

Lu Dai

DNS Query Prediction

Metropolia University of Applied Sciences

Master of Engineering

Information Technology

Master’s Thesis

16 March 2024

PREFACE

This thesis focuses more on the engineering approach to benefit network applications
by predicting the DNS query event, rather than an academic study.

The idea to predict DNS query event was triggered several years ago when I noticed
a new HTML syntax named dns-prefetch was introduced. I thought it was network
efficiency-wise after a quick experiment. But the limitations were obvious if I can say
so unfairly. First, it’s for web browsers dedicatedly, of course, other network
applications can borrow this design also. Secondly, it requires developers to specify
the domain names in the source code.

I was thinking that: is it possible to automatically learn which host the application will
connect to, purely from network traffic without the involvement of the user application.
It provides a better possibility to do something like “dns-prequery”, which can benefit
all types of network applications without their awareness. This question means
different things in different time scales. In days and weeks, it’s about user profiling. But
I was more focused on smaller time scales like seconds or milliseconds, that’s where
we can accelerate DNS service. After reading several network traffic streams, my
intuition told me it seems possible, at least I can easily recover the user’s browsing
history in my brain based on the packets, which means a pattern exists. But the traffic
is extremely noisy, a situation where the human brain can easily defeat the computer.
So, my conclusion was: possible but challenging.

At that moment, I was working as an embedded software engineer to develop a
network router, it was a pity that I didn’t have the chance to explore even a PoC on that
product. So, I chose it as my thesis topic to satisfy my curiosity. While doing the thesis,
I encountered a lot of difficulties in learning knowledge from the extremely noisy raw
DNS traffic data, which is a one-dimensional observation to a high-dimension model.
But anyway, it’s more focused on a feasible engineering solution, rather than academic
research.

Espoo, March 2024
Lu Dai

Abstract

Author: Lu Dai

Title: DNS Query Prediction

Number of Pages: 34 pages

Date: 16 March 2024

Degree: Master of Engineering

Degree Programme: Information Technology

Professional Major: Networking and Services

Supervisors: Peter Hjort, Lecturer

DNS query event as the prerequisite of network connection, introduces extra time

latency to complex network application which involves a group of network activities.

The latency cannot be optimized in the pipeline of network interactions in current

DNS framework. This thesis proposed a prediction solution and corresponding

learning method to reduce the overall latency. By estimating conditional probability,

which is a widely used metric in natural language processing to solve the “word

association” problem, which is similar to this problem, this thesis proposed a learning

method to learn query associations from DNS traffic. This thesis also proposed a

standalone prediction solution and an integrated prediction solution to cooperate with

current DNS cache mechanism, to accelerate DNS service by predicting.

Keywords: DNS, discrete time series, statistics

The originality of this thesis has been checked using Turnitin Originality Check

service.

Contents

List of Abbreviations

1 Introduction ... 5

1.1 Related Works... 8

1.2 Structure .. 8

2 Query Pattern and Model ... 9

2.1 Query and Observation ... 10

2.2 Queries and Sequence ... 12

2.3 Query Dependency ... 14

2.4 Cache Effect .. 16

2.5 Query Multiplex ... 17

2.6 Query Variants .. 18

2.7 Tree, Graph and Association .. 19

3 Learning Process ... 21

3.1 Pre-Process .. 22

3.2 Estimate Probability .. 22

3.3 Propagate Connection .. 27

4 Prediction Application ... 30

4.1 Deployments ... 31

4.2 Improvement Estimation ... 36

List of Abbreviations

DNS Domain Name System

IP Internet Protocol

CDN Content Delivery Network

HTML Hyper-Text Markup Language

CSS Cascading Style Sheets

NIC Network Interface Card

ISP Internet Service Provider

1 Introduction

The Domain Name System (DNS), as a fundamental component of the internet

infrastructure, alleviates the need for users to memorize lengthy Internet Protocol

(IP) addresses. It achieves this by mapping human-readable host domain names

to computer-readable IP addresses, playing a crucial role as internet applications

grow increasingly complex. Since its inception by Mockapetris [1], DNS has

undergone various enhancements, such as DNSSec [2] for improved security,

DNS-over-TCP [3] for enhanced transaction efficiency, DNS-over-HTTPS [4] to

leverage web browser capabilities, and DNS-over-TLS [5] for the utilization of

lightweight cryptographic infrastructure.

Despite the cache mechanism outlined in [1], the deployment of DNS services on

the internet exhibits diverse configurations. Contemporary network applications

extensively employ Content Delivery Networks (CDNs) [6] and load balancing [7],

dynamically offering host domain name resolution services based on geographic

location and server cluster load. In all forms of DNS and its variants, the

fundamental interaction involves a query and a response, where the query seeks

the IP address of a host, and the response provides that information. Notably,

each query is handled independently, without consideration for prior queries or

knowledge of correlations between hosts within the DNS schema.

Empirically, correlations between hosts are pervasive on the internet. It requires

no specialized knowledge for an ordinary person to suspect a connection

between www.youtube.com and accounts.youtube.com. Research [11]

demonstrates that hyperlinks in hypertext applications, including web

applications, unveil relationships between documents. As these documents

exhibit correlation, the hosts providing them also share correlation from the

resource-accessing perspective. Section 2 elaborates on why and how these

correlations exist, using web applications as an example, but this pattern applies

to any type of network application. Armed with the knowledge that host domain

names, such as accounts.youtube.com and www.youtube.com, are correlated,

the question arises: can we expedite the loading of the YouTube homepage? By

predicting the query for accounts.youtube.com when handling the query for

www.youtueb.com, after we see that accounts.youtube.com always come after

www.youtueb.com in the traffic. Figure 1 shows the concept of learning and

usage of the prediction.

Figure 1: Learning and Prediction Usage

In all DNS use cases, the time cost of a DNS transaction to resolve a host domain

name to its corresponding IP address is considered an overhead in accessing a

host. Whenever a user connects to a host with a given domain name, DNS is

invoked as a prerequisite, incurring a typical cost of three to five milliseconds.

The overhead accumulates when an internet application requires resources from

multiple hosts, resulting in increased DNS time costs for more host connections.

This accumulation becomes inevitable as modern internet applications distribute

resources and logic processes across multiple servers. For instance, a web

service may store its Hyper-Text Markup Language (HTML) document,

JavaScript document, images, and authentication processes on different hosts.

Compounding the issue is the sequential resolution of these prerequisites, where

a user must resolve the host to obtain the HTML document before parsing it and

determining where to retrieve the referenced JavaScript document. As internet

applications grow in complexity and necessitate more hosts, the DNS time cost

becomes a prominent challenge.

Efforts have been made to reduce the time cost of DNS. [1] proposed a cache

mechanism to avoid redundant queries for the same host, while [8] introduced a

pre-fetch mechanism in web browsers enabling users to query in advance. This

research explores a novel approach by treating a hostname as a member within

an association, rather than a standalone variable. Assuming hosts, such as

www.youtube.com and accounts.youtube.com, belong to the same association,

the DNS query overhead for the latter can be reduced or eliminated by predicting

it based on the occurrence of the former. This research introduces a probabilistic

approach to decrease overall time costs by predicting the next DNS query event

on a micro time scale, leveraging knowledge of correlations derived from DNS

raw traffic through conditional probability estimation.

1.1 Related Works

The problem this thesis aims to solve is like the word association [16] [17] in

natural language processing (NLP) field. “In natural language, words are not

combined randomly into phrases and sentences, constrained only by the rules of

syntax.” [16]. Compare DNS traffic stream to text document, and DNS query to

word, cooccurring of queries to cooccurring of words, techniques used in NLP

can also be used to solve this problem. Some adaptations are required to meet

the DNS traffic stream as a discrete time series. The core metric to evaluate the

association of two “words” used in the thesis is conditional probability, refers to

[16] section “Conditioning on fixed marginal frequencies”. In [16], author used one

word as a condition, estimate the probability of another word, as variable,

occurred in the same row. In this thesis, we used one query as a condition, to

estimate another query occurred in a narrow temporal window.

1.2 Structure

Section 2 outlines common features in web applications affecting DNS query

behaviour, a pattern applicable to other network applications, and constructs a

probabilistic model for DNS query sequences, accompanied by relevant

experimental results. Section 3 details the methodology for preprocessing and

processing DNS raw traffic to learn and feature host association knowledge.

Section 4 presents the system design for predicting DNS queries, to put the

knowledge into use to reduce the overall time cost of DNS service.

All data and source code are available on the website

www.github.com/exlud/pcap-dns-statistic.

2 Query Pattern and Model

This chapter delineates the DNS query behavioural pattern from the perspective

of user applications. Despite the autonomous handling of DNS queries, there

exists a cohesive and consistent grouping of host domains associated with each

user application. This signifies that these queries exhibit a spatial-temporal

adjacency relationship. Given foreknowledge of the user application, it becomes

possible to anticipate a specific group of queries within a narrow temporal window

in the DNS traffic stream. The spatial-temporal adjacency pattern thus presents

an opportunity to cluster host domains and predict DNS query events.

In this section, a probabilistic model is formulated to depict the interdependence

of queries. This is achieved through a form of conditional probability, where one

query serves as the dependent variable, and another as the independent

variable. The estimation of conditional probability, serving as a parameter of the

model, is derived from the learning process applied to raw DNS traffic data. This

estimation, in turn, functions as a metric of distance for clustering. The model

incorporates certain empirically based assumptions to generalize across diverse

user applications and to streamline the complexity inherent in the model.

Subsequent sections of this thesis employ the term "query" as a shorthand

reference to "DNS query," "observation" for "DNS query event observation," and

"host" in reference to "host domain name."

2.1 Query and Observation

A query event is typically initiated by the user application to resolve a given host

to the corresponding IP address before establishing a transport layer connection

to access the required resource, which may be a document or a service. The

associated observation manifests as a DNS message within the network traffic,

querying for that specific host.

Consider the example of the www.youtube.com webpage. To retrieve the

annotated HTML document resource (R), a prerequisite query event (Q) is

necessary before initiating a Transmission Control Protocol (TCP) connection to

the web server. The term "resource" encompasses not only HTML documents

but also services such as database routines, authentication routines, images, ad

tracking service, etc. R sufficiently causes Q as the effect from the perspective of

causality as shown in formula (1).

Asymmetrical mapping between R and Q is prevalent, where R uniquely maps to

one Q, but a single Q may map to multiple R. An illustration of this can be found

in formula (2) and (3) when various resources necessitate the same initial query.

Complicating matters, especially in web applications, is the fact that static

resources, like JavaScript documents, can be locally cached in web browsers.

Consequently, R may not always cause the corresponding Q. This causality

relationship with probability is annotated as formula (4).

In numerous instances, the occurrence of the Q event results in an observation

(q) in the form of a DNS message within network traffic. However, this is not

always the case due to the DNS record cache mechanism. The processing of the

query event occurs sequentially, involving the user application, operating system

(OS), stub resolver, recursive resolver, and root resolver. Nearly all endpoints in

this chain have the capability to cache DNS records. Depending on the observer's

location, the DNS message as an observation may not always be present. For

example, when observing on the Network Interface Card (NIC) of a computer and

the OS has a valid and cached IP address for a specific host name, the DNS

message becomes unnecessary unless insisted upon by the user application.

The causality relationship between R, Q, and q is annotated as formula (5).

2.2 Queries and Sequence

A network service may utilize a group of hosts to distribute subroutines, implying

that a network activity may invoke multiple queries within a narrow temporal

window. The sequence of DNS queries, serving as a profile of the network

activity, carries contextual significance.

In modern network applications, it is common to organize a cluster of hosts to

serve a single user service. For instance, a website might utilize a group of hosts

to deliver various types of resources such as HTML, JavaScript, CSS, images,

and videos required for a single web page. Similarly, an IoT application might

distribute different services like authentication, diagnostics, command & control,

and firmware upgrades across a group of hosts.

Given a user activity (C) and the corresponding group set (Sc), the posterior

probability of those hosts in the group should sum to one, and the conditional

probability for any two of them should also sum to one, as annotated in formulas

(6) and (7).

Empirically, every network service typically possesses at least one distinctive

element within its corresponding host group. This emphasizes the constraint of

the spatial-temporal space concerning where and when the observer collects the

data. By utilizing this unique element as a condition, other elements within the

same group can be identified through significant conditional probability

estimation, as illustrated in formula (8).

The DNS query sequence, functioning as the temporal dimension observation,

inherits the aforementioned characteristic, revealing repetitive patterns where two

events occur within a narrow temporal window in a single DNS traffic stream, as

depicted in formula (9), where tau (τ) serves as a hyperparameter defining the

window size. Generally, a larger window size tends to increase the noise level,

while a smaller window size enhances the occurrence of positive false instances

in the learning process. Further detailed discussion on this matter is provided in

section 3.3.

Two types of annotations are utilized in this thesis to represent a discrete time

sequence, as illustrated in Figure (2). The latter annotation method provides a

more vivid depiction of the time intervals.

Figure 2: Annotations of Sequence

This thesis operates under the assumption that user activities are independent of

each other. However, it is important to note that this assumption is not entirely

accurate, given the complex nature of higher-level user behaviours. Nonetheless,

making this assumption aids in simplifying the probability description when

multiple user activities intertwine within a single sequence. Without prior

knowledge of whether an element is unique or not, the conditional probability is

described as Formula (10).

Certainly, when the condition uniquely corresponds to only one user activity, it

becomes feasible to cluster hosts into groups through posterior probability

estimation.

2.3 Query Dependency

In web applications, documents utilize references, links, or citations to establish

connections with other documents, and this pattern extends to other types of

network applications as well. When a user application interacts with a host, the

information provided by the host can be regarded as a resource, which is a

general form of a document. Resources can vary widely, including HTML/CSS/JS

documents, images, videos, database services, authentication services, ad-

tracking services, and so on. These resources often exhibit dependency

relationships, where one resource requires another, as demonstrated in formulas

(11) and (12).

By cascading the dependency relationships, a resource dependency tree (RDT),

as illustrated in Figure (3), can be utilized to describe the user activity (C).

Figure 3: RDT (www.youtube.com)

Taking into account the fact that accessing a resource necessitates a DNS query

event, as discussed in section 2.1, when given the user activity where the

resource can uniquely map to one query event, a query dependency tree (QDT)

can be constructed, as illustrated in Figure (4).

Figure 4: QDT (www.youtueb.com)

In the above example, suppose the given user activity is to load the home page

of the website www.youtube.com. The root node Q(www.youtube.com) depends

on a group of other queries. This dependency relationship can be represented

through conditional probability, where these queries are adjacent to each other in

a micro timescale, and the dependent query must occur prior in time to the

dependency.

Generally speaking, queries contained within one QDT are more likely to be

observed as neighbours in a narrow temporal window. However, in reality, the

http://www.youtube.com/
http://www.youtube.com/

sequence can be influenced by several other mechanisms, including cache

effects, query multiplexing, and query variants.

2.4 Cache Effect

Apart from the widely implemented document caching mechanism in web

browsers, which caches documents and eliminates DNS queries, the DNS cache

mechanism affects query behaviour in a broader scope for all network

applications.

Storing frequently used JavaScript or CSS documents locally in the browser is a

reasonable and efficient choice. In such cases, the process to load the home

page of www.youtube.com may not trigger the subroutine to access

fonts.googleapis.com because the document is already available locally. This

implies that in one experiment, part of the QDT, which is determined by the RDT,

may not be observable.

Most operating systems and DNS stub resolvers may enable the feature to cache

DNS records, leading to a possibility where a query (Q) may not trigger the

corresponding observation (q), as the query event might be intercepted by the

operating system or stub resolver in the middle.

The unified representation of cache effects introduces an additional parameter to

the probability of query events, as shown in formulas (13) and (14). In this

manner, the RDT and QDT are treated as persistent and repetitive, with

observations (q) being influenced by a random sequence in the meantime. The

value of the random sequence can be either one or zero, as defined in formulas

(15) and (16).

The free parameter p represents a pseudo-sequence where its value is close to

one at the first occurrence of a user activity, and close to zero afterward. The

cache effect introduces a scalar to the probability estimation but does not alter its

characteristics. In other words, it does not change the correlation between hosts,

as demonstrated in formula (17).

.

2.5 Query Multiplex

A host can serve multiple services and can be accessed in various ways. For

instance, a host storing images for one website might also store videos for

another website simultaneously. Similarly, a host providing HTTP service can

also serve as an ICMP destination at the same time. This multiplexing of hosts

makes the dependency relationship volatile, particularly distinguished in different

user activity contexts.

Examples of host multiplexing are abundant in the real world. Consider three

different scenarios: 1) marking www.youtube.com as a favourite in the web

browser and then opening the web browser; 2) pinging www.youtube.com in the

command line to test network connectivity; 3) visiting the webpage of

www.youtube.com. Only in the third scenario does the dependency relationship

exist.

To mitigate the effect of multiplexing on observations, one feasible approach is

to cluster sequences based on their features in a medium timescale, as

demonstrated in previous research [14]. In this thesis, sequence clustering was

performed manually. Through this method, training data are selected to have the

same user activity, as illustrated in Figure (5).

Figure 5: Mitigate Multiplexing

2.6 Query Variants

The widely used CDNs and load balancing mechanisms introduce variations in

queries at runtime. It is common for a network service to have backend logic, as

illustrated in List (1) and (2).

def dynamic_cdn_server

 if client from Asia:

 host = img-asia.foo.bar

 else if client from Europe:

 host = img-eu.foo.bar

 else:

 host = img.foo.bar

 return host

end

List 1: Example of CDN Backend Logic

def dynamic_load_balance

 host = round-robin(db1.foo.bar, db2.foo.bar, db3.foo.bar)

 return host

end

List 2: Example of Load Balancer Backend Logic

The variation caused by CDNs is relatively easier to address in practice,

especially if the learning materials are generated within the same Autonomous

System (AS) or geographic location, which is often achievable. In this thesis, DNS

traffic was collected in a single geographic location, which helps mitigate CDN-

induced variations.

On the other hand, load balancing introduces greater complexity to the

dependency relationship. Resources can be dynamically fetched from any one of

a group of hosts, as depicted in formula (18), leading to potential changes in

observations over time. Unfortunately, this thesis cannot fully resolve this issue,

and the variants may be treated as noise in the learning process. However, given

the prediction usage targeted by the thesis, this limitation is acceptable due to

the inherently unpredictable nature of load balancing mechanisms.

Tree, Graph and Association

Given a Query Dependency Tree (QDT), an association can be derived to depict

the connection of hosts. For example, consider the association

A(www.youtube.com) obtained from the tree T(www.youtube.com), which

includes elements such as www.youtube.com, font.googleapis.com,

font.gstatic.com, youtube.com, accounts.youtube.com, yt3.ggpht.com, jnn-

pa.googleapis.com, and static.doubleclick.net.

This association can be leveraged to predict DNS query events. When receiving

a query q(www.youtube.com), confidence is increased to expect other elements

in A(www.youtube.com), such as q(accounts.youtube.com), depending on the

application.

To learn the association from DNS traffic, this thesis utilizes an undirected graph

method weighted by probability. The vertices (V) of the graph are defined as

hosts, and the edges (E) are determined by the conditional probability of two

vertices being connected, which is higher than a given threshold, as described in

formulas (19) and (20).

Given an example of conditional probability estimation in Table (1), the learned

vertices and edges can be derived using formulas (21) and (22). This results in

the learned vertices and edges that form the undirected graph representing the

association among hosts based on the conditional probabilities observed in the

DNS traffic.

Var.

Con.
h1 h2 h3

h1 N/A 0.9 0.1

h2 0.6 N/A 0.3

h3 0.2 0.2 N/A

Table 1: Example of Conditional Probability Estimation

Using the described method with a conditional probability threshold and distance,

an association for a given host can be obtained from DNS traffic by estimating

the probability. This association consists of hosts that can be connected to within

the specified number of hops.

For example, consider a conditional probability threshold of 0.5 and a maximum

distance of 2 hops from the given host h1. We can iterate through the graph and

identify all hosts that can be connected to h1 with a probability greater than the

threshold within given hops. The resulting set of hosts forms the association for

h1.

Using this approach, the association for each host can be determined based on

the observed conditional probabilities and the specified parameters of threshold

and hops. This enables the learning process in section 3.

3 Learning Process

This section describes the learning process, which includes data pre-processing,

conditional probability estimation, and propagation, all aimed at learning host

associations. Experiments results are alongside.

3.1 Pre-Process

Raw data consists of DNS traffic captured using tcpdump on a laptop within the

same autonomous system (AS) over several days, stored in Wireshark pcap file

format.

One of the challenges in the learning process is memory efficiency. With

potentially billions of DNS records, building a conditional probability structure at

this scale would be impractical. To address this issue, pre-processing involves

aggregating traffic flows that share the same user activity. While unsupervised

clustering methods, such as those used in [10], can solve this problem by learning

DNS sequence features in a medium time scale, this thesis chooses to manually

select training data to focus on a limited number of user activities. Both training

and test data are manually labelled for performance evaluation, although not for

supervised learning. Data and labels are available alongside the source code.

3.2 Estimate Probability

This step aims to discover the correlation between two hosts. Estimating the

probability for one variable with multiple conditions requires a larger training data

volume and higher sample rate, which can be less robust in practice when the

sample is sparse. This thesis uses only one condition, along with a method

described in section 3.4 to find connected components in a graph to compensate

for potential side effects.

Given a host as a condition, the conditional probability estimation for a host

variable is defined in formula (23), where |H| is the space for all DNS records in

the learning material, N(hi) is the occurrence of hi in the sequence, and N(hi, hj)

is the joint occurrence of hi and hj within a given time distance, which is a

hyperparameter.

To enhance robustness when the sample volume is small or when a host has a

small occurrence count, Laplace smoothing is applied to prevent unfair

advantages for host pairs that occur together but with a small count, as defined

in formula (24).

Indeed, the additive used in Laplace smoothing imposes a higher penalty on

hosts with fewer occurrences, thereby mitigating the influence of sparse data.

However, as the occurrence of hosts increases, the effect of the additive

diminishes.

Host pairs (hi, hj) are considered connected when their conditional probability

exceeds a certain threshold (t). Thus, given a host (h) and a threshold (t), a group

of hosts can be learned from the DNS traffic by satisfying the condition outlined

in formula (25), suggesting potential connections among these hosts. This

threshold-based approach allows for the identification of host associations based

on their observed conditional probabilities, facilitating the extraction of meaningful

relationships from DNS traffic data.

Table (2) shows the experiments result on a given user activity (loading

www.youtube.com web page) with different threshold.

learned(www.youtueb.com, 0.8)

target learned

i.ytimg.com

fonts.googleapis.com

fonts.gstatic.com

googleads.g.doubleclick.net

static.doubleclick.net

jnn-pa.googleapis.com jnn-pa.googleapis.com

accounts.youtube.com

www.gstatic.com

www.google.fi

play.google.com

yt3.ggpht.com

load balanced

rr2---sn-q4flrnes.googlevideo.com

lh5.googleusercontent.com

rr1---sn-qo5-ixas.googlevideo.com

 rr4---sn-5hne6nzd.googlevideo.com

 rr2---sn-qo5-ixas.googlevideo.com

learned(www.youtueb.com, 0.7)

target learned

i.ytimg.com i.ytimg.com

fonts.googleapis.com

fonts.gstatic.com

googleads.g.doubleclick.net

static.doubleclick.net

jnn-pa.googleapis.com jnn-pa.googleapis.com

accounts.youtube.com

www.gstatic.com www.gstatic.com

www.google.fi

play.google.com

yt3.ggpht.com yt3.ggpht.com

load balanced

rr2---sn-q4flrnes.googlevideo.com

lh5.googleusercontent.com

rr1---sn-qo5-ixas.googlevideo.com

 rr4---sn-5hne6nzd.googlevideo.com

http://www.youtube.com/

 rr2---sn-qo5-ixas.googlevideo.com

learned(www.youtueb.com, 0.6)

target learned

i.ytimg.com i.ytimg.com

fonts.googleapis.com

fonts.gstatic.com

googleads.g.doubleclick.net

static.doubleclick.net

jnn-pa.googleapis.com jnn-pa.googleapis.com

accounts.youtube.com

www.gstatic.com www.gstatic.com

www.google.fi

play.google.com

yt3.ggpht.com yt3.ggpht.com

load balanced

rr2---sn-q4flrnes.googlevideo.com

lh5.googleusercontent.com

rr1---sn-qo5-ixas.googlevideo.com

 rr4---sn-5hne6nzd.googlevideo.com

 rr2---sn-qo5-ixas.googlevideo.com

learned(www.youtueb.com, 0.5)

target learned

i.ytimg.com i.ytimg.com

fonts.googleapis.com

fonts.gstatic.com

googleads.g.doubleclick.net

static.doubleclick.net

jnn-pa.googleapis.com jnn-pa.googleapis.com

accounts.youtube.com

www.gstatic.com www.gstatic.com

www.google.fi

play.google.com

yt3.ggpht.com yt3.ggpht.com

 ocsp.pki.goog

 r3.o.lencr.org

load balanced

rr2---sn-q4flrnes.googlevideo.com

lh5.googleusercontent.com

rr1---sn-qo5-ixas.googlevideo.com

 rr4---sn-5hne6nzd.googlevideo.com

 rr2---sn-qo5-ixas.googlevideo.com

learned(www.youtueb.com, 0.4)

target learned

i.ytimg.com i.ytimg.com

fonts.googleapis.com

fonts.gstatic.com

googleads.g.doubleclick.net googleads.g.doubleclick.net

static.doubleclick.net

jnn-pa.googleapis.com jnn-pa.googleapis.com

accounts.youtube.com

www.gstatic.com www.gstatic.com

www.google.fi

play.google.com

yt3.ggpht.com yt3.ggpht.com

 ocsp.pki.goog

 r3.o.lencr.org

 sync-1-us-west1-g.sync.services.mozilla.com

 detectportal.firefox.com

load balanced

rr2---sn-q4flrnes.googlevideo.com

lh5.googleusercontent.com

rr1---sn-qo5-ixas.googlevideo.com

 rr4---sn-5hne6nzd.googlevideo.com

 rr2---sn-qo5-ixas.googlevideo.com

Table 2: Probability Connection

The precision rate and recall rate, as defined in equations (26) and (27)

respectively, are commonly used metrics to evaluate the performance of learning

processes based on probability estimation. Precision rate quantifies the accuracy

of positive predictions made by the learning process, recall rate quantifies the

completeness of positive predictions made by the learning process.

Figure (6) illustrates the performance of learning the user activity

C(www.youtube.com) at different threshold parameters.

Figure 6: Precision and Recall Depends on Threshold

The result shows that higher threshold increases recall rate but decreases

precision rate in the meantime. Recall rate did not increase after the threshold

goes down to 0.7.

The results indicate a high precision rate but a low recall rate. As the threshold

decreases, allowing for more connections to be considered, the recall rate

improves but at the cost of an increased false positive rate. Notably, when the

threshold is lowered to 0.6, the false positive rate rises significantly. This suggests

that while lowering the threshold improves recall, it also leads to a higher

likelihood of falsely identifying connections among hosts that may not actually be

related to the user activity. Therefore, a trade-off between precision and recall

needs to be carefully considered when selecting the threshold for host

association learning.

3.3 Propagate Connection

Propagate the connection is very similar to search for a sub-connected

component in the graph, starting from one vertex, where all other vertices in the

component are reachable within a given number of hops (edges). For example,

if {a, b} are connected pair, and {b, c} are also connected pair, then {a, c} can be

treated as connected within two hops, even if {a, c} do not meet the requirement

of probability significance directly.

One reason for performing this operation is to mitigate the side effects of the

hyperparameter time window. The time window for one user activity varies

depending on network quality, server performance, and application complexity. A

larger time window introduces more noise, increasing false positives, while a

smaller time window increases precision but reduces recall. Since precision rate

is preferred over recall rate, the time window is relatively small in section 3.2. To

compensate for this, this section aims to increase the recall rate by propagating

connections.

Another reason, as discussed in sections 2.1 and 2.5, is that some hosts may

uniquely belong to one user activity or belong to a limited set of user activities,

resulting in more significant conditional probabilities with other hosts in the same

user activity. Propagating connections allows for the utilization of this

characteristic.

Experiments comparing methods in section 3.3 and section 3.2 suggest that

propagation helps to increase the precision rate at the cost of decreased recall

rate. This trade-off should be carefully considered when selecting the appropriate

method for learning host associations based on conditional probability estimation.

Figure 7: Precision and Recall after Propagation

The reason why the recall rate goes up to 1 when the threshold is set as 0.4 is

due to the additive used in Laplace smoothing, which is set to 3. This additive

increases the probability for host pairs that occur at least 2 times to be treated as

significantly connected. Consequently, a lower threshold allows for more host

pairs to be considered as connected, resulting in a higher recall rate.

As the recall rate and precision rate tend to go opposite directions, it is reasonable

to assume that when the training data volume increases, better performance can

be achieved. With more data, the model can better capture the underlying

patterns and associations among hosts, leading to improved performance in

terms of both precision and recall.

Experiments also show that this method helps mitigate the time effects of the

hyperparameter of the time window size. Connecting hosts by hops is more

efficient compared to increasing the window size, as illustrated in Figure (8). This

suggests that propagating connections by hops is an effective strategy for

capturing associations between hosts over varying time windows, without

significantly increasing computational complexity or noise in the data.

Figure 8: Comparison of multi hops and bigger window

4 Prediction Application

To put the knowledge learned in section 3 into use, the section proposed an

application design which coexists with cache mechanisms, operating within the

current DNS service framework without requiring awareness of user applications.

Importantly, it offers benefits to all types of network applications, which is a

significant advantage compared to dns-prefetch, which primarily benefits web

applications only.

Deployments

According to the DNS framework design in [1], the hierarchical system can be

illustrated as Figure (7).

Figure 7: DNS Hierarchical System

In this system, stub resolvers are typically deployed in proximity to the user

application, such as within the operating system’s network protocol stack, on the

home router, or within the accessing layer device of the internet service provider

(ISP). These stub resolvers commonly facilitate the DNS cache mechanism, as

depicted in Figure (8).

Figure 8: DNS Cache Mechanism in Stub Resolver

Sequence diagram of these three participants illustrated as Figure (9).

Figure 9: Sequence Diagram of DNS interactions

The prediction application can stand alone or integrate into cache mechanism,

illustrated in Figure (10) and Figure (12).

Figure 10: Standalone Prediction Application

The standalone prediction system sniffs DNS query messages on the NIC

interface, a task feasible by enabling promiscuous mode, and predicts DNS

records in parallel. This non-intrusive design does not necessitate any

modifications to the user application, stub resolver, or DNS infrastructure. The

sequence diagram depicting the interactions among these four participants is

illustrated as Figure (11). In comparison to Figure (9), the interactions between

the stub resolver and recursive resolver are altered, with the predicted query

occurring earlier than previously. This modification results in a benefit to user

applications, namely, a shorter response time, as the DNS record is readily

available in the local cache.

Figure 11: Sequence Diagram of Standalone Prediction

Figure (12) illustrates an alternative approach to integrate prediction into the

existing cache management process. In the event of a cache miss for one host,

aside from filling up that particular host, other predicted hosts also need to be

filled. Unlike the standalone method, this design necessitates changes in DNS

stub resolver applications. However, the benefit lies in the ability to carry out all

queries (in step 4) within a single UDP packet, which is more efficient.

Figure 12: Integrated Prediction Application

The integrated prediction generates less traffic between stub resolver and

recursive resolver, as shown in Figure 13.

Figure 13: Sequence Diagram of Integrated Prediction

Improvement Estimation

The accurate figure of the improvement varies between hardware and software

implementations. Experiment environment data on a Dell Inspiron 5593 laptop

running Firefox as the web browser to load the home page of www.youtube.com

shows in Figure (3).

 DNS

Resolution

(milli second)

Loading

(second)

Queries Count

Max 5 5.7 17

Min 1 2.14 14

Typical 3 2.2 14

Figure 3: Experiment Environment Data

In Figure (3), typical time cost to load the web page is 2.2 seconds, 14 DNS

queries are triggered in this loading process, which means 42 milli seconds

among them are DNS resolution time cost. DNS contributes 1.9% of the time cost

to this web application. Note other network applications may have different

portions of time cost, considering that web applications spend most of their time

parsing and rendering documents. Using the methods in section 3.3, the

improvement estimation illustrated in Figure (4).

 Window=1000

Hops=1

Window=1000

Hops=2

Window=2000

Hops=1

Window=3000

Hops=1

Window=1000

Hops=3

DNS Reduce 15 ms 33 ms 21 ms 24 ms 33 ms

Time Ratio 33% 73% 46% 53% 73%

Cost 3 26 5 6 26

Scale Ratio 120% 273% 133% 140% 273%

Figure 4: Time Efficiency Improvement and Cost

In Figure (4), “DNS Reduce” is the time saved by prediction, which is directly

determined by the precision rate. The “cost” is the number of DNS record entries

scale up, which is affected by the recall rate. The “Time ratio” is the result of the

reduced time divided by the time cost without prediction. The “Scale Ration” is

the records number (including prediction) divided by the records number without

prediction. To explain the calculation, take the first parameter set as an example,

where window size is 1000 milliseconds and hops is one. The number of DNS

queries involved is 15, the prediction has 5 correct and 3 wrong, the reduced time

ration is 5/15, and the DNS cached record is scaled up from 15 to 18, with scale

ratio 18/15.

To summarize, the learning methods and prediction applications proposed by this

thesis trade more (2-3 times) memory, for less (30%-70%) DNS resolution time

cost.

Reference:

1 Mockapetris P. RFC1034: Domain names-concepts and facilities.

2 Hoffman P. RFC 9364: DNS Security Extensions (DNSSEC).

3 Dickinson J, Dickinson S, Bellis R, Mankin A, Wessels D. RFC 7766: DNS transport

over TCP-implementation requirements.

4 Hoffman P, McManus P. RFC 8484: DNS queries over https (DOH).

5 Hu Z, Zhu L, Heidemann J, Mankin A, Wessels D, Hoffman P. RFC 7858: Specification

for DNS over transport layer security (TLS).

6 Dilley J, Maggs B, Parikh J, Prokop H, Sitaraman R, Weihl B. Globally distributed

content delivery. IEEE Internet Computing. 2002.

7 Hong YS, No JH, Kim SY. DNS-based load balancing in distributed Web-server

systems. The Fourth IEEE Workshop on Software Technologies for Future Embedded

and Ubiquitous Systems, and the Second International Workshop on Collaborative

Computing, Integration, and Assurance (SEUS-WCCIA'06). 2006.

8 Peter L. DNS Prefetch. US20100146415A (Patent). 2010.

9 Mozilla Corp. Using DNS-Prefetch. Available from: https://developer.mozilla.org/en-

US/docs/Web/Performance/dns-prefetch. 2023.

10 Cardellini V, Colajanni M, Yu PS. Request redirection algorithms for distributed web

systems. IEEE transactions on parallel and distributed systems. 2003.

11 Slattery S, Craven M. Combining statistical and relational methods for learning in

hypertext domains. International Conference on Inductive Logic Programming 1998

Jul 22 (pp. 38-52). Berlin, Heidelberg: Springer Berlin Heidelberg.

12 Batal I, Fradkin D, Harrison J, Moerchen F, Hauskrecht M. Mining recent temporal

patterns for event detection in multivariate time series data. The 18th ACM SIGKDD

international conference on Knowledge discovery and data mining. 2012.

13 Prakasa Rao B.L.S., Conditional independence, conditional mixing and conditional

association. Annals of the Institute of Statistical Mathematics. 2007.

14 Albers K, Bodmann F, Slomka F. Hierarchical event streams and event dependency

graphs: A new computational model for embedded real-time systems. 18th

Euromicro Conference on Real-Time Systems (ECRTS'06). 2006.

15 Minaei-Bidgoli B, Lajevardi SB. Correlation mining between time series stream and

event stream. Fourth International Conference on Networked Computing and

Advanced Information Management. 2008.

16 Evert S. The statistics of word cooccurrences: word pairs and collocations.
17 Chaudhari D, Damani OP, Laxman S. Lexical co-occurrence, statistical

significance, and word association. arXiv preprint arXiv:1008.5287. 2010 Aug

31.

https://developer.mozilla.org/en-US/docs/Web/Performance/dns-prefetch
https://developer.mozilla.org/en-US/docs/Web/Performance/dns-prefetch

	Abstract
	1 Introduction
	1.1 Related Works
	1.2 Structure

	2 Query Pattern and Model
	2.1 Query and Observation
	2.2 Queries and Sequence
	2.3 Query Dependency
	2.4 Cache Effect
	2.5 Query Multiplex
	2.6 Query Variants
	Tree, Graph and Association

	3 Learning Process
	3.1 Pre-Process
	3.2 Estimate Probability
	3.3 Propagate Connection

	4 Prediction Application
	Deployments
	Improvement Estimation

