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PREFACE 
 
This thesis focuses more on the engineering approach to benefit network applications 
by predicting the DNS query event, rather than an academic study. 
 
The idea to predict DNS query event was triggered several years ago when I noticed 
a new HTML syntax named dns-prefetch was introduced. I thought it was network 
efficiency-wise after a quick experiment. But the limitations were obvious if I can say 
so unfairly. First, it’s for web browsers dedicatedly, of course, other network 
applications can borrow this design also. Secondly, it requires developers to specify 
the domain names in the source code.  
 
I was thinking that: is it possible to automatically learn which host the application will 
connect to, purely from network traffic without the involvement of the user application. 
It provides a better possibility to do something like “dns-prequery”, which can benefit 
all types of network applications without their awareness. This question means 
different things in different time scales. In days and weeks, it’s about user profiling. But 
I was more focused on smaller time scales like seconds or milliseconds, that’s where 
we can accelerate DNS service. After reading several network traffic streams, my 
intuition told me it seems possible, at least I can easily recover the user’s browsing 
history in my brain based on the packets, which means a pattern exists. But the traffic 
is extremely noisy, a situation where the human brain can easily defeat the computer. 
So, my conclusion was: possible but challenging.  
 
At that moment, I was working as an embedded software engineer to develop a 
network router, it was a pity that I didn’t have the chance to explore even a PoC on that 
product. So, I chose it as my thesis topic to satisfy my curiosity. While doing the thesis, 
I encountered a lot of difficulties in learning knowledge from the extremely noisy raw 
DNS traffic data, which is a one-dimensional observation to a high-dimension model. 
But anyway, it’s more focused on a feasible engineering solution, rather than academic 
research. 
 
 
Espoo, March 2024 
Lu Dai  
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DNS query event as the prerequisite of network connection, introduces extra time 

latency to complex network application which involves a group of network activities. 

The latency cannot be optimized in the pipeline of network interactions in current 

DNS framework. This thesis proposed a prediction solution and corresponding 

learning method to reduce the overall latency. By estimating conditional probability, 

which is a widely used metric in natural language processing to solve the “word 

association” problem, which is similar to this problem, this thesis proposed a learning 

method to learn query associations from DNS traffic. This thesis also proposed a 

standalone prediction solution and an integrated prediction solution to cooperate with 

current DNS cache mechanism, to accelerate DNS service by predicting. 
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1 Introduction 

The Domain Name System (DNS), as a fundamental component of the internet 

infrastructure, alleviates the need for users to memorize lengthy Internet Protocol 

(IP) addresses. It achieves this by mapping human-readable host domain names 

to computer-readable IP addresses, playing a crucial role as internet applications 

grow increasingly complex. Since its inception by Mockapetris [1], DNS has 

undergone various enhancements, such as DNSSec [2] for improved security, 

DNS-over-TCP [3] for enhanced transaction efficiency, DNS-over-HTTPS [4] to 

leverage web browser capabilities, and DNS-over-TLS [5] for the utilization of 

lightweight cryptographic infrastructure. 

Despite the cache mechanism outlined in [1], the deployment of DNS services on 

the internet exhibits diverse configurations. Contemporary network applications 

extensively employ Content Delivery Networks (CDNs) [6] and load balancing [7], 

dynamically offering host domain name resolution services based on geographic 

location and server cluster load. In all forms of DNS and its variants, the 

fundamental interaction involves a query and a response, where the query seeks 

the IP address of a host, and the response provides that information. Notably, 

each query is handled independently, without consideration for prior queries or 

knowledge of correlations between hosts within the DNS schema. 

Empirically, correlations between hosts are pervasive on the internet. It requires 

no specialized knowledge for an ordinary person to suspect a connection 

between www.youtube.com and accounts.youtube.com. Research [11] 

demonstrates that hyperlinks in hypertext applications, including web 

applications, unveil relationships between documents. As these documents 

exhibit correlation, the hosts providing them also share correlation from the 

resource-accessing perspective. Section 2 elaborates on why and how these 

correlations exist, using web applications as an example, but this pattern applies 

to any type of network application. Armed with the knowledge that host domain 

names, such as accounts.youtube.com and www.youtube.com, are correlated, 

the question arises: can we expedite the loading of the YouTube homepage? By 



 

 

predicting the query for accounts.youtube.com when handling the query for 

www.youtueb.com, after we see that accounts.youtube.com always come after 

www.youtueb.com in the traffic. Figure 1 shows the concept of learning and 

usage of the prediction. 

 

 

Figure 1: Learning and Prediction Usage 

In all DNS use cases, the time cost of a DNS transaction to resolve a host domain 

name to its corresponding IP address is considered an overhead in accessing a 

host. Whenever a user connects to a host with a given domain name, DNS is 

invoked as a prerequisite, incurring a typical cost of three to five milliseconds. 

The overhead accumulates when an internet application requires resources from 

multiple hosts, resulting in increased DNS time costs for more host connections. 

This accumulation becomes inevitable as modern internet applications distribute 

resources and logic processes across multiple servers. For instance, a web 

service may store its Hyper-Text Markup Language (HTML) document, 

JavaScript document, images, and authentication processes on different hosts. 

Compounding the issue is the sequential resolution of these prerequisites, where 



 

 

a user must resolve the host to obtain the HTML document before parsing it and 

determining where to retrieve the referenced JavaScript document. As internet 

applications grow in complexity and necessitate more hosts, the DNS time cost 

becomes a prominent challenge. 

Efforts have been made to reduce the time cost of DNS. [1] proposed a cache 

mechanism to avoid redundant queries for the same host, while [8] introduced a 

pre-fetch mechanism in web browsers enabling users to query in advance. This 

research explores a novel approach by treating a hostname as a member within 

an association, rather than a standalone variable. Assuming hosts, such as 

www.youtube.com and accounts.youtube.com, belong to the same association, 

the DNS query overhead for the latter can be reduced or eliminated by predicting 

it based on the occurrence of the former. This research introduces a probabilistic 

approach to decrease overall time costs by predicting the next DNS query event 

on a micro time scale, leveraging knowledge of correlations derived from DNS 

raw traffic through conditional probability estimation. 

1.1 Related Works 

The problem this thesis aims to solve is like the word association [16] [17] in 

natural language processing (NLP) field. “In natural language, words are not 

combined randomly into phrases and sentences, constrained only by the rules of 

syntax.” [16]. Compare DNS traffic stream to text document, and DNS query to 

word, cooccurring of queries to cooccurring of words, techniques used in NLP 

can also be used to solve this problem. Some adaptations are required to meet 

the DNS traffic stream as a discrete time series. The core metric to evaluate the 

association of two “words” used in the thesis is conditional probability, refers to 

[16] section “Conditioning on fixed marginal frequencies”. In [16], author used one 

word as a condition, estimate the probability of another word, as variable, 

occurred in the same row. In this thesis, we used one query as a condition, to 

estimate another query occurred in a narrow temporal window. 



 

 

1.2 Structure 

Section 2 outlines common features in web applications affecting DNS query 

behaviour, a pattern applicable to other network applications, and constructs a 

probabilistic model for DNS query sequences, accompanied by relevant 

experimental results. Section 3 details the methodology for preprocessing and 

processing DNS raw traffic to learn and feature host association knowledge. 

Section 4 presents the system design for predicting DNS queries, to put the 

knowledge into use to reduce the overall time cost of DNS service. 

All data and source code are available on the website 

www.github.com/exlud/pcap-dns-statistic. 

  



 

 

2 Query Pattern and Model 

This chapter delineates the DNS query behavioural pattern from the perspective 

of user applications. Despite the autonomous handling of DNS queries, there 

exists a cohesive and consistent grouping of host domains associated with each 

user application. This signifies that these queries exhibit a spatial-temporal 

adjacency relationship. Given foreknowledge of the user application, it becomes 

possible to anticipate a specific group of queries within a narrow temporal window 

in the DNS traffic stream. The spatial-temporal adjacency pattern thus presents 

an opportunity to cluster host domains and predict DNS query events. 

In this section, a probabilistic model is formulated to depict the interdependence 

of queries. This is achieved through a form of conditional probability, where one 

query serves as the dependent variable, and another as the independent 

variable. The estimation of conditional probability, serving as a parameter of the 

model, is derived from the learning process applied to raw DNS traffic data. This 

estimation, in turn, functions as a metric of distance for clustering. The model 

incorporates certain empirically based assumptions to generalize across diverse 

user applications and to streamline the complexity inherent in the model. 

Subsequent sections of this thesis employ the term "query" as a shorthand 

reference to "DNS query," "observation" for "DNS query event observation," and 

"host" in reference to "host domain name." 

2.1 Query and Observation 

A query event is typically initiated by the user application to resolve a given host 

to the corresponding IP address before establishing a transport layer connection 

to access the required resource, which may be a document or a service. The 

associated observation manifests as a DNS message within the network traffic, 

querying for that specific host. 



 

 

Consider the example of the www.youtube.com webpage. To retrieve the 

annotated HTML document resource (R), a prerequisite query event (Q) is 

necessary before initiating a Transmission Control Protocol (TCP) connection to 

the web server. The term "resource" encompasses not only HTML documents 

but also services such as database routines, authentication routines, images, ad 

tracking service, etc. R sufficiently causes Q as the effect from the perspective of 

causality as shown in formula (1). 

  

Asymmetrical mapping between R and Q is prevalent, where R uniquely maps to 

one Q, but a single Q may map to multiple R. An illustration of this can be found 

in formula (2) and (3) when various resources necessitate the same initial query. 

 

 

Complicating matters, especially in web applications, is the fact that static 

resources, like JavaScript documents, can be locally cached in web browsers. 

Consequently, R may not always cause the corresponding Q. This causality 

relationship with probability is annotated as formula (4). 

 

In numerous instances, the occurrence of the Q event results in an observation 

(q) in the form of a DNS message within network traffic. However, this is not 

always the case due to the DNS record cache mechanism. The processing of the 

query event occurs sequentially, involving the user application, operating system 

(OS), stub resolver, recursive resolver, and root resolver. Nearly all endpoints in 

this chain have the capability to cache DNS records. Depending on the observer's 

location, the DNS message as an observation may not always be present. For 

example, when observing on the Network Interface Card (NIC) of a computer and 

the OS has a valid and cached IP address for a specific host name, the DNS 



 

 

message becomes unnecessary unless insisted upon by the user application. 

The causality relationship between R, Q, and q is annotated as formula (5). 

 

2.2 Queries and Sequence 

A network service may utilize a group of hosts to distribute subroutines, implying 

that a network activity may invoke multiple queries within a narrow temporal 

window. The sequence of DNS queries, serving as a profile of the network 

activity, carries contextual significance. 

In modern network applications, it is common to organize a cluster of hosts to 

serve a single user service. For instance, a website might utilize a group of hosts 

to deliver various types of resources such as HTML, JavaScript, CSS, images, 

and videos required for a single web page. Similarly, an IoT application might 

distribute different services like authentication, diagnostics, command & control, 

and firmware upgrades across a group of hosts. 

Given a user activity (C) and the corresponding group set (Sc), the posterior 

probability of those hosts in the group should sum to one, and the conditional 

probability for any two of them should also sum to one, as annotated in formulas 

(6) and (7). 

 

 

Empirically, every network service typically possesses at least one distinctive 

element within its corresponding host group. This emphasizes the constraint of 

the spatial-temporal space concerning where and when the observer collects the 

data. By utilizing this unique element as a condition, other elements within the 



 

 

same group can be identified through significant conditional probability 

estimation, as illustrated in formula (8). 

 

The DNS query sequence, functioning as the temporal dimension observation, 

inherits the aforementioned characteristic, revealing repetitive patterns where two 

events occur within a narrow temporal window in a single DNS traffic stream, as 

depicted in formula (9), where tau (τ) serves as a hyperparameter defining the 

window size. Generally, a larger window size tends to increase the noise level, 

while a smaller window size enhances the occurrence of positive false instances 

in the learning process. Further detailed discussion on this matter is provided in 

section 3.3. 

 

Two types of annotations are utilized in this thesis to represent a discrete time 

sequence, as illustrated in Figure (2). The latter annotation method provides a 

more vivid depiction of the time intervals. 

 

Figure 2: Annotations of Sequence 

This thesis operates under the assumption that user activities are independent of 

each other. However, it is important to note that this assumption is not entirely 

accurate, given the complex nature of higher-level user behaviours. Nonetheless, 

making this assumption aids in simplifying the probability description when 

multiple user activities intertwine within a single sequence. Without prior 

knowledge of whether an element is unique or not, the conditional probability is 

described as Formula (10). 



 

 

 

 

Certainly, when the condition uniquely corresponds to only one user activity, it 

becomes feasible to cluster hosts into groups through posterior probability 

estimation. 

2.3 Query Dependency 

In web applications, documents utilize references, links, or citations to establish 

connections with other documents, and this pattern extends to other types of 

network applications as well. When a user application interacts with a host, the 

information provided by the host can be regarded as a resource, which is a 

general form of a document. Resources can vary widely, including HTML/CSS/JS 

documents, images, videos, database services, authentication services, ad-

tracking services, and so on. These resources often exhibit dependency 

relationships, where one resource requires another, as demonstrated in formulas 

(11) and (12). 

 

 

By cascading the dependency relationships, a resource dependency tree (RDT), 

as illustrated in Figure (3), can be utilized to describe the user activity (C). 

 



 

 

 

Figure 3: RDT (www.youtube.com) 

Taking into account the fact that accessing a resource necessitates a DNS query 

event, as discussed in section 2.1, when given the user activity where the 

resource can uniquely map to one query event, a query dependency tree (QDT) 

can be constructed, as illustrated in Figure (4). 

 

Figure 4: QDT (www.youtueb.com) 

In the above example, suppose the given user activity is to load the home page 

of the website www.youtube.com. The root node Q(www.youtube.com) depends 

on a group of other queries. This dependency relationship can be represented 

through conditional probability, where these queries are adjacent to each other in 

a micro timescale, and the dependent query must occur prior in time to the 

dependency. 

Generally speaking, queries contained within one QDT are more likely to be 

observed as neighbours in a narrow temporal window. However, in reality, the 

http://www.youtube.com/
http://www.youtube.com/


 

 

sequence can be influenced by several other mechanisms, including cache 

effects, query multiplexing, and query variants. 

2.4 Cache Effect 

Apart from the widely implemented document caching mechanism in web 

browsers, which caches documents and eliminates DNS queries, the DNS cache 

mechanism affects query behaviour in a broader scope for all network 

applications. 

Storing frequently used JavaScript or CSS documents locally in the browser is a 

reasonable and efficient choice. In such cases, the process to load the home 

page of www.youtube.com may not trigger the subroutine to access 

fonts.googleapis.com because the document is already available locally. This 

implies that in one experiment, part of the QDT, which is determined by the RDT, 

may not be observable. 

Most operating systems and DNS stub resolvers may enable the feature to cache 

DNS records, leading to a possibility where a query (Q) may not trigger the 

corresponding observation (q), as the query event might be intercepted by the 

operating system or stub resolver in the middle. 

The unified representation of cache effects introduces an additional parameter to 

the probability of query events, as shown in formulas (13) and (14). In this 

manner, the RDT and QDT are treated as persistent and repetitive, with 

observations (q) being influenced by a random sequence in the meantime. The 

value of the random sequence can be either one or zero, as defined in formulas 

(15) and (16). 

 

 



 

 

 

 

The free parameter p represents a pseudo-sequence where its value is close to 

one at the first occurrence of a user activity, and close to zero afterward. The 

cache effect introduces a scalar to the probability estimation but does not alter its 

characteristics. In other words, it does not change the correlation between hosts, 

as demonstrated in formula (17). 

 

. 

2.5 Query Multiplex 

A host can serve multiple services and can be accessed in various ways. For 

instance, a host storing images for one website might also store videos for 

another website simultaneously. Similarly, a host providing HTTP service can 

also serve as an ICMP destination at the same time. This multiplexing of hosts 

makes the dependency relationship volatile, particularly distinguished in different 

user activity contexts. 

Examples of host multiplexing are abundant in the real world. Consider three 

different scenarios: 1) marking www.youtube.com as a favourite in the web 

browser and then opening the web browser; 2) pinging www.youtube.com in the 

command line to test network connectivity; 3) visiting the webpage of 

www.youtube.com. Only in the third scenario does the dependency relationship 

exist. 

To mitigate the effect of multiplexing on observations, one feasible approach is 

to cluster sequences based on their features in a medium timescale, as 

demonstrated in previous research [14]. In this thesis, sequence clustering was 



 

 

performed manually. Through this method, training data are selected to have the 

same user activity, as illustrated in Figure (5). 

 

 

Figure 5: Mitigate Multiplexing 

2.6 Query Variants 

The widely used CDNs and load balancing mechanisms introduce variations in 

queries at runtime. It is common for a network service to have backend logic, as 

illustrated in List (1) and (2). 

def dynamic_cdn_server  

  if client from Asia: 

    host = img-asia.foo.bar 

  else if client from Europe: 

    host = img-eu.foo.bar 

  else: 

    host = img.foo.bar 

  return host 

end 

List 1: Example of CDN Backend Logic 

def dynamic_load_balance  



 

 

  host = round-robin(db1.foo.bar, db2.foo.bar, db3.foo.bar) 

  return host 

end 

List 2: Example of Load Balancer Backend Logic 

The variation caused by CDNs is relatively easier to address in practice, 

especially if the learning materials are generated within the same Autonomous 

System (AS) or geographic location, which is often achievable. In this thesis, DNS 

traffic was collected in a single geographic location, which helps mitigate CDN-

induced variations. 

On the other hand, load balancing introduces greater complexity to the 

dependency relationship. Resources can be dynamically fetched from any one of 

a group of hosts, as depicted in formula (18), leading to potential changes in 

observations over time. Unfortunately, this thesis cannot fully resolve this issue, 

and the variants may be treated as noise in the learning process. However, given 

the prediction usage targeted by the thesis, this limitation is acceptable due to 

the inherently unpredictable nature of load balancing mechanisms. 

 

Tree, Graph and Association 

Given a Query Dependency Tree (QDT), an association can be derived to depict 

the connection of hosts. For example, consider the association 

A(www.youtube.com) obtained from the tree T(www.youtube.com), which 

includes elements such as www.youtube.com, font.googleapis.com, 

font.gstatic.com, youtube.com, accounts.youtube.com, yt3.ggpht.com, jnn-

pa.googleapis.com, and static.doubleclick.net. 

This association can be leveraged to predict DNS query events. When receiving 

a query q(www.youtube.com), confidence is increased to expect other elements 



 

 

in A(www.youtube.com), such as q(accounts.youtube.com), depending on the 

application. 

To learn the association from DNS traffic, this thesis utilizes an undirected graph 

method weighted by probability. The vertices (V) of the graph are defined as 

hosts, and the edges (E) are determined by the conditional probability of two 

vertices being connected, which is higher than a given threshold, as described in 

formulas (19) and (20). 

 

 

Given an example of conditional probability estimation in Table (1), the learned 

vertices and edges can be derived using formulas (21) and (22). This results in 

the learned vertices and edges that form the undirected graph representing the 

association among hosts based on the conditional probabilities observed in the 

DNS traffic. 

Var. 

Con. 
h1 h2 h3 

h1 N/A 0.9 0.1 

h2 0.6 N/A 0.3 

h3 0.2 0.2 N/A 

Table 1: Example of Conditional Probability Estimation 

 

 

Using the described method with a conditional probability threshold and distance, 

an association for a given host can be obtained from DNS traffic by estimating 

the probability. This association consists of hosts that can be connected to within 

the specified number of hops. 



 

 

For example, consider a conditional probability threshold of 0.5 and a maximum 

distance of 2 hops from the given host h1. We can iterate through the graph and 

identify all hosts that can be connected to h1 with a probability greater than the 

threshold within given hops. The resulting set of hosts forms the association for 

h1. 

Using this approach, the association for each host can be determined based on 

the observed conditional probabilities and the specified parameters of threshold 

and hops. This enables the learning process in section 3. 

 

  



 

 

3 Learning Process 

This section describes the learning process, which includes data pre-processing, 

conditional probability estimation, and propagation, all aimed at learning host 

associations. Experiments results are alongside. 

3.1 Pre-Process 

Raw data consists of DNS traffic captured using tcpdump on a laptop within the 

same autonomous system (AS) over several days, stored in Wireshark pcap file 

format. 

One of the challenges in the learning process is memory efficiency. With 

potentially billions of DNS records, building a conditional probability structure at 

this scale would be impractical. To address this issue, pre-processing involves 

aggregating traffic flows that share the same user activity. While unsupervised 

clustering methods, such as those used in [10], can solve this problem by learning 

DNS sequence features in a medium time scale, this thesis chooses to manually 

select training data to focus on a limited number of user activities. Both training 

and test data are manually labelled for performance evaluation, although not for 

supervised learning. Data and labels are available alongside the source code. 

 

3.2 Estimate Probability 

This step aims to discover the correlation between two hosts. Estimating the 

probability for one variable with multiple conditions requires a larger training data 

volume and higher sample rate, which can be less robust in practice when the 

sample is sparse. This thesis uses only one condition, along with a method 

described in section 3.4 to find connected components in a graph to compensate 

for potential side effects. 



 

 

Given a host as a condition, the conditional probability estimation for a host 

variable is defined in formula (23), where |H| is the space for all DNS records in 

the learning material, N(hi) is the occurrence of hi in the sequence, and N(hi, hj) 

is the joint occurrence of hi and hj within a given time distance, which is a 

hyperparameter. 

To enhance robustness when the sample volume is small or when a host has a 

small occurrence count, Laplace smoothing is applied to prevent unfair 

advantages for host pairs that occur together but with a small count, as defined 

in formula (24). 

 

 

 

Indeed, the additive used in Laplace smoothing imposes a higher penalty on 

hosts with fewer occurrences, thereby mitigating the influence of sparse data. 

However, as the occurrence of hosts increases, the effect of the additive 

diminishes. 

Host pairs (hi, hj) are considered connected when their conditional probability 

exceeds a certain threshold (t). Thus, given a host (h) and a threshold (t), a group 

of hosts can be learned from the DNS traffic by satisfying the condition outlined 

in formula (25), suggesting potential connections among these hosts. This 

threshold-based approach allows for the identification of host associations based 

on their observed conditional probabilities, facilitating the extraction of meaningful 

relationships from DNS traffic data. 

 



 

 

Table (2) shows the experiments result on a given user activity (loading 

www.youtube.com web page) with different threshold. 

learned(www.youtueb.com, 0.8) 

target learned 

i.ytimg.com   

fonts.googleapis.com   

fonts.gstatic.com   

googleads.g.doubleclick.net   

static.doubleclick.net   

jnn-pa.googleapis.com jnn-pa.googleapis.com 

accounts.youtube.com   

www.gstatic.com  

www.google.fi   

play.google.com   

yt3.ggpht.com  

load balanced 

rr2---sn-q4flrnes.googlevideo.com   

lh5.googleusercontent.com   

rr1---sn-qo5-ixas.googlevideo.com   

  rr4---sn-5hne6nzd.googlevideo.com 

  rr2---sn-qo5-ixas.googlevideo.com 

  

learned(www.youtueb.com, 0.7) 

target learned 

i.ytimg.com i.ytimg.com 

fonts.googleapis.com   

fonts.gstatic.com   

googleads.g.doubleclick.net   

static.doubleclick.net   

jnn-pa.googleapis.com jnn-pa.googleapis.com 

accounts.youtube.com   

www.gstatic.com www.gstatic.com 

www.google.fi   

play.google.com   

yt3.ggpht.com yt3.ggpht.com 

load balanced 

rr2---sn-q4flrnes.googlevideo.com   

lh5.googleusercontent.com   

rr1---sn-qo5-ixas.googlevideo.com   

  rr4---sn-5hne6nzd.googlevideo.com 

http://www.youtube.com/


 

 

  rr2---sn-qo5-ixas.googlevideo.com 

  

learned(www.youtueb.com, 0.6) 

target learned 

i.ytimg.com i.ytimg.com 

fonts.googleapis.com   

fonts.gstatic.com   

googleads.g.doubleclick.net   

static.doubleclick.net   

jnn-pa.googleapis.com jnn-pa.googleapis.com 

accounts.youtube.com   

www.gstatic.com www.gstatic.com 

www.google.fi   

play.google.com   

yt3.ggpht.com yt3.ggpht.com 

load balanced 

rr2---sn-q4flrnes.googlevideo.com   

lh5.googleusercontent.com   

rr1---sn-qo5-ixas.googlevideo.com   

  rr4---sn-5hne6nzd.googlevideo.com 

  rr2---sn-qo5-ixas.googlevideo.com 

  

learned(www.youtueb.com, 0.5) 

target learned 

i.ytimg.com i.ytimg.com 

fonts.googleapis.com   

fonts.gstatic.com   

googleads.g.doubleclick.net   

static.doubleclick.net   

jnn-pa.googleapis.com jnn-pa.googleapis.com 

accounts.youtube.com   

www.gstatic.com www.gstatic.com 

www.google.fi   

play.google.com   

yt3.ggpht.com yt3.ggpht.com 

  ocsp.pki.goog 

  r3.o.lencr.org 

load balanced 

rr2---sn-q4flrnes.googlevideo.com   

lh5.googleusercontent.com   

rr1---sn-qo5-ixas.googlevideo.com   



 

 

  rr4---sn-5hne6nzd.googlevideo.com 

  rr2---sn-qo5-ixas.googlevideo.com 

  

learned(www.youtueb.com, 0.4) 

target learned 

i.ytimg.com i.ytimg.com 

fonts.googleapis.com   

fonts.gstatic.com   

googleads.g.doubleclick.net googleads.g.doubleclick.net 

static.doubleclick.net   

jnn-pa.googleapis.com jnn-pa.googleapis.com 

accounts.youtube.com   

www.gstatic.com www.gstatic.com 

www.google.fi   

play.google.com   

yt3.ggpht.com yt3.ggpht.com 

  ocsp.pki.goog 

  r3.o.lencr.org 

  sync-1-us-west1-g.sync.services.mozilla.com 

 detectportal.firefox.com 

load balanced 

rr2---sn-q4flrnes.googlevideo.com   

lh5.googleusercontent.com   

rr1---sn-qo5-ixas.googlevideo.com   

  rr4---sn-5hne6nzd.googlevideo.com 

  rr2---sn-qo5-ixas.googlevideo.com 

Table 2: Probability Connection 

The precision rate and recall rate, as defined in equations (26) and (27) 

respectively, are commonly used metrics to evaluate the performance of learning 

processes based on probability estimation. Precision rate quantifies the accuracy 

of positive predictions made by the learning process, recall rate quantifies the 

completeness of positive predictions made by the learning process. 

 

 



 

 

Figure (6) illustrates the performance of learning the user activity 

C(www.youtube.com) at different threshold parameters. 

 

Figure 6: Precision and Recall Depends on Threshold 

 

The result shows that higher threshold increases recall rate but decreases 

precision rate in the meantime. Recall rate did not increase after the threshold 

goes down to 0.7. 

The results indicate a high precision rate but a low recall rate. As the threshold 

decreases, allowing for more connections to be considered, the recall rate 

improves but at the cost of an increased false positive rate. Notably, when the 

threshold is lowered to 0.6, the false positive rate rises significantly. This suggests 

that while lowering the threshold improves recall, it also leads to a higher 

likelihood of falsely identifying connections among hosts that may not actually be 

related to the user activity. Therefore, a trade-off between precision and recall 

needs to be carefully considered when selecting the threshold for host 

association learning. 

 



 

 

3.3 Propagate Connection 

Propagate the connection is very similar to search for a sub-connected 

component in the graph, starting from one vertex, where all other vertices in the 

component are reachable within a given number of hops (edges). For example, 

if {a, b} are connected pair, and {b, c} are also connected pair, then {a, c} can be 

treated as connected within two hops, even if {a, c} do not meet the requirement 

of probability significance directly. 

One reason for performing this operation is to mitigate the side effects of the 

hyperparameter time window. The time window for one user activity varies 

depending on network quality, server performance, and application complexity. A 

larger time window introduces more noise, increasing false positives, while a 

smaller time window increases precision but reduces recall. Since precision rate 

is preferred over recall rate, the time window is relatively small in section 3.2. To 

compensate for this, this section aims to increase the recall rate by propagating 

connections. 

Another reason, as discussed in sections 2.1 and 2.5, is that some hosts may 

uniquely belong to one user activity or belong to a limited set of user activities, 

resulting in more significant conditional probabilities with other hosts in the same 

user activity. Propagating connections allows for the utilization of this 

characteristic. 

Experiments comparing methods in section 3.3 and section 3.2 suggest that 

propagation helps to increase the precision rate at the cost of decreased recall 

rate. This trade-off should be carefully considered when selecting the appropriate 

method for learning host associations based on conditional probability estimation. 

 



 

 

 

Figure 7: Precision and Recall after Propagation 

The reason why the recall rate goes up to 1 when the threshold is set as 0.4 is 

due to the additive used in Laplace smoothing, which is set to 3. This additive 

increases the probability for host pairs that occur at least 2 times to be treated as 

significantly connected. Consequently, a lower threshold allows for more host 

pairs to be considered as connected, resulting in a higher recall rate. 

As the recall rate and precision rate tend to go opposite directions, it is reasonable 

to assume that when the training data volume increases, better performance can 

be achieved. With more data, the model can better capture the underlying 

patterns and associations among hosts, leading to improved performance in 

terms of both precision and recall. 

Experiments also show that this method helps mitigate the time effects of the 

hyperparameter of the time window size. Connecting hosts by hops is more 

efficient compared to increasing the window size, as illustrated in Figure (8). This 

suggests that propagating connections by hops is an effective strategy for 

capturing associations between hosts over varying time windows, without 

significantly increasing computational complexity or noise in the data. 



 

 

 

Figure 8: Comparison of multi hops and bigger window  



 

 

4 Prediction Application 

To put the knowledge learned in section 3 into use, the section proposed an 

application design which coexists with cache mechanisms, operating within the 

current DNS service framework without requiring awareness of user applications. 

Importantly, it offers benefits to all types of network applications, which is a 

significant advantage compared to dns-prefetch, which primarily benefits web 

applications only. 

Deployments 

According to the DNS framework design in [1], the hierarchical system can be 

illustrated as Figure (7). 

 



 

 

 

Figure 7: DNS Hierarchical System 

In this system, stub resolvers are typically deployed in proximity to the user 

application, such as within the operating system’s network protocol stack, on the 

home router, or within the accessing layer device of the internet service provider 

(ISP). These stub resolvers commonly facilitate the DNS cache mechanism, as 

depicted in Figure (8). 

 

Figure 8: DNS Cache Mechanism in Stub Resolver 

Sequence diagram of these three participants illustrated as Figure (9). 



 

 

 

Figure 9: Sequence Diagram of DNS interactions 

The prediction application can stand alone or integrate into cache mechanism, 

illustrated in Figure (10) and Figure (12). 

 



 

 

Figure 10: Standalone Prediction Application 

The standalone prediction system sniffs DNS query messages on the NIC 

interface, a task feasible by enabling promiscuous mode, and predicts DNS 

records in parallel. This non-intrusive design does not necessitate any 

modifications to the user application, stub resolver, or DNS infrastructure. The 

sequence diagram depicting the interactions among these four participants is 

illustrated as Figure (11). In comparison to Figure (9), the interactions between 

the stub resolver and recursive resolver are altered, with the predicted query 

occurring earlier than previously. This modification results in a benefit to user 

applications, namely, a shorter response time, as the DNS record is readily 

available in the local cache. 

 

 

Figure 11: Sequence Diagram of Standalone Prediction 

Figure (12) illustrates an alternative approach to integrate prediction into the 

existing cache management process. In the event of a cache miss for one host, 

aside from filling up that particular host, other predicted hosts also need to be 

filled. Unlike the standalone method, this design necessitates changes in DNS 



 

 

stub resolver applications. However, the benefit lies in the ability to carry out all 

queries (in step 4) within a single UDP packet, which is more efficient. 

 

 

Figure 12: Integrated Prediction Application 

The integrated prediction generates less traffic between stub resolver and 

recursive resolver, as shown in Figure 13. 

 



 

 

Figure 13: Sequence Diagram of Integrated Prediction   



 

 

Improvement Estimation 

The accurate figure of the improvement varies between hardware and software 

implementations. Experiment environment data on a Dell Inspiron 5593 laptop 

running Firefox as the web browser to load the home page of www.youtube.com 

shows in Figure (3). 

 DNS 

Resolution 

(milli second) 

Loading 

(second) 

Queries Count 

Max 5 5.7 17 

Min 1 2.14 14 

Typical 3 2.2 14 

Figure 3: Experiment Environment Data 

In Figure (3), typical time cost to load the web page is 2.2 seconds, 14 DNS 

queries are triggered in this loading process, which means 42 milli seconds 

among them are DNS resolution time cost. DNS contributes 1.9% of the time cost 

to this web application. Note other network applications may have different 

portions of time cost, considering that web applications spend most of their time 

parsing and rendering documents. Using the methods in section 3.3, the 

improvement estimation illustrated in Figure (4). 

 Window=1000 

Hops=1 

Window=1000 

Hops=2 

Window=2000 

Hops=1 

Window=3000 

Hops=1 

Window=1000 

Hops=3 

DNS Reduce 15 ms 33 ms 21 ms 24 ms 33 ms 

Time Ratio 33% 73% 46% 53% 73% 

Cost 3 26 5 6 26 



 

 

Scale Ratio 120% 273% 133% 140% 273% 

Figure 4: Time Efficiency Improvement and Cost 

In Figure (4), “DNS Reduce” is the time saved by prediction, which is directly 

determined by the precision rate. The “cost” is the number of DNS record entries 

scale up, which is affected by the recall rate. The “Time ratio” is the result of the 

reduced time divided by the time cost without prediction. The “Scale Ration” is 

the records number (including prediction) divided by the records number without 

prediction. To explain the calculation, take the first parameter set as an example, 

where window size is 1000 milliseconds and hops is one. The number of DNS 

queries involved is 15, the prediction has 5 correct and 3 wrong, the reduced time 

ration is 5/15, and the DNS cached record is scaled up from 15 to 18, with scale 

ratio 18/15. 

To summarize, the learning methods and prediction applications proposed by this 

thesis trade more (2-3 times) memory, for less (30%-70%) DNS resolution time 

cost. 
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