Nikita Lillak

Designing an Automated Sorting System
in Simulation Environment

Bachelor’s Thesis
Bachelor of Engineering

Electrical and Automation Engineering

2024

Kaakkois-Suomen
ammattikorkeakoulu

Kaakkois-Suomen

ammattikorkeakoulu

Degree title Bachelor of Engineering

Author (authors) Nikita Lillak

Thesis title Designing an Automated Sorting System in Simulation Environ-
ment

Commissioned by South-Eastern Finland University of Applied Sciences, XAMK

Time 2024

Pages 82 pages, 28 pages of appendices

Supervisor Teemu Manninen

ABSTRACT

The main objective of this thesis work was to design and implement an Auto-
mated sorting system in virtual simulation environment Simumatik. The thesis
work addresses establishing communication between Simumatik’s virtual con-
trollers and third-party software, plc programming of a stacker crane, and UR
5 robots programming with the help of Ursim robot’s programming environ-

ment.

The result of this thesis work is an assembled and operating automated sort-
ing system in Simumatik’s virtual environment. Two programs were devel-
oped: a PLC program and an Ursim program. An electrical drawing of a sys-
tem was created. Simulation works successfully. The URS robot sorts cans on

a pallet, the stacker crane then stores the pallet into a storage slot.

Keywords: PLC, Robot Arm, Digital Twin, Stacker Crane, Simulation

South-Eastern Finland
University of Applied Sciences

Tutkintonimike
Tekija/Tekijat
Tydn nimi
Toimeksiantaja
Vuosi

Sivut
Tyon ohjaaja(t)

TIVISTELMA

Insindori (AMK)

Nikita Lillak

Automatisoidun lajittelujarjestelman suunnittelu virtuaaliseen si-
mulaatioymparistéon

Kaakkois-Suomen ammattikorkeakoulu

2024

82 sivua, liitteita 28 sivua

Teemu Manninen

Taman opinnaytetydn paatavoitteena oli suunnitella ja toteuttaa automatisoitu
lajittelujarjestelma virtuaalisessa simulaatioymparistéssa Simumatik. Opinnay-
tety® kasittelee Simumatikin virtuaalisten ohjainten ja kolmannen osapuolen
ohjelmiston valisen kommunikaation luomista, pinonosturin PLC-ohjelmointia
seka URS-robotin ohjelmointia Ursim-ohjelmointiympariston avulla.

Taman opinnaytetydn tuloksena on koottu ja toimiva automatisoitu lajittelujar-
jestelma Simumatikin virtuaaliymparistossa. Kaksi ohjelmaa on kehitetty: PLC-
ohjelma ja Ursim-ohjelma. Jarjestelman sahkodkuvia on luotu. Simulaatio toimii
onnistuneesti. UR5-robotti lajittelee tolkkeja lavalle, ja pinonosturi varastoi la-
van varastopaikan.

Asiasanat: PLC, Robot Arm, Digital Twin, Stacker Crane, Simulation

CONTENTS
L | 1 (0 10 1 L | PSR 6
2 SIMULATION IN VIRTUAL ENVIROMENTooiiiiiiiiiiie e 7
2.1 Digital twin and virtual cOmmISSIONINGccovivuiiiiiiie e 7
2.2 Advantages of Digital Twin and Simulation Environment in Education................... 7
2.3 Simumatik Gateway and Communication Drivers.............ccccueueiiiiiiiiiiiiiniee 8
2.4 PLC (Programmable Logic Controller)............ooo i 8
3 OVERVIEW OF THE SOFTWARE USED IN THE PROJECTccciiiieeiiiiiiee e 9
o1 SIMUMALIK ... 9
3.2 Codesys anNd UISIMeeiiiiiiiiiiii ittt e e e e e 9
4 SYSTEM DESIGN ...ttt ettt ettt et e s e ne e e e enne e e e e nes 10
5 IMPLEMENTATIONottt ettt et n e e e e e e nnneeas 11
5.1 Establishing Gateway Connections in Simumatik................ccccciiiiiiin . 11
5.1.1 Gateway connection between Codesys and SimumatiKc.cooeeieen, 11
5.1.2 Gateway connection between URsim and Simumatikcceeeeieeininnnnn, 18
5.2 System Configuration and Functionality Overview...............cccooevviiiiiiiiiciiee e, 20
5.2.1 Automated Storage and Retrieval System ..., 20
5.2.2 Can Sorting SYSEMuuuiiiiiiiiiiii e 24
5.3 Programming portion using PLC...........oooiiee e 26
ST Tt B 1@ |V = T o] [T PR 26
5.3.2 Plc code developmeENt..........coouiiiiiiiiiece e 29
5.4 Programming portion using URSIMc.oooiiiiiiiiii e 39
IR 3 B VL@ IR T (U o J TP 39
SRR O o Yo [S PSSR 41
B RESULT S .ottt ettt e e e e et te e e e e e e e bt et e e e e e anneeeeeaeeaannnneeaaaeanns 45

7 CONCLUSION. ...t e e e e e e e e e e e e e e e 50

7.1 Drawbacks of the Project ... 51
REFERENGCES ...ttt et te e e e e e e e e e e e e ae s e annanees 52
LIST OF FIGURES ... ettt ettt e et e e e e e aaaeaeeeas 53
APPENDICES

Appendix 1. Catalog of Components for the Automated Sorting System
Appendix 2. Wiring diagrams of the Automated Sorting System
Appendix 3. PLC Program for the Stacker Crane

Appendix 4. Program for Universal Robot 5

1 INTRODUCTION

Industrial automation field is quickly catching up with software development field in terms
of accessibility. In software development only a computer is required to practice program-
ming, while to practice PLC programming, access to a physical machine is a requirement.
With development of Digital twins and virtual commissioning environments, the industrial
automation field became more accessible. Digital twins can be programmed, and the result

can be simulated within a virtual environment.

I have intentionally designed this project to be executed solely on a personal computer.
Tools used in this project are freely available for noncommercial and education purposes.
This is great for students who want to delve into industrial automation field and decide if it

suits them.

The main objective of this thesis work is to design and implement an Automated sorting
system in virtual simulation environment Simumatik. The System will be divided into two
parts: an automated storage system designed to store pallets in the storage, and a Sorting
system responsible for positioning the items on top of the pallet. The Automated storage
system utilizes a stacker crane controlled by Simumatik’s virtual PLC controller, and the
sorting system’s main component UR5 robot is controlled by Simumatik’s implementation
of the UR’s virtual controller. A PLC code was written in Codesys integrated development

environment, while UR’s virtual controller is programmed with Ursim.

2 SIMULATION IN VIRTUAL ENVIROMENT
2.1 Digital twin and virtual commissioning

Building and changing an existing physical automation system is expensive and time con-
suming. Digital twin represents a computer-generated replica of a real physical system.
The visuals that determine how the component looks is created by 3d software, and the

components’ functionality is determined by a computer code.

It is much cheaper to build a system in virtual environment first. Digital twin allows to test
and commission the system before building it. Commissioning is an important step in en-
suring that automated systems are installed, tested, and operating according to the system

design requirements.

Virtual commissioning significantly reduces the time required in commissioning. PLC pro-

gram can be designed and tested before the actual system is physically built. [1.]

2.2 Advantages of Digital Twin and Simulation Environment in Education

The application of digital twin and simulation environment is not only used in professional
industry, but in education as well. Education institutions can now enhance students’ practi-
cal training by incorporating Digital Twin and Simulation Technology into their curriculum,
making education more accessible. Previously time consuming and financially demanding
technical training, can now be easily arranged through always available simulation soft-
ware. Students can build, test, and experiment with automation systems as much as they
want, without the significant financial burden and risk of component damage. Additionally,
simulation software eliminates the risk of damaging components, reduces the costs of

physical systems, and minimizes the maintenance of those systems. [2.]

2.3 Simumatik Gateway and Communication Drivers

Simumatik Gateway is used to connect third-party software from different vendors to Si-
mumatik, by adding communication driver to a virtual component. Communication driver is
essentially a software configuration with a variety of parameters, and it is responsible for
the information flow between virtual component and the gateway. Simumatik Gateway
combined with a communication driver, acts as a bridge between Simumatik platform and

3d party software.

In Figure 1. Communication scheme between virtual controllers and third- party software is
depicted. The input signals received by virtual components are sent to the third-party soft-
ware. After receiving these signals, the application developed within the third-party soft-

ware processes them and sends the output signals back to the virtual component. [3.]

update_input input variables
—_—p
—i
Codesys Runtime
Communication Drivers Simumatik
UR Sim
Gateway
3 e

update_output output variables

i o

- -

3d-party software
Virtual Components

Figure 1. Communication scheme between virtual controllers and third- party software

2.4 PLC (Programmable Logic Controller)

Programmable logic controller (PLC) is essential in industrial and automation processes. It
is a modern alternative to the older, physically wired relays-based control systems. PLC
significantly simplified the maintaining process by replacing relay-based systems. Instead
of manual rewire of the switchboard, switchboard logic can be implemented within a single
program. PLCs are utilized to control components of automation systems such as
switches, relays, buttons, actuators, and motors. These components typically fall into one
of two categories: input or output. For example, input devices include photoelectric sen-
sors or buttons, while output devices could range from actuators to relays. Such compo-
nents are then connected to a PLC by utilizing /0 modules. Because Industrial and auto-
mation systems frequently operate in harsh environment, PLCs are designed to withstand

harsh conditions, such as cold, humid, or dust. [4.]

3 OVERVIEW OF THE SOFTWARE USED IN THE PROJECT
3.1 Simumatik

The Simumatik platform is a crucial part of this project. It is simulation software, where var-
ious digital twins can be built by combining physical, electrical, pneumatic, or mechatronic
components. The projects are stored in the cloud and can be accessed from anywhere.
Simulation can also run on a cloud-based server or locally on the user’'s computer. Addi-
tionally, Simumatik is also platform independent. Simumatik’'s Gateway supports many
third-party software and hardware, acting as a bridge between the model and third-party
hardware or software. There are four key elements of the components. The visual is re-
sponsible for the component’s appearance. Physics defines physical features of a compo-
nent, such as its material, collision shape, and kinematic properties. Interface determines
the component’s connection points. Connection points are used for linking components to-
gether. Lastly, the behavior element is responsible for the component’s functionality.
These elements can be edited with a component editor, while the component’s functional-

ity can be edited with Python programming language. [5.]

Simumatik also has a great resource Simumatik Academy. It provides excellent tutorials
and courses about Simumatik’s features, components, programming as well as 3d party
software integration courses. It has been great help with navigating the platform features

and integrating 3d party software into the Simumatik. [6.]

3.2 Codesys and Ursim

This project involves Codesys integrated development environment for creating an appli-
cation for a virtual PLC controller which controls the stacker crane, and Codesys Control
WIN 3 runtime, which enables a windows-based machine to interpret and execute the ap-
plication developed with CODESYS IDE. Essentially the Codesys runtime turns any device
that meets the requirements into an IEC 61131-3 compatible controller. Codesys IDE uses
IEC 61131-3 standard program languages. IEC 61131-3 Standard encompasses several
programming languages such as Lader Logic, Structured Text, Instruction List, Function
Block Diagram, and Sequential Function Chart. [7.] In this project PLC will be programmed

with ladder logic, while structured text will be used to link I/O Variables.

Ursim will be used for developing an application for a virtual UR controller that controls the

UR 5 robot. Ursim is Linux software and will not run on windows operating system. To run

10

Ursim on Windows operating system, Universal Robots created a virtual machine that can
be run with the help of virtual machine software VMWARE. [8.]

4 SYSTEM DESIGN

To test if two different 3d- party software could work simultaneously in the Simumatik plat-
form,it was necessary to select such systems, each controlled by unique software. The
core of the project was formed by merging concepts from two separated Simumatik pro-
jects. The concept for the Automated Storage and Retrieval System was adopted from the
implementation showcased in Simumatik’s LIU Station 4 project. The concept for the Can

Sorting System was inspired by Simumatik’s “Showcase of Universal Robot” project.

Automated Storage and Retrieval System (ASRS) would be responsible for storing pallets
into the storage slots, utilizing a stacker crane. The stacker crane is the main material han-
dling component of the ASRS system. The stacker crane will be controlled by a PLC con-
troller (Appendix 1, PLC 16 DIO 4AIO) connected to its actuators. The limit switches (Ap-
pendix 1, Limit Switch) will enable the PLC controller to achieve precise positioning of the
stacker crane to the storage slots. Showcasing the programming of a complicated system
such as stacker crane would provide valuable insight into designing an automated sorting
system. In Appendix 1, Stacker Crane provides additional information about a stacker

crane’s functionality.

The can sorting system will sort cans on top of the pallet, which later would be stored in
ASRS system’s storage. As the material handling component, the can sorting system uti-
lizes a UR 5 robot arm (Appendix 1/ 4, UR5 Robot). The control of the UR 5 robot arm is
achieved via a virtual UR controller (Appendix 1/ 4, Universal Robots Controller), con-
nected to its input axis. The systems controller's PLC and UR Controller will also control
conveyors (Appendix 1, Conveyor Belts) via motor contactors and relays (Appendix 1, Mo-
tor contactor and DC Relay), while also processing inputs from photoelectric sensors (Ap-

pendix 1, Photoelectric Sensor).

The initial operation sequence of the can sorting system was very simplistic. When a pallet
with a box on it arrives at a robot arm, the robot arm would place one can inside a box.
However, the programming of the robot turned out to be easier than initially expected. The

cans rack with 4 slots replaced the box, as it was a more appropriate item holder, enabling

11

this project to develop a more complex code and further differentiate from Simumatik’s

Showcase of Universal Robot” project.

5 IMPLEMENTATION
5.1 Establishing Gateway Connections in Simumatik
5.1.1 Gateway connection between Codesys and Simumatik

In the virtual plc setting, opcua_client is selected as a driver type (Figure 3.) and the
setup_params will include URL address of opcua server. OPC UA is a protocol integrated
in some plc. It allows plc devices from different manufacturers to communicate with each

other. Figure 2 illustrates the parameters of OPC UA URL address.

PLC 16DIO _4AIO OPC UA url scheme Port

Name Value ("url": fopctcp/i 2?.:3'.4CI.1|:454ICII‘]-
analog_range -32768 32767 z

IP adress
driver_type opcua_client £ Figure 2. OPC UA IP adress
info None z
setup_params {"url": "opc.tcp://127.0.0.1:4840%
status None z

Figure 3. Simumatik's PLC controller's configuration panel

Next in the Codesys a software project must be created, and CODESYS Control Win
V3(3S- Smart Software Solutions GmbH) is selected as a device (Figure 4). CODESYS
Control Win V3 is a software-based PLC with built-in OPC UA Server. It runs on a regular
computer and serves as a PLC controller that can be programmed with IEC 61131-3 pro-

gramming languages. [9.]

12

.=}

You are about to create a new standard project. This wizard will create the following
objects within this project:

- One programmable device as specified below

- A program PLC_PRG in the language specified below

- A cyclic task which calls PLC_PRG

- A reference to the newest version of the Standard library currently installed.

Device CODESYS Control Win V3 (35S - Smart Software Solutions GmbH) v

PLC_PRGin Function Block Diagram (FBD) v

[0K Cancel

Figure 4. Codesys Project creation window

After Global Variable List (GVL) must be added (Figure 6.), and in GVL options window,
under build tab, link always option must be selected (Figure 5.), to appear in the symbol
configuration panel later. Global variables can be accessed from anywhere in our program.
[10.]

=] Sorting_Warehouse -
= Eﬂ Device (CODESYS Control Win V3 x64) Common LinkToFle Buld Access Control Network Variables
=-&) PLC Logic () Exclude from build
-} Application
P~ X'l
Library Manager
BF) Automated_Storage_System (PRG) i snalniand
[Z] inputs (FUN)
@ Main_program (PRG)
£ outputs (FUN)
® 8 Symbol Configuration
= IE Task Configuration
=-§& MainTask (IEC-Tasks)
@ Main_program [«] cona Apply
Figure 6. Codesys project explorer Figure 5. GVL's properties tab

(Late link in the runtime system)

Afterwards symbol configuration must be created, and OPC UA features (Figure 7.). This

allows the OPC server to access the variables. [10.]

13

Create a remote access symbol configuration.

Name

Symbol Configuration

[7) Include comments in XML
8 Support OPC UA features

Client Side Data Layout
() Compatibility Layout
© Optimized Layout

Figure 7. Codesys add symbol configuration window

In symbol configuration object GVL variables must be selected and build process initiated
(Figure 8).[10.]

) m Library Manager 1E Task Configuration $ MainTask ": Symbol Configuration X
[N View v | [#¥ Build | (=} Settings + Tools ~

Changed symbol configuration will be transferred with the next download oronline change

Symbols Access Rights Maximal Attribute Type Members
+ El Automated_Storage_System
*-[¥] [£] constants

= E] GVL
[¥] # inputs " "» BYTE
inputs2 E » BYTE
[¥] # outputs " » BYTE
outputs2 » " BYTE

+ E] loConfig_Globals

+ E] Main_program

Figure 8. Codesys symbol configuration tab

Next In the virtual plc setting, Input, and output variables var_DI1, var_DI2, var_DO1 and
var_DO2 (Figure 9) must be defined in Codesys as specified in Figure 10. Since

PLC_16DIO_4AIO supports 16 inputs and 16 outputs, in Codesys Globa Variable List
(GVL) the same variables must be defined as BYTE. Each input and output variable
equals 8 bits, and BYTE consists of 8 bits. Future Boolean variables will be linked to a

global variable.

var_DI1 inputs 2 VAR GLOBAL
inputs : BYTE;
var_DI2 inputs2 2 inputs2 : BYTE;
outputs : BYTE;
var_DO1 outputs 2 : outputs2 : BYTE;
END VAR
var_DO2 outputs2 2

Figure 9. Simumatik’s PLC 16DIO4AIO config-

uration window
Figure 10. Global variable declaration in

codesys

Next Codesys Control Win is launched (Figure 11). The free version has a runtime limit

and must be reset every 2 hours.

CODESYS Control Win V3 -x6 X + | v

' (version 0x3051332) registered at the OPC UA server.

2024-02-09T11:09:46.855Z: Cmp=CmpOPCUAServer, Class=1, Error=0, Info=0, pszInfo= Provider 'OPC UA for IEC-61131-3' (vers
ion ©x3051332) registered at the OPC UA server.

2024-02-09T11:09:46.855Z: Cmp=CmpOPCUAServer, Class=1, Error=0, Info=0, pszInfo= Provider 'AlarmManager' (version 6x3651
332) registered at the OPC UA server.

2024-02-09T11:09:47.495Z: Cmp=SysCpuMultiCore, Class=1, Error=6, Info=4, pszInfo= Number of licensed cores for IEC-tasks
: 1 from 11

2024-02-09T11:09:47.791Z: Cmp=CmpOPCUAProviderIecVarAccess, Class=1, Error=0, Info=0, pszInfo= Valid license found for O
PC UA IecVarAccess provider.

2024-02-09T11:09:47.820Z: Cmp=CmpApp, Class=1, Error=0, Info=22, pszInfo= No retain area in bootproject of application [
<app>Application</app>]

2024-02-09T11:09:47.820Z: Cmp=CmpApp, Class=1, Error=0, Info=6, pszInfo= Bootproject of application [<app>Application</a
pp>] loaded

2024-02-09T11:09:47.820Z: Cmp=CmpRouter, Class=1, Error=0, Info=1, pszInfo= Setting router <instance>6</instance> addres
s to <address>(8601)</address>

2024-02-09T11:09:47.820Z: Cmp=CmpRouter, Class=1, Error=0, Info=1, pszInfo= Setting router <instance>l</instance> addres
s to <address>(0001)</address>

2024-02-09T11:09:47.820Z: Cmp=CmpRouter, Class=1, Error=0, Info=1, pszInfo= Setting router <instance>2</instance> addres
s to <address>(8661)</address>

2024-02-09T11:09:47.820Z: Cmp=CmpRouter, Class=1, Error=0, Info=1, pszInfo= Setting router <instance>3</instance> addres
s to <address>(00e5)</address>

2024-02-09T11:09:47.820Z: Cmp=CmpRouter, Class=1, Error=0, Info=1, pszInfo= Setting router <instance>u</instance> addres
s to <address>(0001)</address>

2024-02-09T11:09:47.820Z: Cmp=CmpRouter, Class=1, Error=0, Info=1, pszInfo= Setting router <instance>5</instance> addres
s to <address>(2ddc:c@a8:e801)</address>

2024-02-09T11:09:47.823Z: Cmp=CmpApp, Class=1, Error= Info=10, pszInfo= Application [<app>Application</app>] started
2024-02-09T11 .823Z: Cm M, Clas , Error=e, In 4, pszInfo= CODESYS Control ready

2024-02-09T11:0 .024Z: Cmp=CM, Class=2, Error=0, Info=0, pszInfo=!!!! no runtime license - running in demo mode(~2 ho
urs)

Figure 11. Codesys control WIN V3 console

Next in Codesys device configuration menu network scanning is performed (Figure 13),

and soft plc selected (Figure 12).

14

15

W ® Symbol Configuration "4 pevice x|
Communication Settings | Scan Network l Gateway - Device ~
Applications —_—
— Al |
Backup and Restore — -
soaa -
Files e — 4] 2
Gateway .
Log
Gateway-1 v| | |peskrop428q7qr v
PLC Settings IP-Address: Press ENTER to set active path
localhost
PLC Shell
Port:
1217
Users and Groups Soft plc
Access Rights
Figure 13. Codesys device configuration menu
Select Device X
Select the Network Path to the Controller
= gl Gateway-1 (Scanning...) |Device Name: | Scan Network |
Gateway-1
| fJ DESKTOP-L28Q7QT [0001]]
\ lpriver: Wink
ITCP/IP
IP-Address:
Il'orl:
h 1217
Soft plc

() Hide non-matching devices, filter by Target ID

Figure 12. Codesys device configuration, select device window

16

Then in the device configuration setting in tab Runtime Security Policy (Figure 14), “Allow

anonymous login” option must be selected to establish a connection without providing cre-

dentials (Figure 15).
Device X

Scan Network = Gateway v |Device vl

Options

Rename Active Device...
Wink Active Device

Send Echo Service...

L
Encrypted Communication
| Change Rmtn;ie Security Policy... |
o001 octive)
Change Runhrl‘l@ Password Policy...
Sequrity Settings... Device Name:

DESKTOP-L28Q7QT

Figure 14. Location of the Codesys runtime security policy tab

Communication
Current policy

New policy

Code Signing
Current policy

New policy

Device User Management

Current policy

New policy

Optional encryption

Optional encryption

The device supports both encrypted and unencrypted communication.

This can be decided by the user.

All
Al
All types of application code accepted.

Enforced user management

Enforced user management

The user management on the device is active and cannot be disabled by the user.

B Allowanonymous login

If anonymous login is activated, certain registered components (e.g. OPC UA) can
establish a connection without providing credentials even if user management is

enabled.

Figure 15. Codesys runtime security policy tab

To test the connection and download code to the Codesys runtime, the user is required to

log into a device in the Codesys development environment,and then establishing a gate-

way connection in Simumatic by selecting the gateway icon and starting the emulation.

17

When emulation is running, if status message RUNNING (Figure 16) appears in the PLC

view window, then connection is successful. [10.]

PLC_16DIO_4AIO

Name Value

analog_range -32768 32767 Z
driver_type opcua_client Z
info SETUP: Variable f... £
setup_params {"url™; "opc.tep://... £
status RUNNING Z

Figure 16. Simumatik's PLC16DIO4AIO configuration panel

18

5.1.2 Gateway connection between URsim and Simumatik

URsim is unable to run directly on windows operating system due to its reliance on the
Linux operating system. Therefore, Ursim will be opened on a virtual machine (Figure 17).
The manufacturer of Universal Robots has developed a virtual machine, that already con-
tains all the necessary tools. VMware Player was selected as the virtual machine software.
[8; 11.]

VMware Workstation 17 Player (Non-commercial use only) - (u] X

—

Player v P ~ [m]

L]
ﬁ Home
URSIm_VIRTUAL-5.9.4.1031232

Virtual Machine Name:
URSim_VIRTUAL-5.9.4.1031232

State: Powered Off
0S: Ubuntu
Version: Workstation 12.x virtual machine
RAM: 4GB

> Play virtual machine

[E' Edit virtual machine settings

Figure 17. VMware Workstation Player with URsim virtual machine

It is important to have selected NAT as a network connection in Virtual machine settings.

This will share the host’s Ip address. [11.]

To determine the IP address of Ursim virtual machine’s, Linux terminal tool XTerm is

launched with ifconfig command (Figure 18).

» ur@ursim: ~ - + X

I,JI"@IJF':&:in‘u’llJI Ih ||r|Fi'-l

55,255,255,0
55,255

urBursim: ™% l

Figure 18. Linux terminal window in URsim virtual machine

This IP address is used to connect to Simumatik implementation of the UR Controller.

Connection is successful if in the status field appears message RUNNING (Figure 19).

UR_controller

Name Value

frecuency 125 4
host 192.168.232.128 | Z
nfo SETUP: Variable f... £
nitial_in_register 64 2
initial_out_register 64 Z
port 30004 2
status RUNNING 2

Figure 19. Simumatik's UR controller configuration panel

19

20

5.2 System Configuration and Functionality Overview

5.2.1 Automated Storage and Retrieval System

ASRS system (Figure 20) consists of Storage part, stacker crane, 10 limit switches, 2 con-
veyor belts, photoelectric sensor, and AC motor. The storage has 9 slots (Figure 21). The
sacker crane lifts items coming from the conveyor and places them in the appropriate slots
with the help of limit switches. The limit switches Y (Figure 20) are responsible for vertical
positioning, while the limit switches X (Figure 20) are responsible for horizontal position-
ing. When the crane reaches the limit switch, the stacker crane’s lever (Figure 21) trigger
limit switch’s actuator. Afterwards, the limit switch sends a signal to a PLC, thus stopping
the motor. To set the stacker crane into its initial position, an initial position limit switch has
been added. Limit switch wiring to a PLC can be seen in Appendix 2, page 2 of Wiring dia-

grams of the Automated Sorting System.

Figure 20. Location of the limit switches in the automated storage and retrieval system in Simumatik

21

During unloading operation, to ensure that the object stays in the desired slot, the stacker
crane must descend lower that the Y limit switch. To achieve this, bottom limit switches
have been added (Figure 20). The bottom limit switches are responsible for preventing the

crane from descending further after placing an object into the slot.

. Photoelectric Sensor
Figure 21. Location of the levers and slots in the automated storage and retrieval system in Simumatik

22

ASRS system is controlled by Simumatik virtual PLC controller. Additionally, is has essen-
tial components like a three-phase socket to provide power for an AC motor and DC power
supply. The DC power supply supplies power to DC components such as limit switches,
PLC, and photoelectric sensor. An AC motor axis is connected to both conveyors’ motor
ports, initiating conveyor operation. The limit switches, motor contactor, stacker crane’s ac-
tuators and photoelectric sensor are all connected to a PLC. The PLC responsible for con-
trolling the whole system. The motor contactor provides the PLC with capability to control

an AC motor. The circuit breaker protects the AC motor from overcurrent.

The photoelectric sensor sends a signal to a PLC upon the arrival of a box. The photoelec-
tric sensor located on a stacker crane’s platform (Figure 23), sends a signal to a PLC
when the box reaches the center of the stacker’s crane platform. Each of the components
previously described is illustrated in Figure 22. and the connections between components

can be viewed in the wiring diagram (Appendix 2, page 1 and 2).

The stacker crane is an autonomous component and does not require a power source in

this simulation and only has actuator inputs.

T — ‘E\.\
el =

= | s M il
| A
Three-Phase Socket Circuit Breaker

PLC_16DIO_4AIO

“AGMotor
Figure 22. Locations of the electric components in the automated storage and retrieval system in

Simumatik

Figure 23. The photoelectric sensor located on a stacker crane’s platform in Si-

mumatik

23

24

5.2.2 Can Sorting System

The can sorting system consists of a UR 5 robot, 3 photoelectric sensors, vacuum gripper,
4 large conveyor belts and 2 AC motors. Additionally, it includes components such as mini
conveyor belts powered by 2 DC motors, a DC Relay, a DC power supply, 2 circuit break-
ers, 2 motor contacts for AC motor functionality, three-phase socket, pneumatic compres-

sor, and UR Controller.

Vacuum Gripper

Photoelectric Sensor

UR 5 Robot

e

AC Motor

Figure 24. Locations of the can sorting system components in Simumatik, part1

URS robot is responsible for the sorting operation. It handles the lifting and placing of the
can rack on top of the wooden pallet and inserting cans into the can rack’s slot. Photoelec-
tric sensors send signals to the UR controller upon detecting an item, causing the con-
veyor to stop. Powered by a pneumatic compressor, a vacuum gripper is mounted on the

URS5 Robot, and it is responsible for gripping objects.

Powered by an AC motor, large size conveyors 1 and 2 transport the can’s rack, while
Conveyors 3 and 4 transport the wooden pallet. Mini conveyors are powered by DC mo-
tors, and they are used to transport cans. UR 5 controller controls DC motors with the help
of DC Relay and AC motors with the help of motor contactors. A three-phase socket pow-
ers up the AC motors, the UR5 Robot and the DC power supply. Each of these compo-
nent’s locations are illustrated in Figure 24, Figure 25 and Figure 26 and the connections

between components can be viewed in the wiring diagram (Appendix 2, page 3 and 4) .

UR Controller

Photoelectric Sensor

DC Power Supply

DC Relay
Motor Contactors

Figure 26. Locations of the can sorting system components in Simumatik, part2

Photoelectric Sensor

DC Motors

Figure 25. Locations of the can sorting system components in Simumatik, part3

25

26
5.3 Programming portion using PLC
5.3.1 1/0 Mapping

I/0 Mapping is a process of linking application variables with actual inputs and outputs of
the PLC. First Global Variable List (GVL) must be created, and global variables defined as
a BYTE. Simumatik virtual PLC has 16 inputs and 16 outputs. Four global variables are
created: “inputs”, “inputs2”, “outputs” and “outputs2”. Each global variable is defined as a
BYTE, as a BYTE consists of 8 bits (Figure 27). Each bit will be linked to each 1/0 applica-
tion variable. For this purpose, inputs and outputs functions are created. [12;13.]

Function inputs mapping input variables to application variables, as illustrated in Figure 29,
and function outputs mapping output variables to application variables as shown in Figure

28.

Byte

_1.0010010
|]
[]
[]
Bit

Figure 27. Structure of a byte

1 FUNCTION outputs : BOOL
2 VAR _INPUT

3 END VAR

4 VAR_

5 END VAR

€

- Global Variable

[S8

)

s

GVL.outputs2.c :=
GVL.outputs2.5 :=
GVL.outputs2.4 :=
GVL.outputs2.3 :=
GVL.outputs2.2 :=
S GVL.outputs2.l :=
Figure 28. Function outputs,

=] & "

¥

bles in Codesys

Bit Application Variable

= Automated Storage_ System .iHove_Crane_Dmm ,'

Automated Storage System.Move Crane Right;
Automated Storage_System.Move Crane_ Backward;
Automated_Storage_System.Move_Crane_Forward:
Automated Storage System.Move Crane Left;
Automated_Storage_System.Move_Crane_Up;
Automated_Storage_ System.Conveyour_ Running;
mapping global variables outputs2 to application varia-

1 FUNCTION inputs : BOOL

2 VAR _INPUT

3 END_VAR

4 VAR

s END_VAR

€

X

Z Automated_Storage_System.Horizontal_Sensor X 4 := GVL.inputs.4;

3 Automated_Storage_System.Box_At_ Crane := GVL.inputs.5;

4 Automated_Storage_System.Vertical_Sensor_Y_ 3_Lower := GVL.inputs.é&;
s Automated_Storage_System.Vertical_Sensor_Y 2 Lower := GVL.inputs.7;
€ Automated_Storage_System.Vertical_Sensor_Y 1 Lower := GVL.inputs2.0;
7 Automated_Storage_System.Box_Waiting_For_Pickup := GVL.inputs2.l;

8 Automated_Storage_System.Horizontal_Sensor_X_ 1 := GVL.inputs2.2;

s Automated_Storage_System.Horizontal_Sensor_X 2 := GVL.inputs2.3;
10 Automated_Storage_System.Horizontal_Sensor_X 3 := GVL.inputs2.4;
11 Automated_Storage_System.Vertical_ Sensor_Y 1 := GVL.inputs2.5;
12 Automated_Storage_System.Vertical Sensor_Y 2 := GVL.inputs2.é¢;
13 Automated_Storage_System.Vertical_Sensor_Y 3 := GVL.inputs2.7;

27

Figure 29.Function inputs, mapping global variables inputs and inputs2 to application variables in

Codesys

28

To simplify above I/O mapping, Figure 30 illustrates I/O mapping process to a Simumatik’s
virtual PLC16DIO4AIO controller’s input and output ports.

PLC_16DIO_4AIO

outputs
inputs

LLLLLLLL 3
L
RAgIRAY

"""""" = outputs2

inputs2

RERRRRY
|
{
IEE

trrrYTYYY

/

[
000 RAgERALY

il
trere

Figure 30. Simumatik's PLC16DIO4AIO controller, mapping process to a GVL variables

29

5.3.2 Plc code development

The development of plc application for a stacker crane was particularly difficult. There is
very limited amount of information available on the internet about programming stacker
cranes. As a result, only a basic sorting application was developed. This application sorts
pallets into the stacker crane’s storage, arranging them from left to right, switching to the

next row once the current row is filled.

The complete plc program contains Main_program, inputs, outputs and the Auto-
mated_Storage_System (Figure 31) where all logic is executed. The main program func-
tionality involves executing the inputs’ function, where it reads the inputs. Afterwards Auto-
mated_Storage_System program is executed, later, the outputs’ function writes the out-

puts (Figure 32).

Devices v 3 x PROGRAM Main_program
=3 Sorting Warehouse v| “
= () Device (CODESYS Control Win V3 x64) ‘
=B PLC Logic
=} Application
@ ow &
m Library Manager - VAR
ﬂ Automated Storage System (PRG) S
E] inputs (FUN) 10
[#] Main_program (PRG) 11 END_VAR
[£] outputs (FUN)
. Symbol Configuration
= EA Task Configuration
=-§& MainTask (IEC-Tasks)
Cg] Main_program

VAR

END_VAR

-

inputs

[S]

Figure 31. Structure of the Codesys project

Automated Storage System

w

outputs

Figure 32. Contents of the main program in Codesys

30

Automated_Storage_System is the main logic program responsible for the behavior of the
storage system part of the project. Presented below in Figure 33, are the variables of the

Automated_Storage_System program.

1 PROGRAM Rutomated_ Storage_System 31 //Input variables

2 32 VAR _INPUT
8 3 VAR 33 Horizontal_Sensor_X 1 : BOOL;

4 / Application variables 34 Horizontal_Sensor_X 2 : BOOL;

S step : DINT; 35 Horizontal_Sensor_X 3 : BOOL;

€ slot : DINT; 3€ Horizontal_Sensor X 4 : BOOL;

T X_Move_Step : DINT; 37 Vertical_Sensor_Y 1 : BOOL;

8 row_Y : DINT; 38 Vertical_Sensor_Y 1 Lower : BOOL;
8 9 39 Vertical_Sensor_Y 2 : BOOL;

10 Inisialize_Lift : BOOL; 40 Vertical_Sensor_Y 2 Lower : BOOL;

11 Crane_At_Default_Y : BOOL; 41 Vertical_ Sensor_Y 3 : BOOL;

12 Crane_At_Default X : BOOL; 42 Vertical_Sensor_Y 3_Lower : BOOL;

13 Crane_X Move : BOOL; 43 Box_Waiting_For_Pickup : BOOL;

14 Crane_Y Move : BOOL; 44 Box_At_Crane : BOOL;

15 Crane_Z Move : BOOL; 45 END_VAR

l¢ Crane_Ready_To_Load_X : BOOL; 4€ // Output Variables

17 Crane_Ready To_Load_Y : BOOL; 47 VAR _OUTPUT

18 //Time Variables 48 Conveyour_Running : BOOL;

19 Time Step 8 : TIME; 49 Move_Crane_Left : BOOL;

20 Time_Step_3 : TIME;
21 Time_Step_l0 : TIME;
22 Time_Conv_Reset : TIME;

Move_Crane_Right : BOOL;
1 Move_Crane_Up : BOOL;
Move_Crane_Down : BOOL;
Move_Crane_Backward : BOOL;

/Timers

24 Step_3_Timer: TON; 54 Move_Crane_Forward : BOOL;
25 Step_8_Timer: TON; S END_VAR
2€ Slot_Count: CTU;

2 Step_7_Timer: Standard.TON;

28 Step_l0_Timer: Standard.TON;
29 Timer_Conv_Reset: Standard.TON;
30 END_VAR

Figure 33. Code snipped of the Automated_Storage_System's variables

Variables step, slot, X _Move_Step and row_Y are defined as DINT. DINT has 32 bits.[9]
Each bit can be set on and off. The main idea is to use just one variable instead of many.
A variable step is used to count steps. A variable slot is used to count items and arrange
them into correct slot. X_Move_Step is supplementary variable, utilized within the
Crane_X_Move contact as a counter for tracking at which horizontal sensor the crane

should stop, while moving along the X axis.

31

The program utilizes various timers to determine when to cease operations of the compo-
nent that does not rely on any sensors. Input variables represent variables that are linked
to the PLC’s input components, such as sensors. Output variables are linked to PLC actu-

ators, such as motor contacts and crane actuators.

Below is the first network of the Automated_Storage System program (Figure 34). Initial-
ize_Lift is responsible for initiating the stacker crane’s lifting sequence. In this network
when Initialize_Lift sequence is activated, Conveyor_Running coil is reset.

Timer_Conv_Reset provides a 5 second delay before executing the reset operation.

1

Timer_Conv_Reset

Imsmhzﬁ_uft Standard.TON Conveyour_Running
I
1 [N Q Q)
T=5S PT ET Time_Conv_Reset

Inisialize_Lift Conveyour_Running

i

Figure 34. Automated_Storage_System ladder logic first network

The second network of the program (Figure 35) is responsible for counting incoming items.
Box_Waiting_For_Pickup variable is connected to a photoelectric sensor (Sen-
sor_Last_Belt) which is located at the last conveyor. The contact provides a rising edge

pulse rather than just activating the contact.

2

Box_Waiting Slot_Count
_For_Pickup cau

Il w !

RESET
}_J v slot

9

Figure 35. Automated_Storage_System Lader logic second net-

work

The third network of the program (Figure 36) is responsible for determining the appropriate

Y-axis row assignment. The storage has 3 slots horizontally. Slot 4 indicates that the crane

32

should fill slots in the second row, while slot 7 indicates that the crane should fill slots in

the third row. When row_Y.3 activated, row_Y.2 deactivated.

0 row_Y.2

EN

o
=t

slot_Count.CV

[EQ | row_Y.3

N {(s) 4
Slot_Count.CV
7 row_Y.2
Q)

Figure 36. The third network of the Automated_Storage_System's ladder logic

The fourth network (Figure 37) upon detecting item sends a rising edge pulse to set Initial-

ize_Lift sequence.

4

Box_Waiting
_For_Pickup Initialize_Lift

Irl)

Figure 37. The third network of the Automated_Storage_System's ladder
logic

The fifth network (Appendix 3, network 5) is a complete 12 step lifting and storing item se-
quence. | decided that using graphs to describe the program functionality would be the

best approach. The graph is illustrated below in Figure 38 and Figure 39.

33

]
)
J
)

step.0 »| Crane_At_Default X
At the start of the sequence, the
¢ crane is moved to its default position
along the X and Y axes.
step.1 —>»{ Crane_At_Default_Y
step.2 Crane X Move b---- The crane is set to its ready-to-
- pickup position along the X-axis.
step.3 —» Crane Z Move ---- { The crane rail is extended.
step.4 —>» Crane_Y_Move t---- [The crane lifts the item
step.5 » Crane Z Move - ... | The rail retracts, along with an item
— - positioned on it.
step.6
ST Block

:

lots 1, 4, and 7 are aligned on the X
axis, therefore the crane does not
need to move along the X-axis.

']

A

step.7

Crane_X_Move

A

ST Block

A

[

Slots 1, 2, and 3 indicate that the
crane is located at the first row.

]

C

rane_Y_Move

Figure 38. Graph of the 12-step lifting and storing item sequence part 1

the crane has to move along the X-

Slots 2, 3, 5, 6, 8, and 9 indicate that
axis until the desired slot is reached.

one of the horizontal sensors is

Move the crane along the X-axis unti
triggered.

']

the crane is located at the second or

Slots 4, 5, 6, 7, 8, and 9 indicate that
third row.

vertical sensors is triggered,

Ascend the crane until one of the
depending on the row.

slot, along with the item positioned
on it.

{ The rail retracts into the storage]

The crane descends until it triggers

one of the lower horizontal sensors,
resulting in the item remaining in the

storage slot.

......... { Retracts the rail to its default poshion.]

Slots 4, 5, 6, 7, 8, and 9 indicate
that the crane is located at the
second or third row.

Crane_At_Default_Y

After step 9, the crane has to descend
until horizontal_sensor_1 is triggered.

step.8 » Crane_Z_Move
Yy
step.9 ——>» Crane_At_Default_Y
step.10 ———>» Crane_Z_Move
step.11
ST Block
Y
Slot 1
Slot 2
Slot 3
A
Crane_Y_Move p--=-

Y

step.12

___________ Slots 1, 2, and 3 indicate that the
crane is located at the first row.

until horizontal_sensor_1 is

After step 9, the crane has to ascend
triggered.

Resets all the steps and Initialize_Lift
variable

Figure 39. Graph of the 12-step lifting and storing item sequence part 2

35

Contacts Crane_At_Default_X, Crane_At Default Y, Crane_Z Move, Crane_X Move and
Crane_Y_Move have functionality to determine the crane’s movement direction, based on

the current step in the fifth network.

The sixth network (Figure 40) is responsible for moving the crane to the left, its default po-
sition along the X axis. It also sets contact Crane_Ready To _Load_X, so the program

knows that the crane is at its default position along the X axis.

Crane_At_Default_X Move_Crane_Left
{ [()
Horizontal_Sensor_X_4 Crane_At_Default_X
{ [Q)
step.0

—()

step.1

()

Crane_Read
y_To_Load_X

)

Figure 40. The sixth network of the Automated_Storage System's ladder logic

The seventh network (Figure 41) is responsible for moving the crane down, its default po-
sition along the Y axis. When the action is complete contact Crane_Ready To Load Y is
set. When both Crane_Ready _To_Load_X and Crane_Ready_To_Load_Y are set, The
crane is ready to initiate pickup operation.

36

Crane_At_Default_Y Move_Crane_Down

Vertical_Sen
step.11 sor_Y_1_Lower Crane_At_Default_Y
NN | ([
ik { [(=)

Vertical_Sen

Crane_Read
sor_Y_2_Lower

y_To_Load_Y

I Q)

Vertical_Sen

step.9 step.2
sor_Y_3_Lower L
3] I} 8)
{1
step.9 step.10
Il
[()
step.11 Vertical_Sensor_Y_1 Crane_At_Default_Y
nn | (i
Ul { [Q)

step.12

5)

Figure 41. The seventh network of the Automated_Storage_System's ladder logic

The eighth network (Figure 42) is responsible for the crane’s rail, extension, and retraction.

The rail does not have any sensors, therefore timers are used to determine the appropriate
length of extension or retraction.

s
Crane_Read Crane_Read
Crane 2 Move ¥_To_Load X ¥_To_Load Y Move_Crane_Forward
T T [k)
1 b 1 b
step.10 tep.s Move_Crane_Backward
]k 1 {
{-[+ 1 [) step.10
;
steps
Timers
Step_3_Timer
steps tep.3 oron) Crane_2_Move
1t 11 {
—-t it q *)
58 T e Time_Step_3
tep.s
5)
Sep_10_Timer
step.10 Standard.TO! Crane_7_Move
i
Ik w)
e85 ——{PT B Time_Step_10
step.tt
$)
ep_§ Timer
steps Standard.TON Crane_7_Move
0 [{
It w)
Tess eT Time_Variables
e Time_Step_8
steps
(s)
steps steps Bo AL C Crane_2_Move
[k 11 T i
gl 11 1 1- {x)
steps
(s)

Figure 42. The eighth network of the Automated_Storage_System's ladder logic

37

The ninth network (Figure 43) is responsible for crane movement to the right. Supplemen-

tary variable X_Move_Step helps to determine at which horizontal sensor the crane stops.

Crane_X_Move Move_Crane_Right

Il @

X_Move_Step.2

X_Move_Step.1

gl

)

step.6 X_Move_Step.1 X_Move_Step.2 Horizontal_Sensor_X_2 Crane_X_Move
1N | (
i1 U0 I It Q)
X_Move_Step.2
$)
step.7
—s)
step.6 X_Move_Step.2 Horizontal_Sensor_X_3 Crane_X_Move
N0 Il ([
{ [U0 {1 Q)
X_Move_Step.1
—)
X_Move_Step.2
—)
step.7
—)
step.6 step.2 Horizontal_Sensor_X_1 Crane_X_Move
0 Il (i
i1 U I Q)
step.3

)

Figure 43. The ninth network of the Automated_Storage_System's ladder logic

38

The final tenth network (Figure 44) is responsible for the crane’s upward movement. Varia-

ble row_Y helps to determine the current row within the sequence.

Crane_Y_Move Move_Crane_Up
N[(q
U Q
Crane_Read Crane_Read
y_To_Load X y_To_Load_Y Vertical_Sensor_Y_2 row_Y.2 row_Y.3 Crane_Y_Move
) /N 0N I /1 {f
17l 171 Il Ul Ul)
step.8
$)
Crane_Read Crane_Read
y_To_Load X y_To_Load_Y Vertical_Sensor_Y_3 row_Y.3 Crane_Y_Move
N N1 /1 I M (i
170 11 s Ul (Q)
step.8
)
Crane_Read Crane_Read
y_To_Load X y_To_Load_Y Vertical_Sensor_Y_1 Crane_Y_Move
n n [ﬂRj]
U U L) A8
step.11 Crane_Read
lI'IJ Il y_To_Load X
U [[RD
Crane_Read
y_To_Load_Y
)
step.11 step.5
N0 (.
ik ()
step.11 step.12
N R (
(s)

Figure 44. The tenth network of the Automated_Storage_System's lader logic

5.4 Programming portion using URsim

5.4.1

/10 Setup

UR_controller

Name

frecuency

host

info

initial_in_register

initial_out_register

port

status

panel

Value

"y
A%
(¥a]

Exception during ...
i 64 :

D64t

30004

ERROR

The virtual implementation of the UR_controller is able to utilize input and output

registers exposed to the external devices from Ursim. Reading of registers begins

IS

I

[

[

I

[

[

Figure 45. Simumatik's UR controller configuration

39

with value specified in initial_in_register and initial_out_register, which is 64 (Figure
45). [13]

40

W Unliversal Robots Graphical Programming Environment - + X

fun Prograr (el 1iovs
View
A All v
Mounting
1/O Setup Input Output
GPbI[S1] GP_bool_in[61] A GPbo[§0] GP_bool_out[60] ~
Variables GPbi[62] GP_bool_in[62) GPbo[61] GP_bool_out{61]
SEACEGR ea] o toalinies) GPbol62] 6P _bool out(62]
T, ; bi[64] sensol émb‘o[sa]...ﬁp-poahwi:[ell
Transition - GPbI[65] gripped EGPbD[GA] gripper :
i GPbil66] sensorBelt: iGPbol65] conveour
kit LL.GPHISTI. . pennerd....; jGPbols) coveourz :
GPbI[68] : GP_bool in[68) iBPhole7] | conveourd :
Screwdriving GPbISS] i GP_bool In[59] GPboI68] | GP_bool_out(6s]
Home GPbi[70] :GP_bool In{70] v GPbo[69]} GP_bool_out[69] v
. daa i $ eessesesesree
feell/o "+ GPHBI163] " "GP bbYIiHE3]" " : GPbo[63] GP_bool_out[63
GPBI163] " * "GP* bbol"ih163]" " : 0[63] _bool_out[63]
> safety
GPbi[64] sensor GPbo[64] gripper
> Fieldbus GPbi[65] gripped GPbo[65] conveour

GPbi[66] sensorBelt2
GPbi[67] sensor3

GPbo[66] coveour2
GPbo[67] conveour3

m GPbi[68] GP_bool_in[68] l GPbo[68] GP_bool out[68] n
e ey -

Figure 46. Universal Robots graphical programming environment

ssssscscsssssses

The register “conveyour” activates a small conveyor that is transporting cans, while “con-
veyor2” is responsible for transporting the can’s rack. The register “conveyour3” is respon-
sible for the main conveyor transporting a wooden pallet. The register “sensor” reads the
output from a sensor that is located at the end of the conveyor which is transporting cans.
Meanwhile, the register “sensorBelt2” reads the output from a sensor that is located at the
end of the conveyor which is transporting the can’s rack. Finally, the register “sensor3”
reads the output from a sensor that is located at the end of the conveyor which is trans-
porting the wooden pallet. All the above registers are illustrated in Figure 46. The registers

are assigned to UR controller’s input and output ports (Figure 47).

Ports

Name

[4 inL0

[in_1

[4 in2

[in3

Figure 47. UR controller's ports configuration panel in Simumatik

5.4.2 Code

Symbol
4
Connection

4
Cans_Sorting_... (&

4
Cans_Sorting_... &)

4
Cans_Sorting_... &)
Cans_Sorting_... &)

out 0

out_1

out_2

out_3

1 Connection

1 Connection

1 Connection

1 Connection

o

(&)

41

The UR 5 robot’s program consists of five parts. Part “BeforeStart” (Figure 48) runs at the

beginning of the code. This part resets supplementary variables, that used to identify

which step the program must execute.

¥ BeforeStart

i var 1:=1
i var 2:=1
i_var_3=1

¥ Robot Program

b

If sensorBelt2 and i var .

Figure 48. Code snipped of UR 5 robot program

from URsim

The program also has 3 threads (Figure 49). These threads run alongside the robot’s main

program, allowing it to control conveyors while simultaneously operating the robot arm.

42

When an item triggers a sensor, Ursim deactivates the relay or contactor, therefore stop-
ping the conveyor. The sensor also triggers the robot’s main program sorting sequence
that lifts the items. Once the item has been lifted, the conveyor resumes operation until the

sensor is triggered again. The Ursim program threads control three conveyors.

63 :# Thread 3 :
64 :9 b If sensor3=True or i var 3+2

65 : = Set conveour3=0n
66 :9 % Else :
67 : = Set conveour3=0ff 3.:

..

68 L TRRaSH p :
69 .‘? b If sensorBelt2= True :

70 : = Set coveour2=0n
71:9 % Else :
72 = Set coveour2=0ff 2.1

R R e :
74 _fi> & If sensor= True :

75 : = Set conveour=0n
76 :¢ % Else :
77 : = Set conveour=0ff s 2

Figure 49. Code snipped of UR 5 robot program’s
threads from URsim

The main program consists of two pickup sequences for handling materials. The first
pickup sequence is responsible for lifting a can’s rack and securely placing it on a wooden
pallet. To begin the first pick up sequence the following conditions must be met. A wooden
pallet triggers the sensor 3 and the can’s rack triggers sensor 2, stopping both conveyors.
Variable i_var_2 value must be one. After that the UR robot initiates the first pickup se-
qguence. In this sequence the robot picks up the can’s rack and places it on the wooden
pallet. In Figure 50 in stage one (1.) the robot moves to its default position, followed by a
shift to the pickup position. The vacuum gripper then activates, clamping onto the rack. At
stage two (2.), the robot returns to its default stance, lifting the rack. This is followed by a
move to the drop position and, the final drop position where deactivating the vacuum grip-
per releases the item, allowing it to fall on the wooden pallet. At the end of the code block

variable i_var_2 value is changed to two. This allows the second sequence to proceed.

43

¥ Robot Program

5

S b |f sensorBelt2 and i_var_2<1 and sensor3§
7 i9 « Move) :
g ® homePosCov2

9

§¢ % Mowve)
10 ® pickPosConv?2
11 = Set gripper=0n
12 | & B Wait: 1.0 1
o @blfgnpped ...
14 ¢« Move)
15 | i ® homePosCov2
16 9 <« Move)
17 ® dropPosConv2
18 : ¢ < Move
19 @ finalDropPosCo2
20 = Set gripper=0ff 5
21 | %,.conuect ST NAL. 22 e eeeernee e nrnnnen

Figure 50. Code snipped of UR 5 robot is main program from UR-sim

The following conditions initiate the second sequence. Approaching Can triggers the sen-
sor, located at the end of the conveyor that transports the cans, and variable i_var_2 value
must be equal to two after completing the first sequence. In Figure 50 in the stage one (1.)
the robot moves to the default can retrieval position, designed for picking up cans, followed
by a shift to the pickup position. At the stage two (2.), (Figure 50), The Vacuum gripper
then activates, clamping onto the can, and moving into the default can retrieval position,
liting a can. At the stage three (3.), (Figure 51) robot moves to the drop position and
places the can into the rack. Stages four (4.), five (5.), and six (6.), (Figure 51) follow the
same procedure as stage three (3.), but with adjustments to both, drop and final drop posi-

tions, to place cans into appropriate slots on the can rack.

Also, at the stage six (6.), (Figure 51) all variables are reset to ensure that the program
can start the next cycle from the beginning. The variable’s i_var_3 value is set to 2 for 4
seconds, ensuring that the wooden pallet moves further into a storage slot.

At the stage seven (7.), (Figure 51) the robot lifts, providing the space for leaving the

wooden pallet.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

sessssscccnssssescsecnnne sesvenne

¢ b If sensor and i_var_2+2 :
9 + Move) -
® basePos
'? « Move]

: ® pickup

= Set gripper=0n

11, B walt: 0.5

ssossee

i T R :
P9 < Move|

12, ©pbasePos

g 'If'i'_i/'ér':l:é.l: 3
? < Move) :
; ® DropPosl
@ FinalDropPosl :
a= i var_1:=2
3 - Set gripper=Off§
e T
: 9 «b Move) :
: ® DropPos2
: @® FinalDropPos?2
4. o= i var_1:=3

43
44
45
46
47
48
49
50
51
52
53
54
55
55
57
58
59
50
61
62

Set gripper=0ff
@ b Elelfivar 1£377 7
? ﬂ- Move) :

® DropPos3
® FinalDropPos3
Poas ivar 1=4

: = Set gripper=0ff O.:

¢ diBEISelfivar T4 -

¢ o{* Move|
:© DropPos4
: @ FinalDropPos4

o= | var 1:=1

= Set gripper =0ff
o= ivar_2:=1
: B Wait: 1.0

a= i_var_3:=2

B Wai: 4.0
:e=ivar_3=1 6.
® ’I‘eﬁg\}e‘-f-'-'.'.'. ''''''''''''''''''' ae s’’’ '.:
‘® LiftUpPos 7.}

Figure 51. Code snipped of UR 5 robot is main program from UR-sim

44

45
6 RESULTS

At the beginning all the necessary software must be launched. In Simumatik, emulation
process is initiated by pressing Start the emulation button (Figure 52) To connect to both

Ursim and Codesys Control Win V3 soft plc, Simumatik’s gateway is launched (Figure 52)

Figure 52. Simumatik’s emulation interface

At the beginning all the necessary software must be launched. Ursim is launched through
VMware. In Ursim’s Linux operating system, UR 5 application must be launched (Figure
53) stage (1.) and the program loaded stage (2.). Then the robot must be powered on fol-
lowed by the break release stage (3.). Finally, the program is initiated, and the robot
moved to its default position stage (4.).

Variables

<unnamed>

myarerfor

Password for i

xxxxx

...........................

He
o000 OOOSON

O Show Waypoints

@ cancel

Figure 53. Universal Robot’s graphical programming environment, loading a program and starting the ro-

Before launching Codesys, Soft PLC Codesys Control Win V3 is launched (Figure 54)

stage 1. The Application is then downloaded and launched by logging into the Device,
stage (2.) and (3.)

Application [Device: PLC Logic] ~e : | =
L)

w
...'.......‘......‘...

-

2.

2 0500068006800 0060000000006086806080060000e0060060060080600s800808

You are currently not authorized to perform this operation on the device. Please enter the name
and password of an user account which has got the sufficient rights.

Device name Device (CODESYS Control Win V3 x64)

Deviceaddress

User name

Password ©
Operation: View

Object: "Device”

Cancel

CODESYS Control Win V3 - x6 X +

2024-02-18T07:84:39.907Z: Cmp=CmpRouter, Class=1, Error=6, In
fo=1, pszInfo= Setting router <instance>d</instance> address
to <address>(00801)</address>

2024-82-18TO7:04:39.907Z: Cmp=CmpRouter, Class=1, Error=e, In
fo=1, pszInfo= Setting router <instance>5</instance> address
to <address>(2ddc:c0a8:e801)</address>

2024-02-18T07:08U4:39.910Z: Cmp=CmpApp, Class=1, Error=6, Info=
10, pszInfo= Application [<app=Application</app>] started
2024-02-18T07:04:39.910Z: Cmp=CM, Class=1, Error=6, Info=34,
pszInfo= CODESYS Control ready

2024-02-18T07:04:40.118Z: Cmp=CM, Class=2, Error=0, Info=0, p
szInfo=!!!! no runtime license - running in demo mode(~2 hour

s)

Figure 54. Codesys download and launch of the PLC application to a Codesys Control runtime

.....1..................

-

46

47

The UR robot can be precisely programmed to perform different actions. However, it is im-
portant that the item must be placed in a consistent position. The spawn point that gener-

ates the items lacks consistency. Conveyor guides were installed (Figure 55) to ensure

that the item is in the exact same spot every time, for the robot’s pickup.

Sensor.Last, Belt

* Sensof 2

] Sensor_3

Conveyor Guides‘_v_,_.,v-l--""""”

Figure 55. Automated Sorting System in full operation

48

When emulation begins items appear at the blue spawn points sensor (Figure 55) stages
1., 2., 3. Wooden pallet appears at spawn point 1, the can’s rack appears at the second
(2.) spawn point and blue cans appear at the third (3.) spawn point. ltems then move to-
wards photoelectric sensors and upon triggering them the conveyor stops. Once both the
wooden pallet and the can’s rack are in place, the UR robot lifts the can’s rack and places
it on top of the wooden pallet (Figure 56).

Figure 56. UR 5 robot lifting can’s rack in Simumatik

After that the UR 5 Robot initiates the can’s sorting sequence (Figure 57). In the Can sort-
ing sequence, the robot lifts a can and inserts it in the appropriate slot of the can’s rack.

Once the rack is full, the wooden pallet continues to move towards the stacker crane.

49

Figure 57. UR 5 inserting cans into the slots of the can’s rack

The Triggering sensor (“Sensor_Last_belt”, Figure 55) near the stacker crane initiates the
Stacker crane’s pickup and loading sequence. In the pickup and loading sequence the
stacker crane lifts the wooden pallet and loads it into the appropriate slot. During the simu-
lation a total of 9 wooden pallets, 9 can’s racks and 36 cans are spawned and go through
the sorting process. The stacker crane’s storage is 9 slots in total. The result is success-
ful. Both the URS5 robot’s program and the stacker crane’s PLC program work as intended,
effectively sorting the items at the conveyor, and placing them into the storage slots. The

result can be seen in Figure 55.

50

7 CONCLUSION

The automated sorting system was successfully completed, integrating two different third-
party software, Codesys Control Win V3 and URsim into a Simumatik. The system was as-
sembled in a virtual environment. Both the UR5 robot’s and the Stacker crane’s plc pro-
grams were implemented. Electrical drawings of the system were created using Simumatik

2 D view feature.

During the project | delved into various automation technology topics. This project broad-
ened my understanding of these technologies, as well as demonstrated the practical appli-
cation and effectiveness of a virtual simulation environment in the development of auto-

mated systems.

This thesis highlights the important role of virtual simulation in education. Physical ma-
chines are expensive, and their assembly takes a long time. The components also wear
out and have reliability issues. During education students may accidentally damage the
components or devices. Virtual simulation software provides the solution to this issue. Stu-
dents can experiment, make mistakes and learn, without the risk of damaging expensive
components or devices. Without the simulation software, | would not have been able to im-
plement such a complex project. The cost of the components would be too high for any in-

dividual.

51
7.1 Drawbacks of the project

The project complexity went beyond my capabilities, affecting the PLC program of the
stacker crane. The retrieval feature of the stacker crane, which retrieves pallets back at the
conveyor, was not implemented. Moreover, the stacker crane’s program fails to identify
which slots are occupied and which are empty. It sorts items from left to right and from the

bottom row upward.

The automated sorting system also lacks important features such as safety mechanisms
and control panel with start and stop buttons. The PLC code would benefit from improved
readability and modularity. The primary logic is concentrated in the Automated_Stor-
age_System program. Improving code readability and modularity could be achieved by
breaking down the logic program into separate programs. Additionally, ladder logic code
could be rewritten in a structured text plc programming language, which is more suited for

programming a complex automation device, such as a stacker crane.

The items that the system sorts were reused from other projects and not designed well for
the stacker crane. The wooden pallet occasionally slides off and falls when being unloaded
into the storage slots. This issue is caused by the can’s rack, where uneven weight distri-
bution leads to the rack sliding off during the unloading process. The results were better
with boxes or wooden pallets loaded individually. Another issue arises when, despite the
installation of conveyor guides on some conveyors, items placed at the pickup position are
slightly misaligned. This misalignment causes UR 5 robot failing to fit cans properly into

the slots of the can’s rack.

52

REFERENCES

1. Digital Twins and Virtual Commissioning in the Manufacturing Industry. Vis-
ual Components. WWW page. Available from: https://www.visualcompo-
nents.com/resources/blog/digital-twins-and-virtual-commissioning-in-industry-
4-0/ [Accessed 2023 Dec 5].

2. The Important Use of Simulation Software in Education. Bin95. WWW
page. Available from: https://bin95.com/articles/electrical/engineering/discrete-
event-plc-simulation.htm [Accessed 2024 Mar 14].

3. Gateway and Integration, Introduction to Gateway and Communication
Driver. Simumatik. Video. Available from: https://academy.si-
mumatik.com/path-player?courseid=gateway-and-integra-
tion&unit=63e519dcda193461b7026a2eUnit [Accessed 2024 Mar 16].

4. What is a PLC? Definition and Details. Paessler. WWW page. Available
from: https://www.paessler.com/it-explained/plc [Accessed 2024 Feb 25].

5. Open Emulation Platform - User Manual. Simumatik. WWW page. Available
from: https://simumatik.com/learn/open_emulation_platform/ [Accessed 2023
Dec 5].

6. Launch of the Simumatik Academy. Simumatik. WWW page. Available
from: https://simumatik.com/launch-of-simumatik-academy/ [Accessed 2024
Mar 13].

7. CODESYS Runtime. Clarify. WWW page. Available from: https://www.clar-
ify.io/integrations-browse/codesys-runtime [Accessed 2024 Mar 4].

8. Universal Robots - Offline Simulator - CB-Series - Non-Linux - URSim
3.15.8. Universal Robots. WWW page. Available from: https://www.universal-
robots.com/download/software-cb-series/simulator-non-linux/offline-simulator-
cb-series-non-linux-ursim-3158/ [Accessed 2024 Mar 4].

9. Control. CODESYS. WWW page. Available from:
https://www.codesys.com/products/codesys-runtime/control.html [Accessed
2024 Feb 6].

10. Codesys Tutorial - Simumatik. YouTube. Video. Available from:
https://www.youtube.com/watch?v=SBspYJM7tB0 [Accessed 2023 Nov 25].

11. UR SIM Integration- Simumatik. YouTube. Video. Available from:
https://www.youtube.com/watch?v=GvUhSvtKh5A [Accessed 2023 Dec 5].

12. Configuring Devices and I/O Mapping. CODESYS. WWW page. Available
from: https://help.codesys.com/api-content/2/codesys/3.5.14.0/en/_cds_con-
figuring_devices_mapping_ios/#id3 [Accessed 2024 Jan 3].

13. Advanced Simulation, Digital Twin Technology - the Simumatik Platform.
Simumatik. WWW page. Available from: https://academy.simumatik.com/path-

53

player?courseid=gateway-and-integra-

tion&unit

=63e51e5c¢f00b138791014b8fUnit [Accessed 2024 Jan 10].

LIST OF FIGURES

Figure 1. Communication scheme between virtual controllers and third- party
SOTIWAIE ... et e e 8
Figure 2. OPC UA IP @dreSSuuuiiiiiiiiiiiieeiee ettt 11
Figure 3. Simumatik's PLC controller's configuration panel............................ 11
Figure 4. Codesys Project creation WindOW..............ocoociiiiiiiiiiiiieceeeeeeeee 12
Figure 5. GVL's properties tab..........ccccoeeiiiiiiiiiiiiice e, 12
Figure 6. Codesys project @XplOrer..........cooiiiii i 12
Figure 7. Codesys add symbol configuration window.................cooovviviviinnnnnnn. 13
Figure 8. Codesys symbol configuration tab............ccccoooeeiiiiiiiiiii. 13
Figure 9. Simumatik’s PLC 16DIO4AIO configuration window 14
Figure 10. Global variable declaration in codesys............ccccevviviiviiiiiirrieeennnn. 14
Figure 11. Codesys control WIN V3 console.............cccciiiiniiiiiiiiiiieieeeeeeeee 14
Figure 12. Codesys device configuration, select device window 15
Figure 13. Codesys device configuration menu...............ccccuviiiiiiiieininninnnennnn. 15
Figure 14. Location of the Codesys runtime security policy tab..................... 16
Figure 15. Codesys runtime security policy tab ..o, 16
Figure 16. Simumatik's PLC16DIO4AIO configuration panel 17

Figure 17. VMware Workstation Player with URsim virtual machine............... 18

Figure 18. Linux terminal window in URsim virtual machine.......................... 19
Figure 19. Simumatik's UR controller configuration panel............................. 19
Figure 20. Location of the limit switches in the automated storage and retrieval
System in SIMUMALIKooooiiiii e 20
Figure 21. Location of the levers and slots in the automated storage and
retrieval system in SimumatiK............cccccoooiiiiiic 21
Figure 22. Locations of the electric components in the automated storage and
retrieval system in SimumatiK............c.ccccooeiiiiiic 22

Figure 23. The photoelectric sensor located on a stacker crane’s platform in

SIMUMALTK. ... 23
Figure 24. Locations of the can sorting system components in Simumatik,
072 o o PP 24
Figure 25. Locations of the can sorting system components in Simumatik,
072 2 TP 25
Figure 26. Locations of the can sorting system components in Simumatik,
O F= T 02U 25
Figure 27. Structure of @ DYteooeiiiii e 26

Figure 28. Function outputs, mapping global variables outputs2 to application
Variables iIN COAESYSuuuiiiiiiiiiiii et 27
Figure 29.Function inputs, mapping global variables inputs and inputs2 to
application variables in COAESYSoouviuiiiiiiiiiie e 27

Figure 30. Simumatik's PLC16DIO4AIO controller, mapping process to a GVL

VANTADIES ... 28
Figure 31. Structure of the Codesys project............cuvvveeeeieiiiiiiiiieieeeeeeeene, 29
Figure 32. Contents of the main program in Codesyscoovvvvvrirvrnnnnnnnnn. 29
Figure 33. Code snipped of the Automated_Storage_System's variables...... 30
Figure 34. Automated Storage System ladder logic first network................. 31
Figure 35. Automated_Storage_System Lader logic second network 31

Figure 36. The third network of the Automated_Storage_System's ladder logic

... 32
Figure 37. The third network of the Automated_Storage_System's ladder logic
... 32
Figure 38. Graph of the 12-step lifting and storing item sequence part 1........ 33
Figure 39. Graph of the 12-step lifting and storing item sequence part2........ 34

Figure 40. The sixth network of the Automated Storage System's ladder logic

95

Figure 41. The seventh network of the Automated_Storage_System's ladder

(oo [P RT PRSPPI 36
Figure 42. The eighth network of the Automated_Storage System's ladder
(oo [P RT PRSPPI 36
Figure 43. The nineth network of the Automated_Storage System's ladder

[| o 37
Figure 44. The tenth network of the Automated_Storage System's lader logic
... 38
Figure 45. Simumatik's UR controller configuration panel............................. 39
Figure 46. Universal Robots graphical programming environment................. 40
Figure 47. UR controller's ports configuration panel in Simumatik 41
Figure 48. Code snipped of UR 5 robot program from URsim........................ 41
Figure 49. Code snipped of UR 5 robot program’s threads from URsim 42
Figure 50. Code snipped of UR 5 robot main program from UR-sim.............. 43
Figure 51. Code snipped of UR 5 robot main program from UR-sim.............. 44
Figure 52. Simumatik’s emulation interface................cccoiiiiiii 45
Figure 53. Universal Robots graphical programming environment, loadin a
program and starting the robot ..., 45
Figure 54. Codesys download and launch of the PLC application to a Codesys
CONrOl FUNEIME ... 46
Figure 55. Automated Sorting System in full operationccceeevvinnnee. 47
Figure 56. UR 5 robot lifting can’s rack in Simumatik..................cccccvvviinnnnnn. 48

Figure 57. UR 5 inserting cans into the slots of the can’s rack....................... 49

Appendix 1/4

Catalog of Components for the Automated Sorting System

CONTENTS

1 ELECTRICAL COMPONENTS ...t
1.1 Limit SWItC ..
1.2 PhotoelectriC SENSONuuiiiiiiiiiiiieieiee e
1.3 CircuUit Breaker...........oviiiii e
1.4 MoOtOr CONtACIONccoiii e
1.5 DC POWEE SUPPIY c.oeeiiiiieeit et ee e
1.6 Three Phase Industrial SOCKet ...
1.7 AC MOOT ...
1.8 DC MOOF ...
1.9 DC REIAY ...t

2 CONTROLDEVICESot
21 PLC 16 DIO 4AIO ... oot

3 OTHER COMPONENTS ..ottt
3.1 PneumatiC COMPIrESSOr........uuuuuuiiieieeeeeeee et a e e e e e e e e e e eeeaeennes
3.2 VaCUUM GrIPPEE ...t e e e e e e e e e e e e eeeaees

3.3 CoNVEYOr BeItS.......uuiiiiiiiiiiiiiiie e

1 INTRODUCTION

This document will provide a brief description of the system’s components.
The components are virtual representations of a real-life counterparts. Each
component has ports and variables. The ports are the equivalent of terminals
in the electrical components, serving as connection points between compo-

nents.

1.1 Material handling machinery
1.1.1 Stacker Crane

The stacker crane is called “LIU Crane” in Simumatik. Because the stacker
crane is a new addition to the Simumatik’s component library, it is currently
unfinished. It has only input actuators, with the power source yet to be imple-
mented. However, because this is a virtual component and the code defines
its functionality, the actuators are still functioning, despite the unimplemented

power source.

The Figure (1) depicts directional movements of the actuators in the stacker
crane. The actuators move_left and move_right, responsible for horizontal
movement of the crane along the X axis. While the actuators move _up and
move_down determines vertical movements of the crane along the Y axis. Fi-
nally, actuators move_rail_pos and move_rail_neg controls extension and re-
traction of the crane’s rail, therefore moving along the Z axis. Component LIU

crane has the following inputs and variables that will be connected to the plc.

- move_left: When energized, moves crane to the left

- move_right: When energized, moves crane to the right

- move_up: When energized, moves crane up

- move_down: When energized, moves crane down

- move_rail_pos: When energized, extends the rail forward

- move_rail_neg: When energized, extends the rail backward

Variables

- GEAR_RATIO_X: Responsible for the speed adjustment of the x axis
- GEAR_RATIO_Y: Responsible for the speed adjustment of the y axis
- GEAR_RATIO_Z: Responsible for the speed adjustment of the z axis

move_up

: move_rail_neg
move_down

1. Simumatik’s Virtual Stacker crane’s directions of the actuators

1.1.2 URS5 Robot

For picking up cans’ virtual component URS5 robot is selected. URS virtual
component have 6 axis inputs (Figure 3). Each axis controls the robot’s rota-

tional joint (Figure 2). Inputs can be connected to a UR virtual controller in Si-

mumatic.

2. UR 5 robot'’s rotational joints

«Q « « «Q « ©
© © © © © ©
] \l \l \l \l] L

AX1 | AX2 [AX3 | AX4 | AX5|AX6

Robot

3. Simumatik’s UR 5 robot's 2D diagram and its axis inputs

2 ELECTRICAL COMPONENTS
2.1 Limit Switch

Limit switches are used for position detection for industrial equipment.

The limit switch is used to detect the presence of a moving part and has 1 in-
put port and 2 output ports. When a moving part triggers an actuator, it either
opens or closes the circuit, depending on which output port is used.

Actuator

14: 24V port,
normally closed (output)

12: 24V port, normally
open (output)

11: OV port (input)

4. Simumatik's limit switch and its ports

11 0—012
14

5. Simumatik’s limit switch 2D

2.2 Photoelectric Sensor

A photoelectric sensor is used to detect any physical objects like cans, boxes,

and pallets. It can be configured to be either normally open or normally closed.

Photoelectric sensors ray

6. Simumatik's photoelectric sensor

x1

— |—@ signal

X2

7. Simumatik's photoelectric sensor 2D

Ports:

- x1: 24V port (input)

- x2: Ov port (input)

- Signal port (output): Produces an electrical output upon detection of a
physical object, outputting either 24V or 0V.

Variables

- ray_length: Determines the length of the ray.

- ray_visible: Controls the visibility of the ray in simulation.

- normally_open: When enabled, the sensor output will be activated
upon detecting an object; if disabled, functions like normally closed

2.3 Circuit Breaker

A circuit breaker is an electrical safety device, designed to interrupt the current
during fault events, protecting the devices connected to it. The circuit breaker
instantly breaks the connection if the current exceeds the variable ‘max_cur-

rent’.

@y

LA
. 1> [| g
&6 & o

I1_out 12 out I3 _out 12

O

9 Simumatik's circuit breaker 8. Simumatik’s circuit breaker 2D

Ports:

- 1M_in: The first-phase input of three-phase electrical power.
- 12_in: The second-phase input of three-phase electrical power.
- 13_in: The third-phase input of three-phase electrical power.

- IM_ out: The first-phase output of three-phase electrical power.
- 12_ out: The second-phase output of three-phase electrical power.
I13_ out: The third-phase output of three-phase electrical power.

- 11: Electrical safety port(input)
- 12: Electrical safety port(output)

Variables

- max_current: maximum allowed value of current, before breaking the
connection

2.4 Motor contactor

A motor contactor is used to turn a three-phase electrical motor on and off. It
has three inputs and three outputs, along with the two auxiliary contacts, x11
and x12. PLCs and other VDC control devices cannot control a three-phase
high-voltage motor directly. A VDC control device is connected via ports x11
and x12. When electrical current flows through ports x11 and x12, it energizes
the coil. The coil generates a magnetic field, which attracts the contacts to

complete the circuit, activating the device connected to the contactor.

11. Simumatik's motor contactor 10. Simumatik's motor contactor 2D

H_in 12.in I3.in

I:;rj???

x12 11 out 12 out I3 _out

Ports:

- M_in: The first-phase input of three-phase electrical power.
- 12_in: The second-phase input of three-phase electrical power.
- 13_in: The third-phase input of three-phase electrical power.

- I1_ out: The first-phase output of three-phase electrical power.
- 12_ out: The second-phase output of three-phase electrical power.
I13_ out: The third-phase output of three-phase electrical power.

- x11: 24V port (input)
- x12: 0V port (input)

2.5 DC Power Supply

DC power supply is used to convert alternating current (AC) to direct current

(DC) for powering different VDC electronic devices.

:

dc_p dc n
12. Simumatik's DC power supply 13. Simumatik's DC power
supply 2D
Ports:
- L1: Phase line that is used to connect to one of the three- phase elec-
tric power.

- N: Neutral line that is used to connect to neutral line of the tree- phase
electric power.

- dc_p: 24V port (output)

- dc_n: 0V port (output)

Variables:

- max_current: Maximum allowed value of current, before breaking the
connection.
- overload: Activates red led light and sends a signal if power is off.

2.6 Three Phase Industrial Socket

11 12 I3 neutral

OO
O O
O

14. Simumatik's three phase in- 15. Simumatik's three phase industrial
dustrial socket socket 2D

A three-phase industrial socket used to supply power to devices that require

three-phase electricity.

Ports:

- IM: The first-phase output of three-phase electrical power.

- 12: The second-phase output of three-phase electrical power.
I13: The third-phase output of three-phase electrical power.

- neutral: OV Neutral connection.

Variables

- max_current: maximum allowed value of current, before breaking the
connection
- overload: Sends a signal if power is off.

2.7 AC Motor

A three-phase electrical motor is used for various tasks in industrial settings,

such as powering heavy machinery like conveyors.

AC_motor_three phase

1 12 I3
@ & @
AXxis
17. Simumatik's AC motor 16. Simumatik's AC motor 2D

- IM: The first-phase input of three-phase electrical power.

- 12: The second-phase input of three-phase electrical power.

- 13: The third-phase input of three-phase electrical power.

- axis: Output that displays and transfers motors rpm value to the con-
nected machinery.

2.8 DC motor

Dc motor is used to power up smaller equipment that does not require much
torque. It operates on 24VDC.

DC_motor
x1

AXis

Axis

X2

19. Simumatik's DC motor 18. DC motor 2D

Ports:

- x1: 24V input port

- x2: 0V input port

- axis: Output that displays and transfers motors rpm value to the con-
nected machinery.

29 DC Relay

DC_Relay 24V _2xNO

A1 11 13
A2 12 14
21. Simumatik's DC relay 20. Simumatik's DC relay 2D

DC_Relay 24V _2xNO is used to control one or multiple VDC devices. Con-
tacts A1 and A2 power the relay, while 2 normally open contacts (11, 12) and
(13, 14) serve as auxiliary ports for connecting other devices. When ports A1
and A2 are energized, normally open contacts complete the circuit, and the

devices that are connected to relays contacts are activated.

Ports:

- A1:24V port

- A2: 0V port

- 11:input port
- 12: output port
- 13:input port
- 14: output port

3 CONTROL DEVICES

3.1 PLC 16 DIO 4AIO

PLC 16 DIO 4AIO has 16 digital inputs and 16 digital outputs, as well as 4 an-
alog input and output ports. The controller can be configured with the help of
various communication drivers, such as opcua_client, twincat_ads, s7protocol,

and many more, to establish connections with third-party software.

PLC_16DIO_4AI0

o
N =

b rack_output

IR ERERRIER Y
treetreel

[
Q0000000

Digital +
inputs —h

Analog
inputs

!
Guey Geonnaey

TrrY |TTTTTYITY

Analog
outputs

[EeTIjIeeeeeey
(111t

23. Simumatik's PLC16DIO4AIO controller 22. Simumatik's PLC16DIO4AIO controller 2D

- x1: 24V input port

- x2: 0V input port

- in_0 -in_15: The range of digital input ports

- out_00 - out_15: The range digital outputs

- analog_in_0 — analog_in_3: The range of analog input ports

- anallog_out_0 - analog_out_3: The range of analog output ports
- rack_output: Optional I0-card

Variables:

- driver_type: Driver selection

- setup_params: The parameters forwarded to the gateway, like ip- ad-
dress and port.

- var_DI1, var_DI2: [Byte] Variable names for the corresponding input

signals.

- var_DO1, var_DO2: [Byte] Variable names for the corresponding out-
put signals

- var_Al1 —var_Al4: [INT] Variable names for the corresponding analog
input signals

- var_AO1 —var_AO4: [INT] Variable names for the corresponding ana-
log output signals

- voltage_range: Analog range voltage setting

- Analog_range: Range of values for analog signals in the PLC software

3.2 Universal Robots Controller

UR controller uses the ur_driver to communicate with the URsim simulation
software and controls the robot. Simumatik’s virtual representation of the UR
controller differs in functionality from

UR_controller
an actual counterpart.

|

IB[[ONUO.Y 10G0Y

L1

L] Power

Digital outputs

Digital inputs

Axis ports

25. Simumatik's UR controller

24. Simumatik's UR controller 2D

Ports:

- IM: The first-phase input of three-phase electrical power.

- 12: The second-phase input of three-phase electrical power.

- 13: The third-phase input of three-phase electrical power.

- in_0 -in_7: Single input bits

- out_0 - out_7: Single output bits

- axis1 — axis6: axis values in radians, prepared for a robot (output port)
Variables:

- controller: Name of the robot
- read_interval: Refreshing time value

4 OTHER COMPONENTS

4.1 Pneumatic compressor

Pneumatic compressor used to power up various pneumatic compo-
nents.

26. Simumatik's pneumatic compressor

Ports:

- out: Pneumatic power output
4.2 Vacuum Gripper

This ideal vacuum gripper is used to grab an object with a suction-cup
using pneumatic power. It can be attached to various robots. The Grip-
per has a built-in sensor that provides an output signal to its connected
device.

Vacuum_gripper_one_cup

Vacuum

v o |
P O—— gripper

27. Simumatik's vacuum 28. Simumatik's vacuum gripper 2D

gripper
Ports:
x1: 24V port for powering up gripper sensor
- x2: 0V port for powering up gripper sensor
- p1: Pneumatic power input, supplied by pneumatic compressor
signal: Output port, that sends detection signal to its connected device

4.3 Conveyor Belts

Every conveyor has motor axis, which can be used to connect a motor. Con-

veyor belts are used to transport items from one point to another.

30. Simumatik's mini conveyor 1000 x 200 29. Simumatik's mini conveyor 500 x 200

mm mm

31. Simumatik's conveyor belt

Ports:

- motor_axis

Appendix 2/4

Wiring diagrams of the Automated Sorting System

w
-
«

4130w

HOAIANOD =

Z 1/eq 1oksnuog

HOAIANCD [

L 3eq Jokenuoo

gl pngzifinomyy

ur g Zu

WEg By | 10j0Ww DY

| 19BeDIq }|noJIo

Alddns Jamed

U002 19400S |eujsnpul

0
=
©

7
T

Jamod aseyd” 9|

< v | !
+caw
HeTlosuag [ealuan
*Z 1osuag |eaipen
2 |7 JOSUSS |EDILBA
I
©7108SU8g [BlUCZIICH
. n‘~|npa|..
| lojoejuodiojow ¢ losuag |gjuozuoH
Q= -Oh
sk ¢~ - —
“ = - TI10SUSS T BIUOZILOH
I
Jiacporow - e i
i - =
o H“,,HM L e.A_.«_ 1ag e 10suag
- =1
an ot 21 o H ik
— @ == 1
S 53N ENIIS & ~euvoH
-3 ¢
1Mo | 10SUBS [BaIlBA
Q - -
&~ -TH
& - o6 &
& - -OH o —
@ - -OH I8MOT £ IOSusS [eBlIUB
© - -H
@ -
Q - -H
17 Han/I

Qlvy 0109L o1d

BMoT ¢ losusg [eanisp

e

& BUBID)Y x0g Iosusg

T I0suag T EUozZI0H

dop u ap)

Alddns 1emog

3

uop &

4

Bujuos~ Alddns " lemod

o gl line zfno i
€ [}]

smdnwn

(HH

O
b]

ut gl

| Jexeslg ynoanD

mo ciine ZIRno 1y

O

urel] urzl

o gl

£Joyesg yNoaIn

fno Z1jano |
Q Q 3

¢ 18ealq 1INDID

9 [< t | € z | L
Z JokeAuoa ebleT _ _ _
aseyd ealy) Jojow QY € 1eq loAaauoo
LOAJANCD 3 _— N p— =
a - : Jleg e "z 1ol oY a
HIAIANCD
EJu QAIANOD
HOAIANDT
iofgauoo ebie R
b 19 JoAaAuoD j=t=1p o
— - 8w 1
o H_j H._v
HL H_ h h _H_M O0—0—0—0 O—0
¥ 5 ¥ 5 -] 0 g @ 0 9 0D g ©
S EERER R
wazifino 2o _
» ¢ S ZLx 19(|oU00 HN }
e 5]
Jojpeiueo Jojow \ \ 9 9 9 9 9 g O@G
.ﬁvﬁ AW bX 9% & & @ w = B EE Z
w gifw 2 1]
Wa gif o zhne)
[Q@ g R _ _ alzlsls
\ Z lojoejuooJojow R i e
" n%:. mﬁ_z_ AV LN
-
el Ao q

Jamod aseyd sauy|

o

18320s |elsnpul

o

$40+30W

| JoAsAUODT|IBWS ZTIolow” DQ

| Jojow™0ad
Z loksauoa”|ewg

WOATANDD o
spe

¢ 1ofsAuoo”|ews

oK Q L%

ON Asjey si010)N DQ

O0—0—0—0—C —0—0—0¢
i 3 T g g g o o
S 2R 2 ¢ g -
Ja||onued YN
¢ losueg O
9 B8 @ g B @ 8 @ o T
S & &8 & ® 5 & B R L 1=
2lxlze
PO
b
7 Josuag O
o—] ~—
| TJosuas
O

1=

1
;+

O

laddub
winnaep,

‘lmy Josse.idwoo onewnsud
_nn _ gl
«gOO

X

— = = It
dno auo Jaddub wnnoep

Bumpog Alddns 1amod

FRdad

32

1

(373

PLC Program for the Stacker Crane

Appendix 3/4

Timer_Cony._Reset
Inisialize_Life T Standard TOH Conveyour_Running
1 I ™ {{xD
L} T W
Tess PT ET) Time_Conv_Reset
Irisialize_Uft Conveyour_Running
o (s
Box_Waiting Siot_Count.
_For_Pickup W
1l
I Q
L2 RESET
— o slat
ow_Y.2
& T
)
Current counter value.
0 ml‘;"“ Slot_Count.Cv
. =)
4—]
Current counter value
Slot_Count.CV.
row_¥.2
7 Q]
Bax_Waiting
_For_Pickup Inisialize_Lift
Tl 7<)
11 0]
Tnistalze_Lift step.0 (rane_Al_Defaull_X
11 s
10 170 i
step.1 Crane_At_Default Y
s 3)
step.2 Grane_X_Move
| <)
step.3 Crane_2_Move
—r)
step.4 Crane_Y_Move
9
step.5 Crane_2_Move
—r s
step.6
{r[} En ENO|—
IF Siot_Count.C¥ = 1 OR Slot_Count.CV = 4 OR Siot_Count.Cv = 7 THEN;
step.7 S= TRUE;
Crane_X_Move S= TRUE;
END_IF;
step.7
Il ENO—
TF Slot_Count.CV = 1 OR Slot_Count.CV = 2 OR Siot_Count.C¥ = 3 THEN;
S= TRUE;
ELSE;
Crane_Y_Move S= TRUE;
END_IF;

)

step.0

——0

step.t

0

step.2

——)

sten.3
—()

step.4

—

step.5

——

step 6

——)

step.7

——()

step.8
step.9
step.10
step 11

—)

step.12

—D

Crane_A_Default X Move_Crane_Left
il {
LI | 4
Horizontal_Sensor_X_3 rane_At_Default X
1l (i
i I Q]
step.0

—

step.d
—()

Crane_Read
¥_To_load_X

—)

step 8 Crane_Z_Move
—r—C)
step.s Crane_At_Default ¥
I s)
step.10 Crane_z_Move
r s
step 11
N5l
s} E ENO
1F Slot_Count.CV = 1 OR Slot_Count.CV = 2 OR Slot_Count.cV = 3 THEN;
Crane_Y_Move S= TRUE:
ELSE;
Crane_At_Default_Y §= TRUE;
END_IF;
step.12 Inisiaiize_Lift

Crave_Rad
¥_To_(sad_X
sea 10

)

*tepd

step 10

e hasd
v.To_Load ¥
e s

L

sup

)

5}

Crane_At_Defaut_ Y

Vertica_Sen
500_Y_3_Lowr

Move,_Crane,_Dowts

s
—

0}

)

T Time_stes 19

Tres —or
Tess — 9T

eks =4, Y
= F i

Crane_X_Move

Move_Ciane_Rght
1

X_Move_Step.2

X_Move_Step.1

[—O]

step.6 X_Move_step.1 X_Move_step.2 Honzontal_Sensor_X_2 Crane_X_Move
R 0 1 11k)
U U ey e A
X_Move_Step.2
—C)
step.7
—:)
step.6 X_Mave_Step.2 Horizontal_Sensor_X_3 (Crane_X_Move
I 1R o =)
U L L q
X_Move_Step.1
——
X_Move_Step.2
—)
step.7
—)
step.6 step.2 Horizontal_Sensor_X_1
A 0 o
v U
step.3
—)
Crane_Y_Move Mave_Crane_Up
1T i
L} 1
Crane_Read Crane_Read
¥_To_Load_x ¥_To_toad_Y Vertical_Sensor_Y_2 row_Y.2 row_Y.3 Crane_Y_Move
-0k 3 a1 ! Nl 0‘,)
i 1] 1o Ul Ul y
step.8
5]
Crane_Read Crane_Read
¥.To_Load_X ¥_To_Load Y Vertical_Sensor_¥_3 row_Y.3 €rane_Y_Move
T [10 1 0l
L] L) L LU) W
step.8
—
Crane_Read Crane_Read
¥_To_Load X ¥_To_Load_¥ Vertical_Sensor_Y_1 Crane_Y_Move
11 1 I I
1 1 I 10 =
step.11 Crane_Read
{1 ¥.To_foad X

5)

Crane_Read
y_To_Load ¥

———{)

step.11 step.5
)
step.11 step.12

-

Appendix 4/4

Program for Universal Robot 5

Program
BeforeStart
i_var_1:=1
i_var_2:=1
i_var_3:=1
Robot Program
If sensorBelt2 and i_var_2Z1 and sensor3
Moved
homePosCov2
Moved
pickPosConv2
Set gripper=0n
Wait: 1.0
If gripped
Moved
homePosCov2
Moved
dropPosConv2
Moved
finalDropPosCo2
Set gripper=0ff
i_var_2:=2
If sensorand i_var 2X2
Moved
basePos
Moved
pickup
Set gripper=0n
Wait: 0.5
If gripped
Moved
basePos
Ifi_var_1£1
MoveJ
DropPos1
FinalDropPos1
i_var_1:=2
Set gripper=0ff
Elselfi_var_1Z£2
MoveJ
DropPos2
FinalDropPos2
i_var_1:=3
Set gripper=0ff
Elselfi_var 1£3
Moved

DropPos3
FinalDropPos3
i_var_1:=4
Set gripper=0ff
Elselfi_var_1x4
Moved
DropPos4
FinalDropPos4
i_var_1:=1
Set gripper=0ff
i_var_2:=1
Wait: 1.0
i_var_3:=2
Wait: 4.0
i_var_3:=1
Moved
LiftUpPos
Thread 3
If sensor3# True ori_var 3X2
Set conveour3=0n
Else
Set conveour3=0ff
Thread_2
If sensorBelt2# True
Set coveour2=0n
Else
Set coveour2=0ff
Thread_1
If sensor# True
Set conveour=0n
Else
Set conveour=0ff

