communication between various systems is common in the technology world.
Thus, this thesis report discussed one of the popular means of communication,
REST API. Additionally, it described the six basic constraints of REST conjointly
to HATEOAS constraint. Furthermore, it observed all the good advantages
REST API has over SOAP. Moreover, it demonstrated practical implementation
of RESTful web services.

The report started to discuss from the bigger picture, software architecture, and
continued down to API level. Besides, it clearly documented how REST
architectural principles are applied in API level. Moreover, it demonstrated the
implementation of REST API using Flask-Python micro framework. As a result,
the report used classical approach to introduce REST API.

Accordingly, in this report solid theoretical explanation is covered. Moreover, a
step-by-step guide for practical use of RESTful web service also shown.
Therefore, it suggested all the good reasons why REST is needed as a
standard to be a means of communication between systems.

Key words RESTful web service, REST API, HATEOAS, Flask, Python

3

CONTENTS

1 INTRODUCTION ... 8

2 SOFTWARE ARCHITECTURE, DESIGN PATTERNS AND WEB

SERVICES ... 10

2.1 Software Architecture.. 10

2.2 Design Patterns.. 11

2.2.1 Design Pattern Elements .. 12

2.3 Service-Oriented Architecture .. 13

2.4 Web Services ... 13

2.4.1 Simple Object Access Protocol (SOAP) ... 14

2.4.2 Web Services Description Language (WSDL) .. 17

3 REPRESENTAIONAL STATE TRANSFER (REST) 18

3.1 REST Constraints ... 19

3.1.1 Client-Server .. 19

3.1.2 Stateless ... 20

3.1.3 Cache ... 21

3.1.4 Uniform Interface .. 22

3.1.5 Layered System .. 23

3.1.6 Code-On-Demand ... 24

3.2 Hypermedia as the Engine of Application State (HATEOAS) 25

3.3 SOAP and REST .. 26

3.3.1 Applied REST is Simple .. 27

3.3.2 Use Advantages of HTTP ... 28

3.3.3 Self-Documenting .. 29

3.3.4 Resource-Oriented Architecture (ROA) .. 29

4

4 IMPLEMENTATION OF REST API ... 30

4.1 Flask ... 30

4.2 Virtualenv .. 31

4.3 Flask-SQLAlchemy ... 32

5 DISCUSSION AND CONCLUSION .. 44

REFERENCES ... 45

5

LIST OF FIGURES

Figure 1. Components of the SOAP architecture (Oracle Corporation 2001) 15

Figure 2. SOAP request (Oracle Corporation 2001) ... 16

Figure 3. SOAP response (Oracle Corporation 2001) .. 16

Figure 4. SOAP message .. 17

Figure 5. Client-Server ... 19

Figure 6. Client-Stateless-Server ... 20

Figure 7. Client-Cache-Stateless-Server (Mulloy 2013a) .. 21

Figure 8. Uniform-Client-Cache-Stateless-Server (Mulloy 2013a) 22

Figure 9. Uniform-Layered-Client-Cache-Stateless-Server (Mulloy 2013a) 23

Figure 10. Code-on-demand (Mulloy 2013a) .. 24

Figure 11. HATEOAS (Mulloy 2013b) .. 26

Figure 12. Working directory .. 34

Figure 13. API helper ... 37

Figure 14. Posts made by user .. 39

6

FORWARD

I would like to thank my thesis commissionaire company Oy Aurora Data and

Systems Ltd. for giving me the opportunity to work with them. The thesis idea

and practical implementation is organized and monitored by the commissionaire

company. Specifically, I would like to thank Mr. Ville Mattila for spending his

time for successive brainstorming sessions and commenting the first draft of the

thesis document. Similarly, Mr. Heikki Mustonen also allocates his time to assist

me concerning programming issues. Thus, with their kind cooperation, I could

manage to write a standard thesis report.

7

SYMBOLS AND ABBREVIATIONS

 API Application Programming Interface

HATEOAS Hypermedia as the Engine of Application State

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

JSON JavaScript Object Notation

OS Operating System

REST Representational State Transfer

ROA Resource-Oriented Architecture

RPC Remote Procedure Call

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

WSDL Web Service Description Language

WWW World Wide Web

XML Extensible Mark-up Language

8

1 INTRODUCTION

Nowadays, the production of software product is increasing dramatically. As the

production rate grows dramatically, communication between applications

becomes vital. Plenty of web applications share resource through World Wide

Web (WWW). However, in real world experience, this communication is not

easy as it sounds. Hence, each company adopt various technologies and

application layers to implement web products. For this reason, the world should

discover standard way of communication method that every client easily

consumes resources in spite of their technological variation. Thus, REST

(Representational State Transfer) appears to make a solution for the

implementation of web services. REST is an architectural style for distributed

hypermedia systems, which its principles could be applied for communication

between them (Fielding 2000). Therefore, this repost prefer to discuss a new

way of sharing resources between network-based systems called REST API or

RESTful web services.

The first chapter of the report describes the basic essence of Software

Architecture, specifically for web applications. Moreover, it uncovers the basic

essence of Design Patterns and summarizes the topic by discussing its

elements. Following that, it analyses service based software design and

software architecture design pattern, commonly known as Service-Oriented

Architecture (SOA). Furthermore, it closely considers web service messaging

protocol called SOAP (Simple Object Access Protocol) and its corresponding

description language WSDL (Web Service Description Language).

After a clear review of preceded web application architectural protocols, chapter

two introduces REST. First, it defines the term correctly and it discusses the six

core constraints. Besides, the report explains how REST architectural principles

are projected in API level. Moreover, this document includes the basic, however

9

most forgotten element, HATEOAS. Finally, the chapter closes by suggesting

all the good reasons why developers should adopt REST API as a standard.

The chapter discusses how RESTful web services are implemented. For

demonstration, a simple blog post demo application presents a practical

implementation of the API. This application uses Flask-Python web framework.

Moreover, this section introduces the used technologies and mention reasons

why they are chosen for the project. Additionally, it provides a step-by-step

approach to show how resources are shared from persistent data source.

Hence, the application’s API bases REST principles.

10

2 SOFTWARE ARCHITECTURE, DESIGN PATTERNS AND WEB

SERVICES

2.1 Software Architecture

Software architecture is software’s blue print, which is derived from the UML

use case. The architecture of a system evolves as decisions are made in terms

of feasibility, technical challenges, trade-offs, cohesion between stated

requirements, fluctuating needs of stakeholders, and so on. This will require an

extensive iterative process to refine the use case to reach for the final

architecture. (Gulzar 2003, 50.)

On their work in Software Architecture, Software Engineering Institute at

Carnegie Mellon University, defines software architecture as follows,

“The architecture of a software-intensive system is the structure or

structures of the system, which comprise software elements, the

externally visible properties of those elements, and the relationship

among them” (Software Engineering Institute 2013).

Software architecture is a high-level abstraction of a system like the selection of

methodologies, frameworks, scope and goals. Furthermore, it identifies the

elements of a system (also referred as architectural elements). Architectural

element is a fundamental piece from which a system considered to be

constructed (Rozanski & Woods 2011, 20). Instead of defining the details of

elements, the architecture designs how elements work, used by other elements

and interact to each other. As a result, software architecture only depicts the

bigger picture of the application.

After the skeleton of the software is designed, details of architectural patterns

will be documented on the design pattern. Software design patterns focus on

11

designing the responsibilities of the module or component. Often as classes

and objects level. Hence, software’s design pattern fills the smaller picture of

the application.

Software architecture insists continuous communication between stakeholders

Stakeholder is a traditional term used to refer a business partners who invested

money for the software. It helps to correct architectural faults at the early age of

the development.

2.2 Design Patterns

As Christopher Alexander, the Austrian architect introduced the notion of

patterns in the field of construction.

“The elements of this language are entities called patterns. Each

pattern describes a problem which occurs over and over again in

our environment, and then describes the core of the solution to that

problem, in such a way that you can use this solution a million

times over, without ever doing it the same way twice.” (Alexander

et al. 1977, x.)

This principle also sounds for object-oriented design. Once a given problem is

solved, the methodologies should be documented well for further use. These

solutions are expressed in terms of objects and the relationships between them.

Therefore, design pattern guarantees a reusable designs and architectures. By

doing this, a software architect can develop a systematic approach to improve

the reusability of the system.

Design patterns are not the direct solution for a problem. They are the

templates, which guide to solve a given problem. Furthermore, developers have

12

a formalized standard to document patterns. Thus, they can understand and

implement design patterns in their application.

2.2.1 Design Pattern Elements

According to the “Gang of Four (GoF)”, a design pattern has four essential

elements. Gang of Four is a group name for authors that consists Gamma E.,

Helm R., Johnson R. and Vlissides J. They are authors of a well-known

software engineering book called Design Patterns. These authors classify

design pattern elements as pattern name, problem, solution and consequence.

Pattern name is a handle, normally a word or two, which enables to describe a

design problem. It allows drafting the high-level abstraction. Assigning a

vocabulary for patterns makes the communication and documentation easier.

However, in real world developing experience, finding a perfect phrase has

been the hardest job. (Gang of Four 1994.)

Problem is the crucial element of the design pattern in which it explains when

these patterns could be applied. It describes the potential problems in the

context. The description could be specific design problems. For instance, it

could be on presenting algorithms as objects. In other cases, the problem is a

list of prerequisite before applying the patterns. (Gang of Four 1994.)

Solution often describes the actual elements, which constitute the design. As it

is explained above, solution does not describe a concrete design or

implementation. Instead, it produces a high-level description of a design

problem and how element arrangements solve it. (Gang of Four 1994.)

Consequences are the results and trade-offs of applying the pattern. Most

commonly, consequences in design decision explained implicitly. However,

they are critical for evaluating design alternatives and for estimating the costs

13

and benefits of applying the pattern. As a result, knowing these consequences

beforehand enables to understand and evaluate them. (Gang of Four 1994.)

2.3 Service-Oriented Architecture

Service-oriented architecture (SOA) is a design pattern build from logical units,

which provides services in an application. It is a design philosophy independent

of any vendor, product, and technology or industry trend. It can be simply

defined as a loosely-coupled architecture designed to meet the business needs

of the organization (Linthicum 1999). SOA is a term used to represent a model

in which automation logic is decomposed into smaller, distinct units of logic.

Collectively, these units comprise a larger piece of business automation logic.

Individually, these units can be distributed. Within SOA, these units of logic are

known as services. (Erl 2009, 375.)

It is common to distribute automation logic in other technologies too. The

difference in SOA is that logic units are designed in such a way to evolve and

grow relatively independent from each other. Even if the system allows them to

interact to each other, it is must to avoid a model in which outlets form tight

connections that result in constrictive interdependence. On the other hand, it is

also mandatory to develop the system independently. (Erl 2009, 377.)

2.4 Web Services

As it was discussed above, small functions in big application are realized as

services. Thus, web services are the implementation of these services in a

networked system. According to W3C Web services are

“a software system designed to support interoperable machine

interaction over a network. It has an interface described in a

machine-processable format (specifically WSDL). Other systems

14

interact with the Web service in a manner prescribed by its

description using SOAP messages, typically conveyed using HTTP

with an XML serialization in conjunction with other Web-related

standards.” (W3C Working Group Note 2004.)

Services could be any specific task, for instance, it could be sharing of files. For

that reason, in a web service those services are performed over HTTP (Hyper

Text Transfer Protocol). The client (the one who requires the service) sends a

request. Most commonly, the request represented as serialized XML format as

streams of bytes. Each request corresponds to a given URL. Following that, the

web service receives the request. The received XML request will be de-

serialized in to a data format. Finally, the web service processes the request

and serializes the response to send it back to the client.

Web services in an application are reusable. A reusable web services are

designed to suit for different applications, which will provide similar services. To

achieve this it should implement at least two fundamental characteristics,

statelessness and composability. Statelessness refers to the execution of

request handled independently and without any intermediary state waiting for

an event. Moreover, composability refers to a composition of different services

to produce composite applications. For instance, a well-designed ‘add to cart’

service could be used for different e-commerce applications with no or less

modifications. (Bechara 2009.)

2.4.1 Simple Object Access Protocol (SOAP)

Services are implemented in web services. These web services transfer

messages to each other in a protocol called Simple Object Access Protocol

(SOAP). Oracle defined SOAP as a lightweight, XML-based protocol for

exchanging information in a decentralized, distributed environment (Oracle

Corporation 2001).

15

Usually, the Extensible Mark-up Language (XML) based information will be sent

through HTTP. A client sends a SOAP request for a service. The request is

formatted in an XML format. This SOAP request will be posted through HTTP, if

a secured connection is needed, the transport protocol will be HTTPs. Finally,

the SOAP server handles the XML document request and responds for the

request in the same data format and transport protocol.

Figure 1. Components of the SOAP architecture (Oracle

 Corporation 2001)

As it is shown in the above Figure 1, HTTP protocol enables SOAP message to

pass through a firewall. Basically, firewalls do not block traffic that crosses port

80, as HTTP does. Therefore, it makes easy the communication between

SOAP client and service.

SOAP has its own XML format and rules. As similar to mail service, SOAP

message is contained in an envelope. This commonly has a header that

16

includes the namespace. Additionally, the message has body, which contains

the actual message to be transferred over HTTP. Figure 2 shows a sample

SOAP request for address book listing service.

Figure 2. SOAP request (Oracle Corporation 2001)

Additionally, its corresponding response from the server depicts in Figure 3

below.

Figure 3. SOAP response (Oracle Corporation 2001)

17

2.4.2 Web Services Description Language (WSDL)

SOAP message is not enough to make a sensible communication between

systems. There must be some description about the message. To accomplish

this WSDL (Web Services Description Language) is commonly used. Hence, it

is the main drawback of using SOAP services. In practical implementation of

these services, the messaging structure and the description language, makes

the actual message transfer heavy. Moreover, these services often-configured

in systems with firewalls that creates various layers for the messaging to be

difficult. For that reason, it is becoming out-dated.

WSDL is used to describe network services. Like SOAP, WSDL documents are

encoded in XML schema. Furthermore, a WSDL file contains the machine-

readable description of how the web service can be called, what parameters it

expects, and what data structures it returns. Figure 2 below shows the

hierarchy on the communication network endpoints. Thus, WSDL is the

description of the endpoints and actual SOAP message that the web service

would communicate through HTTP protocol. (Oracle Corporation 2001.)

Figure 4. SOAP message

Description

(WSDL)

Message

(SOAP)

Network

(HTTP)

18

3 REPRESENTATIONAL STATE TRANSFER (REST)

The previous chapter was discussed about the very common network based

way of communication, web services with SOAP. It is a means of decomposing

application functions to smaller web services and designing these services to

function and interact to each other. Additionally, this chapter will elaborate a

new architectural paradigm - Representational State Transfer (REST). Firstly,

the term will be defined. Secondly, the design principles and core constraints

will be reviewed. Finally, it will suggest the good reasons why developers

should adopt REST API.

Roy T. Fielding is “the father of REST”. He is the one who introduced REST to

the world in his dissertation. Furthermore, he presented REST as an

architectural style for distributed hypermedia systems. The design philosophy

behind REST is that it extracted from various network-based architectural styles

and combined with additional constraints. These will then create new

architectural style. (Fielding 2000.)

According to Fielding, REST has six basic constraints. Every constraints build

on the top of the other architectural constraint. Moreover, the design starts from

“a blank slate” and adds architectural constraints on one to another to build the

needed system. Thus, this section covers the six constraints in detail and

discusses how RESTful web services can be constructed based on these

elements. (Fielding 2000.)

19

3.1 REST Constraints

3.1.1 Client-Server

The background principle behind client-server constraint focused on the

separation of the two components (client and server). Well-designed RESTful

API should allow this separation of components and be able to evolve

independently from one another. Separation refers that the client is unaware of

the details implementation of the server. Similarly, the server is unaware of the

implementation and technical dependencies of the client. In addition to their

separation, it should also allow the communication between components.

(Fielding 2000.)

As it is clearly showed in the Figure 3 below, the server is the one often accepts

the client request and provides the needed service. Thus, the client is depicted

as a service consumer on RESTful API.

Figure 5. Client-Server

20

3.1.2 Stateless

The next constraint will be added on the top of client-server architecture, to

constitute client-stateless-server. Statelessness is the way of providing service

independent of any preceding stored state on the server. Hence, the session is

stored and managed in the client side. Therefore, the server can handle many

requests at a time, as it is shown in Figure 4 below, without considering the

details of the client making the request. (Fielding 2000.)

This constraint boosts the scalability of the system. Since the server “does not

care” who made the request, it can provide resources quickly. However, this

architectural constraint sent data repeatedly to the server, which reduces

network performance.

Figure 6. Client-Stateless-Server

21

3.1.3 Cache

In order to improve the network efficiency, cache constraint is added. As

depicted in Figure 5, this new architectural style form client-cache-stateless-

server. The server responses could be saved in the client cache. These cached

responses help to avoid client to send same request to the server. As a result, it

enhances the network efficiency by dodge repeated requests. (Fielding 2000.)

Moreover, this could be done implicitly, explicitly or negotiated. If the client

stores the service responses without notifying the server, then it is cached

implicitly. On the contrary, when the client notifies the server, it is explicit.

Unlike both ways, client and server would negotiate how services could be

cached.

Figure 7. Client-Cache-Stateless-Server (Mulloy 2013a)

22

3.1.4 Uniform Interface

Uniform interface constraint is added on the top of client-cache-stateless-

server. This is the fundamental constraint that differentiates REST from any

network-based architecture. George Reese explained it well in his book titled,

The REST API Design Handbook. He suggested that uniform interface

constraint enables to view representations of resources and interact with them

through generic, finite set of requests. This could be implemented in a way that

resources are referenced via URI and operated on through HTTP verbs.

(Fielding 2000 & Reese 2012.)

Figure 6 below shows RESTful state transitions. Furthermore, each state has

predictable transitions. The figure also shows the resource has finite states that

the client possibly transit.

Figure 8. Uniform-Client-Cache-Stateless-Server (Mulloy 2013a)

23

3.1.5 Layered System

On network-based systems, a client does not often have direct communication

to the server. There are both hardware and software intermediaries between

them. For instance, real world system could be configured like in Figure 7

below. Therefore, a layered system constraint is added on a uniform-client-

cache-stateless-server. (Fielding 2000.)

By having a layered system, RESTful service ensures that clients are able to

communicate only with intermediary layer and other layers are invisible for

them. This improves the scalability. Since, in RESTful service, intermediary

components can communicate each other. This is made possible because of

the self-descriptive capability of the content resource. Moreover, the URI for

each possible state is visible for mediator technologies.

Figure 9. Uniform-Layered-Client-Cache-Stateless-Server (Mulloy 2013a)

24

3.1.6 Code-On-Demand

Unlike the above constraints, code-on-demand is optional for RESTful services.

Basically, it is a means that RESTful service extend client’s request by

providing executable code. This can be implemented by extending client

functionality to download and execute code in the form of Java Applets or

JavaScript. Figure 8 shows this scenario below. (Fielding 2000.)

The idea behind optional constraint seems ludicrous. Though, it is rational to

include in the architectural design for systems, which has multiple

organizational boundaries. Commonly, this optional constraint facilitates the

communication unless it is disabled within some context.

Figure 10. Code-on-demand (Mulloy 2013a)

25

3.2 Hypermedia as the Engine of Application State (HATEOAS)

HATEOAS is one of the major constraints of REST. Each resource should have

the entry for action and link, which is the list of possible actions that the client

could do and the links are the path to the resource. These are key parts of the

resource that enable it to be hypertext driven. However, most developers failed

to include this constraint. By principle, using HTTP based interface does not

make any API RESTful. These APIs use HTTP methods and status code to

communicate client and server. On the contrary, they failed the role of

hypermedia. Thus, most of “the so called” RESTful services aren’t nothing than

implementation of RPC (Remote Procedure Call) on HTTP based interface.

Roy addressed this controversy on his blog published on 2008 titled as REST

APIs must be hypertext-driven. He asserts that,

“If the engine of application state (and hence the API) is not being

driven by hypertext, then it cannot be RESTful and cannot be a

REST API, Period” (Fielding 2008).

This means, each states are represented as hypertext. Every state then has a

list of states those are possibly reachable from the state. Similar to web

implementation, one can traverse from page to another page using the possible

hyperlinks, even without referring the site map. Therefore, hypertext is the key

constraint in REST API.

This enables REST API to be self-documenting. A single resource has data

section that describes itself, action(s) that the client does with the resource and

link(s) that the client possibly transit to the next state. These collectively make it

self-descriptive. Since, each representations of a state are self-descriptive,

26

clients does not have the responsibility to know about resources coming from

the server. Therefore, extra documentation is not needed to define resources.

Figure 11. HATEOAS (Mulloy 2013b)

Figure 9 above depicts the common system interaction. This interaction

handled by using REST interface in the middle. Moreover, each user clicks or

change of state should be implemented in REST interface. As a result the

service is RESTful that the app uses hypermedia as an engine of state

transition.

3.3 SOAP and REST

There are plenty of debates happening on comparison between SOAP and

REST. This report will not repeat the same thread. Instead, it focuses on the

reasons why one should adopt REST while the equivalent web service SOAP is

27

available. Therefore, it presents four core advantages of REST have over

SOAP or any other web service technologies.

The first thing to be clarified is that, REST is not only a web service and it is not

developed to replace SOAP. As it was mentioned above, REST is an

architectural style. However, its design principles could be projected and

customized to function as a web service. For this reason, its basic essence is

misunderstood and wrongly implemented.

3.3.1 Applied REST is Simple

As it was mentioned in Chapter one, the theoretical principles of SOAP look

fine. However, the actual implementation is complex. Specially, working with

distributed systems, it is difficult to debug. Since SOAP hides the complexity, it

is confusing to identify which part is broken. In addition to this, SOAP

implementation is greatly depending on the IDE and programming language.

For instance, in Visual Studio SOAP is easy to implement. In the contrary, it

lacks to provide best libraries for Python developers.

Unlike SOAP, REST tries to overcome these problems. RESTful web services

only use HTTP protocol, which makes it simple, and light weighted. Hence, it is

easy for actual implementation and debugging. Moreover, RESTful services are

both platform and language-independent. Since, HTTP is the standard, it

flexibly work with different platforms (UNIX, Windows and Mac) and

programming languages. As a result, a REST API is light weighted, platform

and language independent web service.

28

3.3.2 Use Advantages of HTTP

SOAP uses HTTP only as a transport protocol. However, RESTful services use

HTTP’s advantage to the most. REST performs all CRUD (Create Read Update

Delete) operations using HTTP built-in GET, POST, PUT and DELETE

methods.

GET is a method used to fetch a resource identified by a given URI.

It performs the Read operation.

POST is a method used to create a new instance of a resource. It

performs the Create operation. Here, post method is applied for

new resource, instead of updating the existing one.

PUT is a method used to update a resource. It performs the Update

operation. Unlike POST, it only executes to update a resource.

DELETE is a method used to delete a resource identified by a

given URI. It performs the DELETE operation.

In addition to HTTP methods, RESTful web services use rich HTTP status

codes. This enables the client to utilize the response sent from the server in

HTTP status code. Thus, any client who is unaware of the server could

understand the response, for the reason that HTTP status codes are standards.

Furthermore, the developer is not responsible to write any custom error

handling codes. Therefore, a RESTful service can handle errors by using HTTP

status codes sent from the server. (Reese 2012.)

29

3.3.3 Self-Documenting

The key constraint distinguishes REST from other HTTP based RPC is that it is

being driven by hypertext. There is some RPC APIs other than SOAP that could

possibly use rich advantage of HTTP. As it is depicted in the Figure 1, there is a

high dependency with other technologies, to use the services, on the top of

HTTP protocol. Unlike other RPC RESTful web services operated by hypertext,

which enables them to be self-documenting. The client using the resource could

easily understand what to do with the resource responded from the server.

This could be done without any description language or separate

documentation. As a result, well-designed RESTful web services do not need a

separate documentation or description language layer.

3.3.4 Resource-Oriented Architecture (ROA)

SOAP is an implementation of Service Oriented Architecture (SOA). It is driven

by services and the interaction between services. However, REST is an

architectural style, used to realize the big picture of the software by

comprehending the system as a resource. It is best used with ROA. As it was

discussed above, this principle could be projected to web services. Thus, in

RESTful service, every response from the server is a representation of a

resource and the client is traverse from state to state. Each resource in the

server has unique identifier called URI (Uniform Resource Identifier) and the

client can access that resource with the given URI through HTTP.

Furthermore, REST is not HTTP dependent. It can work well even with other

transfer protocols like FTP (File Transfer Protocol). Moreover, REST constraints

are built independent of other technology and platform. Therefore, RESTful web

services perform sufficiently on systems, which do not use HTTP. Since, most

of the web uses HTTP protocol; this report used it as a default transfer protocol.

30

4 IMPLEMENTATION OF REST API

The previous chapters discussed REST API from theoretical point of view. This

chapter will show step-by-step implementation using small blog post web app to

demonstrate how a RESTful web service could be applied. This app is

developed using Flask-Python web framework. Thus it is quite simple and clear

enough to show the basic constraints of RESTful web services. As a result, this

report concludes by giving both theoretical and practical explanation about

REST API.

Furthermore, the following sub topics show how to use various open source

python frameworks and libraries. Hence, this avoids doing everything from

scratch. Moreover, it mentions the reasons why these specific frameworks are

chosen for the demo application. Therefore, it will give full package guide to

begin with RESTful web services.

This demo app is developed on Linux platform, Ubuntu 13.04 Operating System

(OS) for the implementation. There are a couple of reasons for this. Firstly,

Linux is open source OS, which licensed by GNU GPL (GNU General Public

License). Thus, anyone can download and install it for free. Secondly, Ubuntu is

easy to work with python projects and git version control systems. It supports

different open source frameworks and libraries that are available for python. As

a result, consider that there might be some changes in the implementation for

users on different platform, especially Windows OS.

4.1 Flask

Flask is a micro web framework for python projects, which enables developers

to create web applications easily. It is a general framework that could be

applied for different scale projects. For instance, it could be used for small web

apps to a wide range social networking websites. The fundamental principles

31

are the same, which can easily be projected to any scale web based

applications.

There are three reasons for choosing Flask for this demo application. The first

one is its simplicity. In Flask, one should not need to know everything from the

beginning. The framework could be learned while developing. It has quick start

documentation that guide developers to up-and-run the application with basic

functionalities. The second reason is its openness. As with Python, Flask

software is distributed under a permissive open source license. These makes

more accessible and advanced. Finally, it is well-documented open source

framework. It has a detailed tutorial besides its quick start documentation.

Moreover, it provides up-to-date documentation for every new versions of the

framework. Therefore, these reasons made Flask web framework preferable for

the blogging web service demo app.

4.2 Virtualenv

Virtualenv is a tool to create isolated Python environments. Technically, it

creates independent working directories. So, each virtualenv has its own

libraries, which does not share with others. This project developed by using

virtualenv version 1.6. (Bicking 2014.)

Here is a Linux terminal command to install virtualenv in the local machine.

First, create the project directory in the location, which is easy to access.

Then install the virtual environment if it is not yet installed in the machine. After

this, use the virtualenv command to create distinct virtual environment. Finally,

activate the virtual environment.

32

4.3 Flask-SQLAlchemy

The SQLAlchemy is an open source product that provides Object Relational

Mapper (ORM). Moreover, it usually assists python model classes to be

mapped to database tables. Each instance of the database class represented a

record in the database table. Additionally, the class variables of the model class

associated as the column of the corresponding table. Furthermore, it

communicates database queries through model classes and relationships

between each other. (SQLAlchemy 2014.)

Flask-SQLAlchemy is one of Flask’s extension libraries. It provides easy and

efficient built-in functionalities to cooperate with SQLAlchemy. It requires

SQLAlchemy version 0.6 is the minimum requirement that supports Flask-

SQLAlchemy extension. Mainly, it facilitates the work for Flask users by

providing useful defaults and extra helpers that make it easier to accomplish

common tasks. (Ronacher 2011.)

The next task is to install all the necessary dependencies in the virtual

environment library. Here is a list of command to do it.

The first command installs the flask micro framework library files to the local

virtual environment package. Thus, other flask extension libraries, like flask-

sqlalchemy depends on the basic flask package. For that reason, flask

33

installation should be run before its extension libraries. Next to this, there is a

command for flask-sqlalchemy to finalize the installation process.

Following this, the working directory and structure could be formatted in such a

way that it can be manageable and human readable. Thus, here is the

command below to create the working directories.

The app folder is a parent folder for the application so that the controller,

configuration and initialization files could be kept. Static sub-folder is a place to

put static files like CSS, Javascript and image files. Likewise, templates sub-

folder allows storing HTML template files. Finally, the models sub-folder used to

put model classes.

Following this, a guide to create basic files is illustrated. Firstly, the initialization

file in app/__init.py__ should be created. Secondly, the handlers (controllers)

are created as app/views.py. This file is used to handle user’s request. It maps

URLs to Flask function. Basically, this function responds browser request by

rendering the corresponding HTML file. Finally, a script, which used to start the

application by setting up the web server and initializing the application, is

created. Thus, this setting script is saved as run.py file. The overall working

directory resembles as the image depicted in Figure 10.

34

Figure 12. Working directory

This thesis document illustrates how the basic REST API calls work. For that

reason, it will not cover how to set up and run Flask application. In addition to

this, Miguel Grinberg’s tutorial blog is recommended for beginners (Grinberg

2012). He tried to show how to build Flask based web apps from scratch with

adequate explanation.

Furthermore, a RESTful web services is implemented here. Firstly, the model

classes are created based on Flask-SQLAlchamey extension. Here is a sample

of User and Post model class respectively.

35

The model class is an extension of SQLAlchemy’s Model class. Furthermore,

the class variables of the model class create the corresponding fields in the

database by instantiating Column class from SQLAlchemy object. It is must to

pass the field type as a parameter like (String or Integer) while creating the field

instances. Moreover, plenty of values could be passed to characterize the

36

fields, which will be created in the database server. For instance, the primary

key could be set to handle null values and the like.

Following this, three basic things should be mentioned concerning the

implementation. The first notice will be about the wise use of URIs. The URI is

constructed as root-url/api/v1.0. So, this URI represents the version one API of

the web application running on root-url. In this case, the application is running

on localhost port 5000, which implies that the API call follows the pattern

http://localhost:5000/api/v1.0. Hence, this allows developers to add web API for

the upcoming versions of the application with a combination of unique nouns.

Secondly, in this application curl command is used to perform all HTTP

requests. It is easy to perform GET requests from the browser. Thus, Figure 11

and 12 shows simple GET requests from the browser. However, for POST, PUT

and DELETE requests curl command is used from the Terminal. Therefore, curl

libraries should be installed on the local machine to run all the commands in

this report document. Moreover, this demonstration uses JSON format to send

and receive resources over HTTP. However, it does not mean that REST is

JSON dependent. Hence, the same resource could be transferred using XML

script.

Finally, HATEOAS implementation is shown practically. As it was explained in

the previous chapters, HATEOAS is the crucial part of REST API. It enables

one resource to be self-describing. Thus, a resource that has identified by URI

has different states. Therefore, REST API will have the data section that is the

resource and link to show the possible state transitions. For instance, optional

helper resources can also be implemented as in Figure 11, which shows all

possible states in the API. Hence, the idea of implementing optional helper

resource is controversial. Most of REST API developers prefer individual

resources to be self-documenting, rather than adding an additional site map for

37

the API. However, they can be useful in some other cases. For that reason, it

is included to this demonstration and shown below.

Figure 13. API helper

38

Here is a demonstration of how resources are represented in web application.

These resources are serialized to JSON format from SQLAlchemy database

object. Hence, this improves the API’s performance by letting users to consume

it easily. The First example shows how to represent list of post resources made

by a given user identified by its id. Additionally, this representation also shows

the possible links (states) that one could transfer from this node. Thus, a

separate documentation should not be prepared as a user’s guide. This could

be done by sending GET request to the server using the URI

http://localhost:5000/api/v1.0/user/2/posts.Here is the code snippet in

app/views.py file.

Furthermore, its corresponding response from the browser is depicted in Figure

12. All the information about the resource presented in the data section of the

resource. Moreover, the HATEOAS section shows the list of states in the link

section of the resource.

39

Figure 14. Posts made by user

40

Following this, demonstration of other HTTP requests is performed using curl

command. It is possible to make a post from the API to be sent to the

webserver. Usually, HTTP’s POST method handles this. Here is the function,

which does this in app/views.py.

Then this function could be run using curl command from the terminal. This

command creates a new post in the database. Below is a sample command

that performs this.

This returns a message with HTTP status code. Thus, by this message a client

could easily know what the server is responding. This message often uses

HTTP status codes as a standard. For instance, server response below shows

HTTP status 200 ok. Hence, it refers that the request is successful.

41

Then, the post could be updated the same way. At this point the only change is

that PUT method is used instead of POST. The code snippet below shows the

update function in views.py file. Additionally, the curl command is presented to

send PUT request to the server, which then updates the resource from the data

source, in this case the database.

42

Likewise, the server responds the same way as POST method. It includes

HTTP status code for notifying the client. Furthermore, the developer could add

more descriptive message. Hence, the requests are not always successful,

more information are needed other than HTTP status code.

Finally, DELETE method is practiced easily the same way. It is possible to

delete user’s post with a single line curl command. In the same way as above,

python function is added for the app route to delete a record from the data

server. Thus, the function, the curl command and its corresponding response

are shown below.

43

44

5 DISCUSSION AND CONCLUSION

Web services are used as a means of communication between various

systems. This report document introduced REST starting from its fundamental

architectural definition to its API level implementation. Majorly, it focused on

describing how RESTful web services work both from theoretical and practical

perspective. Moreover, it showed service-based communication, specifically

SOAP and clearly demonstrated how SOAP messages are heavy and

complicated. Hence, the author efforts to document a full package guide for

REST API.

Furthermore, the above chapters clearly showed, REST gives rest for

developers. It rediscovered the way systems communicate each other. For that

reason, sharing resources through different technologies and platforms was

being simple. Additionally, clients could easily know the transition of states from

the entries of a resource. Thus, additional descriptive language layer is avoided

from communicable resource. Moreover, RESTful web services perform well as

the theoretical principles suggests. It uses HTTP status codes and JSON

format data to transfer resources. As a result, it could easily be consumed by

the client, which enables it to fulfill all the theoretical promises it made. Finally,

this thesis report concludes by suggesting web developers to adopt RESTful

web services as a standard for their systems' API.

45

REFERENCES

Alexander, C. Ishikawa, S. Silverstien, M. Jacobson, M. Fiksdahl-King, I. Angel,
S. 1977. A pattern Language: Towns, Buildings, Construction. New
York: Oxford University Press.

Bicking, I. 2014. Introduction. Referenced 17.7.2014.
http://virtualenv.readthedocs.org/en/latest/virtualenv.html.

Bechara, G. 2009. Oracle Network Technology. Referenced 4.3.2014

http://www.oracle.com/technetwork/articles/bechara-reusable-service-
087796.html.

Erl, T. 2009. Service-Oriented Architecture: Concepts, Technology, and

Design. Indiana : Prentice Hall.

Fielding, R. T. 2000. Chapter 5: Architectural Styles and the Design of

Network-based Software Architectures. University of California. Fielding's
Doctoral Dissertation.

Fielding, R. T. 2008. REST APIs must be hypertext-driven. Referenced

24.3.2014
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven.

Gamma, E. Helm, R. Johnson, R. Vlissides, J. 1994. Gang of Four. Design
Patterns: Elements of Reusable Object-Oriented Software. 1st edition. New
York: Addison-Wesley Professional.

Grinberg, M. 2012. The Flask Mega-Tutorial. Referenced 27.10.2014.
http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world.

Gulzar, N. 2003. Practical J2EE Application Architecture. 1st edition. New
York: McGraw-Hill Osborne Media.

Linthicum, D. 1999. Chapter 1: Service Oriented Architecture (SOA).
Referenced 6.3.2014. http://msdn.microsoft.com/en-
us/library/bb833022.aspx.

Mulloy, B. 2013a. API Design: Ruminating Over REST. Referenced 6.9.2014.

https://blog.apigee.com/detail/api_design_ruminating_over_rest.

https://blog.apigee.com/detail/api_design_ruminating_over_rest

46

– 2013b. API Design: Harnessing HATEOAS, Part 2. Referenced 6.9.2014.
https://blog.apigee.com/detail/api_design_harnessing_hateoas_part_2.

Oracle Corporation. 2001. Simple Object Access Protocol Overview.

Referenced 10.3.2014.
http://docs.oracle.com/cd/A97335_02/integrate.102/a90297/overview.htm.

Reese, G. 2012. The REST API Design Handbook. 1st edition. Amazon Kindle
Edition.

Ronacher, A. 2011. Flask-SQLAlchemy. Referenced 14.10.2014.

https://pythonhosted.org/Flask-SQLAlchemy/.

Rozanski, N. & Woods, E. 2011. Software Systems Architecture:
Working with Stakeholders using viewpoints and perspectives. 2nd
edition. Massachusetts: Addison Wesley.

Software Engineering Institute 2013. Referenced 4.3.2014
http://www.sei.cmu.edu/architecture/start/glossary/moderndefs.cfm.

SQLAlchemy. 2014. Object Relational Tutorial. Referenced 14.10.2014
http://docs.sqlalchemy.org/en/rel_0_9/orm/tutorial.html.

W3C Working Group Note. 2004. Web Services Glossary. Referenced

3.3.2014
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice.

https://blog.apigee.com/detail/api_design_harnessing_hateoas_part_2
http://www.sei.cmu.edu/architecture/start/glossary/moderndefs.cfm

