

Omar Abdullah Mohammed Al-Mashhadani

Micro-Frontends Integration
Strategies: Breaking Boundaries

Metropolia University of Applied Sciences

Bachelor of Engineering

Mobile Solutions

Bachelor’s Thesis

13 May 2024

Abstract
Author: Omar Al-Mashhadani
Title: Micro-Frontends Integration Strategies: Breaking
 Boundaries
Number of Pages: 90 pages
Date: 13 May 2024

Degree: Bachelor of Engineering
Degree Programme: Information Technology
Professional Major: Mobile Solutions
Supervisors: Lassi Sundqvist, EKE’s Project Manager
 Amir Dirin, Senior Lecturer

In the face of a growing emphasis on microservices architecture in software
development, this study investigates its potential application in frontend
development, a term referred to as 'micro-frontends'. Various resources on
frontend development and microservices architecture are analysed, with the
intention of outlining their definitions, benefits, and drawbacks.

Furthermore, this study highlights the increasing demand on micro-frontends
pattern solutions and presents a detailed demonstration of a conventional
project’s transition into a micro-frontends architecture.

This thesis focuses on the frontend infrastructure transformation of the EKE-
Electronics company’s web application. The goal is to enable smoother
transitions between two technologies Angular.js and React.js within a single view
frame by replacing the existing iframe solution with a more efficient micro-
frontends approach.

The thesis discusses three important questions relevant to the field such as what
motivates companies to adopt micro-frontends architectures, the advantages,
and the challenges that may arise during the implementation of micro-frontend.
The thesis involves utilising existing literature, case studies, and industry reports
to identify motivations behind micro-frontends adoption to address the relevant
questions. Benefits are analysed and compared with another architecture,
emphasising scalability and modularity. Challenges in micro-frontends
implementation strategies are analysed, with a focus on modern technologies.

As a result, a functional application was developed. It met user expectations as
a proof of concept migrating a micro-frontends architecture to an existing system.
Further development is needed to address the application’s routing and
authentication issues before it can go into production.

Keywords: micro-frontends, refactoring, integration, microservices architecture

Contents

List of Abbreviations

1 Introduction 1

2 Research Questions and Methodology 2

3 Related Research 4

3.1 Theses of the Same Subject 5

3.1.1 Microservices Implementation on Web Development 5

3.1.2 Moderation Panel for Virtual Event Platform as a MFE Module 6

3.2 General Web Techniques (iframe and SPA) 6

3.2.1 Single Page Application (SPA) 7

3.2.2 Inline Frame (iframe) 9

3.3 Monolith Architecture 10

3.3.1 Definition of Monolith 10

3.3.2 Monolith Types 11

3.4 Microservices 12

3.4.1 Definition of Microservices 12

3.4.2 Motivations for Microservices 14

3.4.3 Disadvantages of Utilising Microservices 14

3.5 Micro-frontends (MFE) 15

3.5.1 Definition of Micro-frontends 15

3.5.2 Micro-Frontends Composition Strategies 16

3.5.3 Microservices vs Micro-frontends 21

3.5.4 Micro-frontends Frameworks 24

3.5.5 In-browser vs Build-time Modules 25

3.5.5.1 SystemJS as In-browser Technique 26

3.5.5.2 Module Federation as Build-time Technique 27

3.5.5.3 Shared Dependencies 27

3.5.6 Different Ways to Make the Web Happen 28

3.5.6.1 Build-Time module Integration 29

3.5.6.2 In-Browser Module Integration 29

3.6 Testing Strategy in MFE Architectures 30

3.7 Module Federation and Webpack 5 31

3.8 Using Nx for Monorepo Management 35

3.9 Comparison between Single-spa and Module Federation 36

3.10 Art of Choosing: Why Choose Module-Federation? 39

4 Designing the Micro-frontends 40

4.1 Existing Solution 40

4.2 Integration Plan 41

4.3 Characteristics of Original Applications before Migration 42

4.3.1 Login Page 42

4.3.2 Dashboard Page 43

4.4 Micro-frontends Application Requirements 44

4.5 MFE Application Overlook Architecture 45

4.6 Testing Strategy 46

4.6.1 End-to-End Testing 46

4.6.2 Why Choose E2E Testing for MFEs? 47

4.6.3 Choosing E2E Testing Tool and Technology 47

5 Implementation 48

5.1 Implementation of App-Shell and Navigation Bar (EKE host) 48

5.2 Implementation of TrainCM (EKE remote 1) 51

5.3 Implementation of TrackCM (EKE remote 2) 54

6 Testing and Results 56

6.1 Testing Plan and E2E Testing 57

6.1.1 Local Context Focus 57

6.1.2 Step-by-Step Journey and Test Plan 57

6.1.2.1 Identifying Test Scenarios 57

6.1.2.2 Map Scenario Steps 58

6.1.2.3 Manual Testing 59

6.2 Implementing E2E Test 60

6.2.1 Testing Hierarchical Structure and Defining Class Names 60

6.2.2 User Authentication Flow: Implementing Login Test Class 61

6.2.3 Navigation between MFEs: Implementing the Test Class 62

6.2.4 Main Testing Class: Performance-UI Testing Class 63

6.3 Manual Testing: Running the MFE Applications 65

6.3.1 Starting the MFE Application 65

6.3.2 Manual Testing 66

6.4 Running Automate Test Cases 68

6.5 Automated Test Results 71

7 Discussion 73

7.1 Micro-frontends in Practice 73

7.2 Answering Research Questions 74

7.3 Transitioning from Monolith to Micro-frontends 78

8 Conclusions 79

8.1 Achievements and Contributions 79

8.2 Future Directions 79

8.3 Closing Remarks 80

References 82

List of Abbreviations

AMD: Advanced Micro Devices

CSS: Cascading Style Sheets

DDD: Domain-Driven Design

HTML: Hyper Text Markup Language

JS: JavaScript

MFE: Micro-Frontend

SEO: Search Engine Optimisation

SPA: Single Page Application

Track-CM: Track Condition Monitoring

Train-CM: Train Condition Monitoring

1

1 Introduction

With the increasing demand for efficient and user-centric web applications,

businesses are searching for innovative architectural solutions to tackle the

complexities of their systems.

This final year project was done at the request of EKE-Electronics/SmartVision,

the leading provider of a Train Control and Management System (TCMS) and

Condition Based Monitoring (CBM) with turnkey project management and safety

control systems (EKE-Electronics Ltd, 2024). EKE has a web application, which

is called Train-CM in this project. It is used internally at the company. In the

frontend module there is a navigation bar containing two-tab buttons, and each

one navigates to a separate application. One of the applications is built using the

old web framework Angular.js and the other is built using the high-level object-

oriented programming language Python (Python, 2024). Both are managed by

iframe, which behaves like a container to manage the routing for both

frameworks. This module needs a rebuild. It is therefore of EKE’s interest to know

if the micro-frontends pattern would be suitable to adopt when rebuilding the

frontend module and replacing Python with a React.js application called Track-

CM (React, 2024). The idea is to host Train-CM and Track-CM on one view by

using a modern micro-frontend and compare it with the current traditional iframe

approach.

In the case of EKE-Electronics company’s Track-CM and Train-CM applications,

this thesis explores the concept of micro-frontends and their integration process.

The aim is to analyse the advantages and disadvantages of the micro-frontends

compared to a monolith architecture on the frontend side and seamlessly

integrating the architecture into the existing applications. One of the applications

currently employs iframes to host distinct views developed with separated

backend and frontend technologies built with Angular.js, resembling a Single

Page Application (SPA) (AngularJS, 2021). However, the current approach of

using iframe presents some challenges such as usability issues and some delay

2

regarding the separate authentication required for each application (Smirnov,

2019).

The Condition Monitoring Track-CM is the other application developed using

React.js. The application is a vital tool for EKE-Electronics company, enabling

real-time monitoring and analysis of crucial systems and equipment. The Python

application is going to be replaced with the Track-CM, which is built with React.js.

At the end, both applications will be hosted by the micro-frontends application

shell.

To address these challenges, a dedicated team will integrate the micro-frontends

architecture into the existing application. This approach involves restructuring the

application as a collection of small, independent frontend modules that can

operate autonomously. This allows the team to enhance specific functionalities

independently and efficiently, such as user authentication, data retrieval, and

user interfaces with different technologies, combining them into one framework.

The main objective of this study is to analyse the impact of adopting micro-

frontends on the performance and user experience of the Condition Monitoring

applications. By utilising microservices for different technologies like Angular.js

and React.js, the team aims to explore the potential of micro-frontends in

managing multi-framework web applications, specifically for a smoother transition

between different technologies within a single view frame.

2 Research Questions and Methodology

The goal of this study is to systematically map, review, and synthesise the state

of art and practices of web frontend architectures and their field. This goal

intended to provide an understanding of the reasons behind the attention given

by practitioners and industrial companies to this architectural style. Additionally,

it is aimed to highlight the benefits and issues linked to micro-frontends.

3

The uniqueness of the micro-frontends architecture enables exploring various

research avenues since the amount of scientific investigation in this field is

limited, especially for the legacy code of Angular.js. For this reason, research

questions were defined to cover the most basic topics to get a comprehensive

view of this subject but not to go too deep into details.

1. What motivates practitioners and industrial companies to adopt micro-

frontends (MFE) architectures for web application development?

2. What are the key benefits and advantages of employing MFE in

comparison to other web front-end architectures?

3. What challenges and issues may arise when implementing MFE, and how

do practitioners address these concerns?

To address the first question, utilisation of existing literature, case studies, and

industry reports are taken to identify the motivations behind the adoption of MFE

architectures. Furthermore, an analysis will be conducted to compare the

identified motivations and benefits with the industry trends and best practices

considering scalability, flexibility, and maintenance advantages of MFE

architecture.

For the second question, a review to the works of literature regarding the benefits

of MFE architectures is undertaken. Additionally, an analysis is conducted to

compare the benefits of traditional monolithic architectures and other frontend

architectures, considering the scalability, modularity, and team independence

aspects of MFE architectures, and highlight their advantages.

For the last question, the challenges and issues related to implementing MFE

architectures will be addressed. The strategies and solutions proposed for

addressing these challenges going to be analysed. The scalability,

communication overhead, and technology compatibility issues and how

practitioners can mitigate them are going to be considered.

4

In addition, the information and insights from the other theses, that can be

addressed the research questions effectively going to be utilised.

3 Related Research

In this chapter, an overview on the related research into the MFEs and their

results is taken. Before diving into the definition of microservices and micro-

frontends, it is important to understand what the Monolith architects are, and what

the challenges of traditional monolithic architectures and the motivations behind

adopting a microservices approach are.

After looking at some theses, an overview of some of the existing techniques

such as SPA, iframe and Module Federation is presented as general web

techniques that are used for both monolith architectures and microservices.

Additionally, other options do exist, but these are the most relevant to this work.

The focus will therefore be directed towards these initially mentioned techniques

to narrow the scope of the research.

The definition of a monolith is introduced with an overview of the architecture and

its pros and cons. Then, the section presents micro-frontends definition, some

scientific work, discussion, and the definitions of the attributes. Additionally, it

outlines methods for software architecture evaluation with highlighting examples

of some scientific work using these methods.

Next, an evaluation of the chosen architecture is provided. This is followed by a

discussion of the methods used in this study. Subsequently, sections covering

the theory necessary to understand the different approaches to implementing

micro-frontends are presented. Following this, sections on the chosen

implementation techniques are included. These techniques involve React.js and

Angular.js frameworks, as well as Single-spa and Model-Federation for migrating

to micro-frontends architecture. Finally, the framework concepts that are

important for achieving the best results in this research are presented.

5

3.1 Theses of the Same Subject

In this section, the topics that are directly related to microservices and micro-

frontends are going to be explored. Specifically, the two key aspects of these

architectural paradigms are going to be explored in detail.

3.1.1 Microservices Implementation on Web Development

This thesis focuses on the evolution of a software architecture from a monolith to

microservices, particularly exploring the concept of MFE as an alternative

structure for client-side web applications. The study acknowledges the growing

trend among large tech corporations, such as Netflix, LinkedIn, and Amazon, in

adopting microservices to enhance flexibility and maintenance. The MFE, an

extension of microservices to frontend development, is introduced to leverage the

advantages of microservices. This approach involves segmenting a monolithic

application into discrete components that can be developed and deployed

independently by separate teams. The research aims to investigate micro-

frontends in the context of migrating from a monolith to an MFE architecture,

emphasising its benefits and implementation process.

The resulting project demonstrates the successful migration of a monolithic

application to an MFE architecture. Despite some challenges in learning the

migration process, the project achieves near-identical functionality to the original

monolithic application. The micro-frontends applications are properly segregated,

allowing independent development and deployment, enhancing the overall

maintainability and flexibility of the system. Performance-wise, the migrated

application performs similarly to the monolithic version, although the impact of

cloud deployment on performance is noted. The study highlights the feasibility of

MFE migration, particularly in smaller application settings, and emphasises the

need for more clarity in migration methods. (Bui, 2021.)

6

3.1.2 Moderation Panel for Virtual Event Platform as a MFE Module

This thesis addresses the challenges posed by the COVID-19 pandemic to the

event industry, leading to the transformation of Liveto Group Oy from organising

physical events to developing a virtual event platform. The company's focus on

creating a comprehensive virtual event solution required the development of an

efficient moderation panel. This panel, operating with minimal moderator

involvement, is developed as an independent micro-frontends module within the

new architecture. The study aims to design and implement a user-friendly

moderation panel that empowers moderators with tools to review chat feed

messages, manage user interactions, and customise chat room settings.

The research process encompasses two core phases: MFE framework

exploration and moderation strategies. The implemented moderation panel

allows moderators to efficiently review and manage chat messages, including

accepting or declining messages and applying word/user blocklists. The panel

offers customisation options at both global and chatroom-specific levels,

providing flexibility in managing moderation settings. This pioneering MFE

module serves as a pivotal component within Liveto’s new modular frontend

architecture, contributing to the platform's enhanced interactivity and user

experience. (Azizyan, 2022.)

3.2 General Web Techniques (iframe and SPA)

In this section, web techniques specifically relevant to the goal of the project are

going to be explored in detail. This thesis aims to replace the proof-of-concept

iframe application for EKE-Electronics Company with multiple single-page

applications (SPAs) utilising the MFE architecture. To achieve this, the concepts

of iframes and SPA going to be explored in detail.

7

3.2.1 Single Page Application (SPA)

A Single Page Application (SPA) is a type of web application that engages with

the user by dynamically modifying the current page rather than loading entire new

pages from the server. In a conventional multi-page application, each interaction

or request usually involves loading a fresh page from the server, which can result

in slower user experiences due to the time it takes to fetch and display new

content. In Figure 1 below, an architectural diagram of an SPA and a monolithic

backend application are displayed.

In contrast, a single-page application loads only one HTML page and dynamically

refreshes its content as the user interacts with it. This is commonly achieved

using JavaScript frameworks and libraries. The initial load of an SPA typically

includes all necessary assets (HTML, CSS, and JS), while subsequent

interactions trigger data retrieval and updates without requiring a complete page

reload. (Mezzalira, 2021.)

Figure 1: Architectural overview of an SPA frontend on top of a monolithic
backend. (Mezzalira, 2021)

8

A list of advantages and disadvantages of SPA based on both Mezzalira’s (2021)

and Newman's (2019, p. 103-104) perspectives can be described as follows:

Advantages:

● Efficient Resource Usage: It downloads the entire application logic upfront,

ensuring efficient utilisation of resources during the user's session.

● Optimised Communication: It communicates with the backend through

APIs, minimising round trips and enabling quick updates.

● Enhanced User Experience: It replicates the fluidity of desktop

applications, providing a seamless and responsive user interface.

● Faster Interaction: Resources are loaded only once, resulting in speedier

interactions and improved overall performance.

● Simplified Development: JavaScript frameworks simplify development by

enabling the creation of dynamic user interfaces.

Disadvantages:

● Potential Performance Issues: There might be slow load times on less

powerful devices, impacting user experience.

● Code Quality Concerns: Poor code implementation could necessitate

extensive refactoring efforts for proper functionality.

● SEO Challenges: SPAs may face difficulties with search engine

optimisation due to their single-page nature.

● JavaScript Dependency: Users with JavaScript disabled will not be able to

use the application, limiting accessibility.

● Initial Load Time: Initial loading of resources may lead to slower page load
times though later interactions are quicker.

● Complexity in Development: The unique architecture of SPAs introduces

complexity, particularly in larger applications or when managed by

distributed teams.

9

In summary, a Single-Page Application (SPA) is a web application that delivers a

seamless user experience by dynamically updating content without requiring full

page reloads. This is achieved using JavaScript frameworks, resulting in faster

responsiveness and efficient resource usage. Both Newman's and Mazzelira’s

descriptions emphasise the elimination of page reloads, dynamic content

updates, and the role of JS frameworks in creating SPAs.

3.2.2 Inline Frame (iframe)

An iframe, short for inline frame, is an HTML element that enables the embedding

of another HTML document within the current one. This creates a distinct web

page loaded within the existing page context. (Mezzalira, 2021.)

There are some advantages and disadvantages to iframe. A list to cover both as

follows:

Advantages:

● Seamless Integration: Iframes facilitate effortless integration of external

content into the site.

● Content Isolation: By loading iframe content separately, isolation is
achieved, enhancing security and mitigating conflicts with other scripts.

● Dynamic Display: Iframes dynamically loaded content like ads or social

media feeds is employed without necessitating a complete page reload.

● Precise Control: It enhances security by providing fine-grained control

over the content that runs within each iframe.

● Micro-frontends Encapsulation: Iframes with sandboxes is utilised to

encapsulate micro-frontends, thereby minimising complexities, and

memory usage.

● Prevent Leakage: Data confinement within iframes is ensured while

enabling controlled inter-iframe communication.

● Dependency Efficiency: Redundant downloading of dependencies for

micro-frontends in desktop applications is prevented. (Mezzalira, 2021.)

10

Disadvantages:

● SEO Implications: iframes can pose challenges for search engine

crawling and content indexing, impacting site SEO rankings.

● Performance Impact: The utilisation of iframes can introduce additional

HTTP requests, potentially slowing down overall page loading times.

● Accessibility Concerns: Users dependent on assistive technologies like

screen readers may encounter navigation difficulties within iframes.

● Security Vulnerabilities: iframes can be exploited to load malicious

content or execute clickjacking attacks.

● Suitability Constraints: While advantageous, iframes may not be ideal

for every project, particularly for mobile or public-facing applications due

to accessibility and performance limitations.

● Load Time Variation: iframes might exhibit slower loading speeds

compared to alternative implementations, especially on low-end

devices.

● Interaction Limitation: Highly interactive or real-time applications may not

be optimally represented by iframes. (Mezzalira, 2021.)

3.3 Monolith Architecture

In this section, an overview of the monolithic architecture is provided to explore

various types and discuss some of the architectural challenges. This foundational

understanding will prepare for a deeper exploration of microservices and the

MFE architecture in the upcoming sections.

3.3.1 Definition of Monolith

A monolith is a “unit of deployment” that refers to a specific type of software

architecture. In this architecture, all the functionality of a system is tightly coupled

and must be “deployed as a single process” (Newman, 2020, p. 12). This means

that any changes or updates to the system require deploying the entire codebase,

11

including all its components and dependencies “with few complications and

risks”. (Mezzalira, 2021.)

3.3.2 Monolith Types

There are three types that can be defined as a monolith:

● Single-Process System: In this type of a monolith, all the code and

functionality run within a single process. This can lead to challenges in

scalability and maintainability since any increase in load or new features

necessitates scaling up the entire monolithic application.

● Distributed Monolith: This variant of a monolith involves breaking down the

codebase into multiple processes or components. However, despite the

distribution, these components remain tightly coupled and dependent on

each other. Consequently, deploying changes to one component often

requires deploying the entire distributed monolith.

● Third-Party Black-Box Systems: In some cases, a monolith may include

third-party components or modules that are integrated tightly into the

system. These black-box components become integral to the functioning

of the monolith, making it necessary to deploy them together with the rest

of the codebase. (Newman, 2019, p. 12-14.)

3.3.3 Challenges of Monolithic Architectures

In traditional monolithic architectures, an entire application is built as a single,

large codebase. While this approach might be manageable for smaller projects,

it becomes increasingly challenging as the application grows and complexity over

time. Some common challenges of monolithic architectures include:

● Scalability: Scaling a monolithic application can be difficult as the entire

application needs to be replicated, even if only certain components require

more resources.

12

● Maintainability: As the codebase grows, it becomes harder to maintain and

make changes without unintended side effects, leading to longer

development cycles.

● Deployment Bottlenecks: Since the entire application is deployed as a

single unit, making frequent updates can be risky and time-consuming.

● Technology Diversity: It becomes challenging to use different technologies

or programming languages within the same monolith, limiting flexibility and

innovation. (Newman, 2019, p. 15.)

3.4 Microservices

In this section, an overview of the microservices architecture in general from a

concept and an architectural perspective is presented. Some of the architectural

key motivations and disadvantages going to be discussed. This foundational

understanding will prepare us for a deeper exploration of the MFE architecture in

the upcoming sections.

3.4.1 Definition of Microservices

Given the context of the challenges posed by monolithic architectures, The

definition of microservices can be as follows:

From a concept perspective: The concept of a microservices is an architectural

decision that diverges from the traditional approach of building a single, extensive

application known as a monolith. Instead, it involves breaking down or

restructuring the application into smaller independent services, each with its own

distinct role within the system “allowing teams full ownership and independent

evolution of the codebase” (Mezzalira 2021). At its most basic level, this can be

described as having individual services that are responsible for specific tasks. In

this way, every service has a purpose for existing and can undergo changes

based on their designated role.

From an architectural perspective: “[M]icroservice architecture is based on

multiple collaborating microservices referred to as service-oriented architecture

13

(SOA)”. It makes sense to avoid a massive, complex codebase that has been

built over a span of 15 years. Instead, developers can opt for a more practical

approach by adding focused and targeted services on the side. This allows them

to circumvent the inherent complexity of their legacy code when making changes.

By breaking down the application into smaller, manageable components,

microservices enable faster development cycles, more flexible deployment, and

improved maintainability. Microservices are referred to as “independent

deployable services modelled around a business domain, using networks to

communicate with each other”. (Newman, 2019, p. 1.)

Few organisations exclusively rely on microservices; many still maintain

monolithic systems as their core infrastructure while incorporating newer

microservices at the periphery. The monolith serves as the central system that

keeps everything running smoothly while additional functionalities are added

through microservices at various stages throughout the expanding system. It is

simply a choice, and one does not have to strictly adhere to one method or the

other.

This analogy can be likened to the solar system of the earth, where the sun

represents the monolith at the centre and an increasing number of microservices

act like planets orbiting around it. As the system expands outward with new

features and functionalities, these smaller modularised services provide flexibility

and ease of management without compromising stability. (Very and Bell Main,

2023.)

In contrast, modern architectures like microservices promote loose coupling,

enabling developers to work on smaller, independent components and have

better experience by working with preferred technology. This approach fosters

agility, scalability, and easier maintenance, making it increasingly popular in

contemporary software development practices.

14

3.4.2 Motivations for Microservices

Microservices offer an alternative approach to tackle the challenges posed by

monolithic architectures. Some key motivations for adopting microservices

include:

● Modularity: microservices promote modularity by breaking down the

application into smaller, independent services, making it easier to develop,

maintain, and understand.

● Scalability: Each microservice can be scaled independently based on its

specific resource requirements, allowing for more efficient resource

utilisation.

● Faster Deployment: With microservices, smaller and focused codebases
can be deployed independently, enabling faster and more frequent

updates.

● Technology Flexibility: Different microservices can be built using diverse

technologies, enabling teams to use the best tools for specific tasks.

● Team Autonomy: Microservices facilitate team autonomy since each team

can work on a specific microservice, making development and decision-

making more streamlined.

(Newman, 2019, p. 6; Mezzalira, 2021.)

3.4.3 Disadvantages of Utilising Microservices

There are some pitfalls to working with microservices. “It brings many benefits to

the table but can bring many drawbacks as well” (Mezzalira, 2021). These

benefits and drawbacks are listed below:

● Capital investment is required to ensure that automation, observability,
and monitoring are in place to effectively manage a decentralised system.

● An incorrect definition of the boundaries of microservices can result in

strong interdependencies between services, necessitating their

deployment together on each occasion.

15

● When this situation occurs across multiple services, it can lead to a

complex and unwieldy system that is challenging to enhance due to its

intricate nature.

● The complexities associated with implementing a services architecture

may outweigh its benefits and become more burdensome than

advantageous.

● It is crucial to adopt microservices only, when necessary, rather than

haphazardly follow the trend simply because it represents the newest and

most popular approach.

3.5 Micro-frontends (MFE)

In this section, the intricacies of micro-frontends (MFE) architecture going to be

explored. The core concepts, explore popular techniques and approaches, and

draw comparisons with microservices is going to be examined. Additionally,

various approaches to determine the most suitable one for our project are

explored. Lastly, we’ll explore effective testing strategies within the context of

MFE architecture.

3.5.1 Definition of Micro-frontends

The concept of micro-frontends can be defined as the division of a business

domain into autonomous and independently deliverable components, each

owned by a single team. The main idea is to divide the application into smaller

pieces where each one is responsible for doing very specific functionalities. In

this case, teams can take full ownership and independently evolve their

respective codebases (see Figure 2). A suitable micro-frontends strategy could

be achieved by different factors of consideration, such as project requirements,

organisational structure, and developer expertise. The main principles of

underlining micro-frontends which include representing distinct business

domains, maintaining an autonomous codebase, enabling independent

deployment, and ensuring single-team ownership must be considered. Micro-

frontends present numerous advantages in terms of flexibility and adaptability,

16

but making informed decisions requires careful consideration of these factors.

Figure 2 shows an overview of the MFEs architecture with end-to-end teams’

ownership. (Mezzalira, 2021.)

Figure 2: Micro-frontends architectural with end-to-end teams’ ownership.
(Mezzalira, 2021)

3.5.2 Micro-Frontends Composition Strategies

When designing a micro-frontends application, early architectural decisions play

a crucial role in shaping the project's trajectory. The fundamental choice revolves

around the technical perspective for micro-frontends, presenting two primary

options:

● Horizontal Split: This approach involves integrating multiple micro-

frontends onto a single page. However, it necessitates effective

coordination among different teams, each responsible for a specific

section of the user interface.

● Vertical Split: In this scenario, individual teams take charge of distinct

business domains like authentication or payment processes, so the

principles of Domain-Driven Design (DDD) come into play, ensuring a

more cohesive structure.

(Mezzalira, 2021)

17

These architectural decisions are shown in Figure 3, which provides a visual

representation of the horizontal and vertical splits in micro-frontends applications,

highlighting the coordination among teams and the alignment with DDD

principles.

Figure 3: The micro-frontends decision framework. (Mezzalira, 2021)

In a horizontal split setup, a key concern is establishing communication between

micro-frontends. One effective method is utilising an event emitter, injected into

each micro-frontend. This approach ensures the autonomy of each micro-

frontend and facilitates independent deployments. By emitting events, micro-

frontends can trigger appropriate reactions in other subscribed micro-frontends.

Custom events are also an option, requiring them to bubble up to the window

level to be heard by fellow micro-frontends. This entails all micro-frontends

listening to all window-level events, either dispatching events directly to the

window object or propagating them upwards for communication. (Mezzalira,

2021.)

The vertical split configurations need a clear understanding of information sharing

among micro-frontends. Regardless of the split approach, considerations arise

for communicating view changes. Techniques like passing variables through

query strings or using URLs to transmit concise data (with the new view retrieving

supplementary information from the server) are viable. Alternatively, leveraging

web storage mechanisms such as session storage for temporary or local storage

18

for more enduring data can facilitate information exchange among micro-

frontends. (Mezzalira, 2021.)

Figure 4 provides a visual comparison between horizontal and vertical splitting,

showing the differences in communication strategies and architectural layouts.

Figure 4: Horizontal versus vertical splitting. (Mezzalira, 2021)

Three different approaches can be used for composing micro-frontends

applications.

The first approach is Server-Side Integration (SSI). This strategy employs server-

side technology to seamlessly incorporate the HTML content of one micro-

frontend into another. This is achieved through dynamic inclusion using a

templating engine or similar server-side tools.

When using server-side to render micro-frontends, the web server takes the place

of a command like “<!--#include virtual=”/team-catalog” à” as shown in Listing 1.

19

Listing 1: Example of server-side rendering micro-frontends. (Mezzalira, 2021)

It does this by replacing the instruction with the actual content from the specified

URL before delivering the page to the user’s browser. These URLs are often set

in the server’s settings, as illustrated in Listing 2. This specific example employs

a technique called Server-Side Include (SSI), but there are alternative methods

available. For instance, the Edge-Side Includes (ESI) method is a viable choice

for achieving server-side rendering in micro-frontends, which is going to be

discussed in the next bullet point.

Listing 2: Example of proxy server config. (Mezzalira, 2021)

The second approach is Client-Side Integration (CSI). This method harnesses

client-side tools like JS to blend the HTML content of one micro-frontend into

another. Utilising JS libraries or frameworks, the content from one MFE is

dynamically loaded into the context of another.

20

Another option entails employing a combination of iframes to load numerous

micro-frontends. An iframe, functioning as an HTML element, is harnessed on the

client-side to embed an additional HTML document within the present one. This

technology provides a means of isolating disparate domains, mitigating the

possibility of conflicts between codebases maintained by separate teams.

(Mezzalira, 2021.)

Client-Side rendering micro-frontends enables the division of the web page into

micro-frontends. For example, the Listing 3 below demonstrating an HTML file

that contains the remotes and host tags for the micro-frontends.

Listing 3: Example of client-side rendering an HTML file of micro-frontends.
(Mezzalira, 2021)

The HTML file need a JS code to render the micro-frontends as shown in the

Listing 4 below.

Listing 4: Client-side rendering JS code to render micro-frontends. (Mezzalira,
2021)

21

In the given instance, page.js functions as the application shell, orchestrating the

assembly of all loaded fragments beneath it and inserting the resulting content

into the main tag. Both the application shell and the accompanying applications

operate within the browser environment.

The third approach is Edge-Side Integration (ESI). Here, cutting-edge

technologies like content delivery networks (CDNs) or advanced edge caching

systems are employed. The HTML content of one micro-frontend is merged into

another through specialised markup, such as ESI, which dictates both the content

to be merged and the conditions dictating its integration. (Newman, 2019, p. 100;

Mezzalira, 2021.)

In Figure 5, an overview of the three micro-frontend composition approaches is

provided in a diagram form.

Figure 5: Micro-frontends composition diagram. (Mezzalira, 2021)

3.5.3 Microservices vs Micro-frontends

Microservices and micro-frontends are distinct strategies for organising software

development based on business and functional boundaries. Microservices

involve breaking down a large application into self-contained, autonomous

services that operate independently. Each service corresponds to a specific

22

business capability, communicates via APIs, and can be developed, deployed,

and scaled autonomously. (See Figure 6.)

Figure 6: Microservices with monolith frontend. (Mezzalira, 2021)

On the other hand, micro-frontends pertain to web development and entail

dividing a web application into discrete, autonomous frontend modules. These

modules handle distinct user interface components, are capable of independent

development, deployment, and scaling, and interact through APIs or events. (See

Figure 7.)

Figure 7: A high level diagram showing the collaboration between Microservices
and Micro-frontends within application architecture. (Mezzalira, 2021)

23

Although both microservices and micro-frontends enable autonomous

development, deployment, and scaling, they diverge in focus and domain.

Microservices primarily address backend concerns, managing business logic and

functionality, whereas micro-frontends concentrate on frontend aspects,

governing user interface components. Furthermore, microservices are typically

the realm of backend developers, whereas frontend developers usually handle

micro-frontends.

On the other hand, Mezzalira (2021) and Newman (2019, p. 28) mention the

same microservices principles that can be applied to micro-frontends.

The following list provides the shared principles that can be applied for both

architectures:

● Modelled Around Business Domains: “Modelling around business

domains is a key principle brought up by domain-driven design (DDD)”

(Mezzalira, 2021). It is important to organise software around business

domains, utilising shared language and clear boundaries to enhance

understanding and teamwork.

● Cultural of Automation: A strong culture of automation is established to

support micro-frontends, ensuring smooth integration and rapid

feedback loops.

● Hide Implementation Details: Implementation details are hidden and

contracts are enforced to enable effective communication between

different parts of the application without disrupting other teams.

● Decentralised Governance: Teams are permitted to make domain-

specific decisions within established guardrails, promoting expertise and

sharing the best practices.

● Deploy Independently: Independent deployment of micro-frontends is

enabled, thereby avoiding delays caused by external dependencies and

tailoring technical solutions to specific challenges.

24

● Isolate Failure: Potential network failures or errors are addressed by

providing fallback content or the hiding of specific sections of the

application, thereby enhancing the user experience.

● Highly Observable: Frontend observability is prioritised through the

utilisation of tools such as Sentry and LogRocket to quickly diagnose

and resolve issues, aligning with microservices principles.

(Mezzalira, 2021; Newman 2019, p. 28.)

Figure 8 below providing an overview of the shared principles between

microservices and micro-frontends architectures.

Figure 8: Summary of Micro-frontends Principles. (Mezzalira, 2021)

3.5.4 Micro-frontends Frameworks

What is Single-spa and what are the pros and cons of using it? Single-spa is a

JavaScript framework for building micro-frontends. It allows developers to build

applications using multiple frameworks, such as React, Angular, Vue.js, and

more, all in a single page application (SPA) (Angular, 2024; Vue.js, 2024). Single-

spa provides a set of utilities and APIs that enable developers to create a modular

architecture for their applications, where each module is a self-contained micro-

frontend that can be developed, tested, and deployed independently. (Single-spa,

2024.)

25

 According to Mezzalira (2021), there are some advantages and disadvantages

that can be listed as follows:

Advantages:

● Enables building micro-frontends with multiple frameworks within a single

page application.

● Provides a set of utilities and APIs for creating a modular architecture for

applications.

● Each module is a self-contained micro-frontend that can be developed,

tested, and deployed independently.

● Allows team/squad independence, no release trains, code freezes, merge

conflicts, and long-lived feature branches.

● Helps avoid QA frustration with testing environments changing/not

changing.

(Single-spa, 2024.)

Disadvantages:

● Requires investment in automation, observability, and monitoring to

manage a distributed system effectively.

● It causes a risk of incorrectly defining microservices boundary, resulting

in strong coupling between services and mandatory deployments.

● It may result in a complex system that becomes hard to extend over time,

leading to a “big ball of mud” architecture.

● Is time consuming, and since this topic is quite new, it requires a lot of

effort to find the resources.

(Single-spa, 2024.)

3.5.5 In-browser vs Build-time Modules

In the micro-frontend’s world, there are two approaches to get the application on

the browser, In-browser JavaScript modules versus build-time modules. In an in-

26

browser module the browser handles imports and exports directly, without the

build tool getting in the way. On the flip side, build-time modules come from the

node_modules, get compiled before reaching the browser, and that is the usual

drill.

Now, here's the interesting part. If some dependencies want to be kept untouched

during the build process, they can still come straight from the browser. It is

possible to use Webpack externals or rollup externals. (Single-spa, 2024.)

3.5.5.1 SystemJS as In-browser Technique

As it appears in the Single-spa library recommendation, SystemJS is the best

choice if the decision is within browser modules (Single-spa, 2024).

SystemJS is a tool that mimics import maps and in-browser modules. However,

it is not a full-on polyfill for import maps because of some JS limitations in handling

those bare import specifiers to URLs.

Since SystemJS is more like a polyfill, it needs to be compiled in the applications

into a specific format called System.register, not the usual ESM format. After it is

compiled, it will fully emulate in-browser modules in environments that might not

be working in the best way with modules or import maps.

To make the code work with System.register, the Webpack is going to be

configured to the target system as the output.library target or set the rollup's

format to the system. This is almost equal to giving the code a different language

to chat with the browser.

However, some popular technologies like Angular.js do not have System.register

versions of their libraries. Nevertheless, these technologies can be obtained from

the esm-bundle project. Although. SystemJS can also load them using some

methods like global loading or the AMD and named-exports extras. (Single-spa,

2024.)

27

3.5.5.2 Module Federation as Build-time Technique

Module Federation is a very useful tool used by the Webpack (Webpack, 2024)

to share modules when building websites. Each little section of the site (micro-

frontends) bundles up all its modules and dependencies, even the modules are

shared with other sections. Each shared module or dependency is envisioned to

have multiple copies, with one designated for each section.

When opening the site in the browser, it grabs the first copy of the shared modules

or dependencies. The other sections do not need to download it again; they just

reuse what's already there. It needs to be brought to the playground once only.

It is good to keep in mind that Module Federation is quite new (as of now), and it

needs Webpack version 5 or higher. It is still a learning and growing process.

Is it possible to mix both Single-spa and MFE? The answer is that Single-spa

helps to organise how different parts of the site are connected. Module-

Federation, on the other hand, makes it run faster and work well.

When Module Federation is used, a decision needs to be made on how to load

the micro-frontends. The Single-spa experts suggest using SystemJS and import

maps. It is like a special way of bringing in those sections. A global variables and

<script> elements are also another available option to load the micro-frontends.

When it comes to sharing outside third-party dependencies, it is recommended

to pick either import maps or module federation in Single-spa. It is not

recommended to mix them up. The single spa team prefers to work with import

maps, but they work with module federation as well. (Single-spa, 2024.)

3.5.5.3 Shared Dependencies

To keep the web application fast, it is recommended to load big libraries like

React, Vue, and Angular only once. Although small libraries can make upgrades

28

faster with duplication in each part of the site, it is still not recommended to make

everything shared. For the big libraries such as React.js and Moment.js, it is

recommended to consider sharing. There are two ways to share:

1. In-browser modules with import maps (SystemJS)

2. Build-time modules with Module-Federation

It is possible to pick one or both. Right now, the Single-spa team suggests sticking

to import maps, but module federation works too. More details about comparison

can be seen in Figure 9 below. (Single-spa, 2024.)

3.5.6 Different Ways to Make the Web Happen

Figure 9: Simple compression of the two approaches. (Single-spa, 2024)

The real challenge in micro-frontends is to break down a big web application into

smaller, more manageable pieces. It is like having a favourite pizza but sliced into

bite-sized portions – easier to handle and share.

Micro-Frontends are all about making the web development life simpler. Instead

of dealing with one massive monolith, it can be broken down into smaller, self-

contained parts. Each part of the website could be used independently, to

function without relying too much on the other parts. On the other hand, breaking

down a monolith application can be a complicated process.

There are a few methods by which micro-frontends can be implemented, with the

selection of the appropriate tool being crucial for the successful execution.

However, a decision needs to be made first to choose which of the two

approaches is more fit to the goal.

29

3.5.6.1 Build-Time module Integration

With Build-Time Integration, the necessary resources for each part of the website

are prepared during the building process. The process is efficient, organised,

resulting in a seamlessly integrated web application. Achieve this goal requires

the employment of a bundler. Various options, such as Gulp, Rollup, and

Webpack bundler, are available. (Single-spa, 2024.)

Manfred Steyer introduced a new tool called “angular-architects/module-

federation” (Steyer, 2020) to address micro-frontends issues. This tool works well

only with Webpack 5 or higher. The tool is easy to use and gives the ability and

the flexibility to choose which component to expose. The tool provides a perfect

solution for the Angular.js legacy application. It simplifies integration, especially

with a straightforward example provided by Manfred Steyer. The provided

example explains how to get multi-repo applications (remotes) working together

in one app-shell (host) without the need for Single-spa library and its complicity.

Instead using Angular-CLI. (Steyer, 2020.)

3.5.6.2 In-Browser Module Integration

Imagine the web application as a canvas, and each micro-frontend is a stroke of

paint. Import Maps are like a browser rulebook that helps connect the dots

between what is called an 'import specifier' (basically, what module to load) and

a URL. However, it should be noted that Import Maps are not universally

supported by all browsers. To bridge the gap, SystemJS is brought in, serving as

a supporting mechanism to ensure the loading of import maps in the browser.

With the power of SystemJS, the browser takes on the role of an artist, putting

everything together in real-time. It is like a masterpiece unfolding as the users

navigate through the site. Import and export are resolved within the browser.

Some of the dependences are left to the browser, which should take care of

building them.

30

SystemJS serves as a type of polyfill rather than the primary solution. When

preparing applications, opting for the System.regester format instead of the usual

ESM format is preferable. This approach will mimic in-browser modules,

particuarly in scenarios where modules or import maps might not be the optimal

choice yet.

To ensure smooth functionality of the System.register format mentioned earlier,

adjustments need to be made to Webpack by configuring the output in 'system'

mode or setting up rollup in 'system' format. This ensures that the intended polyfill

approach mimics in-browser modules effectively, particularly in scenarios where

modules or import maps might not be the optimal choice yet.

3.6 Testing Strategy in MFE Architectures

Testing MFE applications can be a challenging process. There are several testing

strategies for testing MFE applications. Ensuring robust testing is crucial for

maintaining code quality and seamless user experiences. Here are the key

strategies:

1. Unit Testing for Micro-frontends Components.
First, writing unit tests for each individual component within the micro-

frontend. These tests focus on the smallest units of functionality, ensuring that

each component behaves correctly in isolation.

2. Integration Testing for Communication Verification.
After unit tests, integration testing and verify communication between different

micro-frontends is the next steps. That will ensure the micro-frontends can

collaborate effectively and the micro-frontends data can be exchanged as

expected.

3. End-to-End (E2E) Testing for Simulating User Interactions.
E2E testing simulates real user interactions with the application because it

covers scenarios where multiple micro-frontends work together. E2E is also

31

used to validate the entire flow, from user input to backend communication.

Using E2E testing gives the possibility to do cross-browser checks which is

essential to ensure compatibility across different browsers.

4. Performance Testing and Isolating Failures.
Testing and assessing the performance of the micro-frontends is needed to

Identify the bottlenecks, slow-loading components, or resource-intensive

processes. It is an important testing strategy to isolate failures and optimize

performance to enhance user experience.

5. Testing API Contracts for Consistency.
MFEs often communicate with APIs so testing API contracts to ensure

consistency and prevent unexpected changes is a very important process to

ensure application consistency. Contract testing helps maintain stability and

compatibility.

6. Addressing Cross-Component Interaction Challenges.
Micro-frontends involve multiple smaller units working together (LambdaTest,

2023). The collaboration between the micro-frontends poses some challenges

such as data sharing, UI integration, and synchronisation.

To overcome the challenges, strategies such as using mock data, UI testing tools,

wait mechanisms, and conducting API verification are recommended. Moreover,

parallel test execution, realistic environments, and seamless integration into

development pipelines emerge as an essential factors.

3.7 Module Federation and Webpack 5

Module Federation was introduced in Webpack 5. It is the newest straightforward

solution that allows loading code from a compiled, deployed, and separated

application. Module Federation is the best approach so far for implementing shell-

based architecture. (Jackson, 2023.)

32

Module Federation is an advanced feature in Webpack, enables JavaScript

applications to dynamically load code from other applications. (Jackson, 2023.)

The key advantages of using Webpack 5 and Module Federation can be

highlighted as the following points (Steyer, 2020):

● Module Federation enables referencing parts of other applications

dynamically, even if they are not known at compile time.

● Module Federation is particularly useful for MFEs that are compiled

separately.

● One of the key advantages is the ability for individual program parts to

share libraries.

● Preventing duplication in individual bundles.

● Module Federation allows to share libraries between the host and the

remotes MFEs.

● Module Federation comes with several strategies for dealing with version

mismatches.

3.7.1 Types of MFE In Module-Federation

There are two types of applications in Module-Federation, host and remote. The

host application in this case is app-shell. It is hosting all the MFEs by using the

router to lazy load every MFE. Listing 5 shows how @angular-architect-module-

federation-tools is warping one MFE and how it is given back the MFE as web

component with its options:

33

Listing 5: Routing management of MFE in the host application. (Steyer, 2020)

The paths in the webpack.config.js needs to be configured to start with the MFE

that are directing to another project, as seen in Listing 6.

Listing 6: Webpack config of the host application. (Steyer, 2020)

In Listing 6 above, the remotes map the path MFE to a totally separated compiled

micro-frontend. This lightweight file is generated when building the remote by the

Webpack as seen in Listing 7 (Steyer, 2020).

During the runtime the Webpack is taking care of loading the generated

lightweight file to get all the information required to interact with the defined MFE

by using the Module Federation plugin, as seen in Listing 7 (Steyer, 2020).

The other type of application in Model-Federation is the remote. Every MFE in

our project is presenting a remote (Steyer, 2020).

34

Listing 7: Module Federation plugin configuration of an MFE application. (Steyer,
2020)

In production, a more dynamic approach is needed rather than using the

specified URL. A specified URL was chosen because it is more convenient for

development.

3.7.2 Generating a Manifest for Dynamic Module Federation with Angular

With Angular architects and Module Federation, a dynamic host can be generated

to take the key data representing the MFE from a JSON file at runtime. The

following is the command needed for installing it:

This command generates a skeleton of three files:

● a Webpack configuration

● the manifest

● some code in the main.ts file for loading the manifest

35

After the skeleton being generated, the manifest file will be location in the shell

application. It contains the paths for the MFEs, as seen in the Listing 8.

Listing 8: An example of manifest file structure for MFE application. (Steyer, 2020)

The focus of this thesis leans towards running it in the local environment; thus,

the details of the deployment and manifesting are not covered. However, more

details are elaborated in the Steyer’s blog under the title “Dynamic Module

Federation” (Steyer, 2020).

3.8 Using Nx for Monorepo Management

Nx is a robust open-source build system designed to streamline the management

of monorepo projects, and it is particularly beneficial for micro-frontends

architectures. It offers an array of tools and methodologies geared towards

augmenting developer efficiency, optimising Continuous Integration (CI)

performance, and upholding code quality standards.

Nx provides many great benefits. Here are some of the core features:

1. Efficient Task Execution: Nx executes tasks concurrently while

intelligently sequencing them based on their interdependencies. This

approach enhances build speed and overall project efficiency.

2. Local and Remote Caching: Nx incorporates both local and remote

caching mechanisms to mitigate unnecessary task re-execution.

Caching intermediate artifacts, it significantly reduces development

cycle times, thereby maximising productivity.

https://www.angulararchitects.io/blog/dynamic-module-federation-with-angular/

36

3. Automated Dependency Management: Leveraging Nx plugins

empowers developers with advanced functionalities such as

automated code generation and dependency management. These

tools streamline the process of upgrading codebases and

dependencies, ensuring projects stay current with the latest standards

and libraries.

4. Customizability and Extensibility: Nx offers extensive

customisation options, allowing developers to tailor the build system

to suit specific project requirements. Whether creating bespoke

plugins or fine-tuning existing features, Nx provides flexibility to adapt

to diverse development environments. Additionally, developers have

the option to contribute their custom plugins to the community,

fostering collaboration and knowledge sharing.

In addition, Nx serves as a great solution for monorepo management, offering a

smoother development experience characterised by accelerated task execution,

efficient caching mechanisms, automated dependency management, and

extensive customisation capabilities. (Nx, 2024.)

3.9 Comparison between Single-spa and Module Federation

Both approaches offer valuable options for micro-frontends (MFE)

implementation, but the choice between them depends on the specific

requirements and nature of the project. The following Table provides a

comprehensive comparison of these approaches, aiding in the selection of the

most suitable option for the project.

Table 1: A comparison between Single-spa and Module-Federation. (Tiwari,
2023; Mezzalira, 2021; Single-spa, 2024)

Feature Single-spa Module-Federation

37

Flexibility - Supports different

JavaScript frameworks.

- Allows mixing and

matching of micro-

frontends with different

frameworks.

- Native Webpack support.

- Leverages Webpack 5 or

later.

Framework

agnostic

- Supports multiple

frameworks within the

same application.

- Allows independent

development of micro-

frontends with chosen

frameworks.

- Simplified integration with

Webpack.

- Reduction in custom code

for setup.

Dynamic

loading

- Supports lazy loading for

efficient resource use.

- Dynamically loads micro-

frontends as needed,

reducing initial load time.

- Enables dynamic loading

for on-the-fly updates.

- Facilitates dynamic loading

with less manual

configuration.

Custom

configuration

- Requires custom

configuration for

managing dependencies

and routing.

- Custom API for

orchestrating

communication and data

sharing.

- Provides a clear structure

for module sharing and

consumption.

- Granular control over

shared dependencies.

Community

support

- Active community with

ongoing development and

support.

- Growing community with

increasing adoption.

Scalability - Suited for various

frameworks and mixed

environments.

- Well-suited for large-scale

applications and

enterprises.

38

Complexity - May require more custom

configuration.

- Streamlined integration

with Webpack.

Learning

Curve

- Potential steeper learning

curve due to flexibility.

- Aligns closely with

standard Webpack

practices.

After looking at Table 1 above, there are still a few things to consider before

choosing an approach to help make the best suitable choice for the project. Table

2 below is a simple summarisation of some key considerations. (Tiwari, 2023;

Mezzalira, 2021; Single-spa, 2024.)

Table 2: A summarise of some key considerations to help choosing approch for
implementing micro-frontends.

Consideration Single-spa Module-Federation

Use Case - Flexibility in supporting

various frameworks within

the same application.

- Allows mixing and

matching of micro-

frontends with different

frameworks.

- Native Webpack solution,

especially beneficial for

those heavily invested in

Webpack.

Community

and

ecosystem

- Established a community

with diverse plugins and

extensions.

- Benefits from the broader

Webpack ecosystem as it

is part of Webpack.

Complexity - May require more custom

configuration for managing

dependencies and routing.

- Provides a more

streamlined solution,

being integrated with

Webpack.

Learning

curve

- Potential steeper learning

curve due to flexibility and

customisation options.

- Aligns more closely with

standard Webpack

practices, potentially

reducing the learning

curve.

39

In summary, choosing between Single-spa and Module Federation for

implementing micro-frontends involves careful consideration of the various

factors. While Single-spa offers flexibility in supporting different frameworks

within the same application and has an established community, Module

Federation provides a native Webpack solution and benefits from the broader

Webpack ecosystem. However, Single-spa may require more custom

configuration and could have a steeper learning curve, whereas Module

Federation offers a more streamlined solution and aligns closely with standard

Webpack practices. Ultimately, the choice depends on the specific project

requirements and the team's familiarity with the respective technologies.

(Mezzalira, 2021; Steyer, 2020; Single-spa, 2024.)

3.10 Art of Choosing: Why Choose Module-Federation?

Choosing the approach depends on the project, the team, and the vibe going for

it. Each method has its benefits and downsides, and it is about finding the

approach matching the development philosophy.

It is good to remember that MFEs are all about flexibility and making the life of a

developer smoother. Either choice works but choosing the right approach

depends on which one is more suitable and fit to the need. The in-browser

approach with SystemJS produces several issues and the support for Angular.js

together with Webpack 5 is not quite enough at least for this case now. On the

other hand, Module Federation is much simpler with a live example showing

exactly how it works with Angular.js and React.js both in one framework. It is also

providing the flexibility to avoid breaking down the whole project and exposing

one component only or exposing the whole application as a web-component to

the host application. This sounds ideal to what is working for the specified project

as it is going to be discuss further next.

40

4 Designing the Micro-frontends

The aim of this chapter is to expand the theoretical part of the study and elaborate

on microservices design.

4.1 Existing Solution

The web application Train-CM, which is developed using Angular.js, acts like a

parent for two other web applications using the iframe approach. This application

navigation bar is essential for seamless navigation across different views within

the application. The navigation bar governs the content displayed within the

application's main section.

Within the user interface, one of the distinct views, namely the Dashboard,

represents an autonomous application built with Angular.js often referred to as a

Single Page Application (SPA). The other is the Track Condition tab which takes

the user to the outer application which is built with Python through a link the iframe

uses. They operate independently, each with its backend infrastructure.

Presently, when a user clicks on the Track Condition tab, a separate login is

required. This is due to the absence of shared authentication mechanisms

between these two views, as they function as distinct applications.

The navigation bar is equipped with a logo and a user account button. Clicking

on the user account button expands its functionality, allowing users to access

account settings and log out from the application.

The other application called the Track-CM, which is built with React.js, is an

independent application that has a navigation bar to switch between tabs. There

are three tabs and a logo in the navigation bar; each tab represents a page. The

application frontend authentication service is disabled for now and the application

does not have a bundler like Webpack for example, but it is working and fully

functional.

41

4.2 Integration Plan

The aim of this chapter is to describe integrating a legacy project which was built

using the Angular.js framework into micro-frontends architecture (MFE). Once it

is integrated, different technologies or frameworks, for example React.js going to

be used with the legacy code to develop more features. The Nx monorepo

management library is going to be used to simplify the process and get all the

features this library provides.

The scope of this thesis focuses on implementing micro-frontends architecture at

a view level as EKE-Electronics company requires. Specifically, the project aims

to demonstrate the integration of two pages from different applications onto a

single page. This approach demonstrates how both the Angular.js and React

frameworks can seamlessly collaborate within the micro-frontends architecture.

The main idea is to display the Detections page from the Track-CM application

implemented with React.js and the Dashboard page from the Frontend

application implemented with Angular.js in one view. Hence, the original web

applications are two separate monolith applications with multiple functions. In

addition, an app-shell, which behaves as a container, to host all the MFE

(remotes) is part of the implementation plan. The app-shell will contain a

navigation bar where every web application is accessible to the user on a simple

tab. The user can switch between tabs to see their content independently.

Every MFE will be hosted by the app-shell which is built with Angular 14. The

app-shell will manage the routing between the MFEs with some simple style for

the app-shell itself. The implementation and integration process will be

documented with code snippets.

As a side note, the global MFE style and authentication is a complex topic on its

own and out of the scope of this thesis. The main aim is to demonstrate the

migration process as a root map for future development under the umbrella of

MFE architecture.

42

4.3 Characteristics of Original Applications before Migration

In this project, two monolith applications will be migrated. The first one is the

original frontend Angular.js application that has been developed and maintained

for several years by multiple teams, and more specifically the VR profile, which

consists of two views and multiple functionalities. This application is built to allow

the user to monitor the condition of the trains.

The application contains multiple pages and components built with Angular.js,

which are discussed in the next section.

4.3.1 Login Page

The Login Page is the first page the user will see when the application starts. It

has a button for directing the user to an authentication service page where they

must provide a username and a password. The authentication service uses the

Load Balancer provided by Amazon and held by the backend service. Once the

user has entered their username and password, they will be directed to the

Dashboard Page as shown in Figure 10.

Figure 10: Frontend angular.js application Login Page. (Figma, 2024)

43

4.3.2 Dashboard Page

After the authentication, the user will be redirected by the service to the

Dashboard Page. The page has a navigation bar where the user can see two

tabs. The first tab is the initial tab, which is called Dashboard and contains two

widgets with multiple functionalities. The second tab, named Track-Condition, will

direct the user to a new sign-in page through the iframe approach, allowing

access to an external application developed with Python.

In this thesis, the Dashboard view from this application going to be taken and

migrated to the MFE architecture. See Figure 11 below for an overview of the

Dashboard Page design of the Angular.js application.

Figure 11: Frontend Angular.js application Dashboard Page. (Figma, 2024)

The second one is the application called Track-CM, which is used for monitoring

the condition of the train tracks. It is implemented with React.js and contains a

navigation bar with three tabs, and each one represents a separate page. One

page only going to be taken, which is the Track Condition Detections Page out of

the three to integrate it into the MFE architecture. The authentication service for

this app is temporarily disabled so the user will be directed to the dashboard as

the initial page when the application is up and running. The Track Condition

Detections Page consists of multiple widgets such as map, chart, and table so

the user can see the information and the location of the issue in the track. The

goal is to take the Detections page and turn it into an MFE application. To have

44

a clearer view of how the TrackCM application currently looks, see Figure 12

below.

Figure 12: The T-C Detections page in the TrackCM application. (Figma, 2024)

As a side note, the local development going to be the main environment since

deployment can be quite a complex topic, so it is outside the scope of this thesis.

4.4 Micro-frontends Application Requirements

One of the most recent working solutions with MFE is the Module Federation

architecture, as mentioned by Manfred Steyer in his article, where a complete

example is provided for hosting multi frameworks within one application shell

(Steyer, 2020). To use this solution, a couple of requirements had to be fulfilled.

The most important one is Webpack 5 bundler, without which Module Federation

cannot be used.

In this MFE project scenario, the project is divided into three applications,

assuming three different teams would work separately.

● Team Shell will work on the app-shell (the host) where it will host the other

applications (the remotes) and implement the navigation bar.

● Team TrainCM will work on the Frontend Angular.js legacy code, which

consists of the Dashboard view, and turn it into an MFE remote type

application.

45

● Team TrackCM will work on the React.js application, which consists of the

Detection view and integrating Webpack 5 into it and make the necessary

changes to turn it into an/the MFE remote type application.

4.5 MFE Application Overlook Architecture

First, the monolith application TrainCM, developed with Angular.js and already

integrated into Webpack 5 bundler, is discussed. The objective in this case is to

modify the Webpack configuration file and implement the necessary changes to

transform the application into a MFE application, utilising the Module Federation

architecture for this purpose.

The second monolith application Track-CM, which is built with React.js, has no

bundler. In this case, integration of the Webpack 5 bundler is required first and

then turn it to an MFE application using the same architecture.

In a perfect scenario, every page should be separated into an MFE handled by

one team with all its functionalities, but since there are not many resources

available now, one team will take care of it all.

In this implementation, every monolith application going to be turned into MFE

individually after finishing the shell app first. The shell app is the host for all the

remotes (MFEs). In addition, it is expected that each remotely integrated MFE

application functions independently from the host application as it did previously.

Figure 13 shows an overlooked architectural diagram of the MFEs applications.

46

Figure 13: A diagram showing the expected architectural overlook of the MFEs

applications.

4.6 Testing Strategy

Testing MFE applications can be a complicated process and time consuming To

streamline testing efforts, focus was given on one strategy initially.

4.6.1 End-to-End Testing

End-to-end testing evaluates the entire application workflow by simulating real-

world user scenarios and replicating live data. This ensures that all components

of the application function together as expected, validating overall system

performance and reliability. (LambdaTest, 2023.)

In other words, E2E testing mimics how the software operates in real life, running

common user scenarios and identifying any errors or malfunctions throughout the

entire application flow. It provides insights into how the application functions from

the end user’s perspective, ensuring that it delivers the expected output as a

unified entity.

47

4.6.2 Why Choose E2E Testing for MFEs?

To gain insight into the importance of E2E testing for MFEs, the following reasons

are considered:

• Holistic View: E2E testing provides a complete view of the application.

• User Journey Validation: It validates the entire user journey, including

interactions between micro-frontends.

• Early Detection: E2E testing allows for the early identification of integration

issues, UI glitches, and unexpected behaviour during the development

process.

• Seamless Experience: E2E testing ensures that the micro-frontends work

seamlessly together, providing a consistent experience for users across

different components and browsers.

4.6.3 Choosing E2E Testing Tool and Technology

Given the complexity of modern software systems with multiple components (UI,

API layers, databases, third-party integrations), and comprehensive E2E testing,

it is crucial to validate the behaviour of the entire system from an end user’s

perspective. For that, Python and Selenium library for testing going to be the

choice. The reasons are described below:

Why Python:

• Readability and Expressiveness: Python’s clean syntax and readability

make it an excellent choice for writing test scripts. It allows testers to focus

on logic rather than boilerplate code.

• Rich Ecosystem: Python boasts a vast ecosystem of libraries and

frameworks, making it versatile for various tasks. In this case, Selenium

integrates seamlessly with Python.

• Cross-Platform Compatibility: Python runs on multiple platforms, ensuring

consistent test execution across different environments.

48

• Community Support: Python has an active community, which means

abundant resources, tutorials, and support.

Why Selenium:

• Cross-Browser Testing: Selenium allows testing the MFE across different

browsers (Chrome, Firefox, Edge, etc.). This is crucial because users

access web applications using various browsers.

• Interaction with Web Elements: Selenium provides methods to interact

with web elements (such as clicking buttons and filling forms). This is

essential for simulating user actions.

• Headless Testing: Selenium supports headless browser testing, which is

useful for running tests without a visible browser window.

• Integration with Other Tools: Selenium can be integrated with other tools

like TestNG, JUnit, and Cucumber for test reporting and management.

• Widely Adopted: Selenium is widely used in the industry, ensuring a wealth

of documentation and community knowledge.

(Katalon, 2018; Testim, 2021; Barak, 2018.)

5 Implementation

Implementing multiple MFEs can be quite a complex one. To avoid this, the

implementation process is going to be divided into three applications. The main

application is the app-shell (the host) with two MFEs (the remotes).

5.1 Implementation of App-Shell and Navigation Bar (EKE host)

A shell is a host application for all the remotes where all will be sharing the same

navbar or as Steyer said, “[t]he host is a JavaScript application that loads a
remote when needed” (Steyer, 2020). To define the app shell, a module

resource going to be written so that it is possible to share. In this case, it should

render a header (navbar) and pass content through to its body.

49

The app-shell uses the lazy route to load every MFE when needed. It uses two

main methods provided by calling angular-architects/module-federation-tools for

that purpose, as it seen in Listing 9.

Listing 9: The MFE loader script.

Listing 9 above shows the sample of script needed to load the MFE into the app-

shell. The scripts use the two methods to give the MFE application a path to be

found using the WebComponentWrapper method. The other block contains the

remoteEntry, remoteName, exposedModule, and elementName converted using

the WebComponentWrapperOptions method as a type.

Another property, called type, that is not mentioned in the Listing 9 above, is

utilised when the compiled MFE is with Angular version 13 or higher. In this case,

the property type needs to be set to module, for example:’ type: ‘module’ ’. The

differences arise simply because Module Federation is handled differently in

Angular CLI 13 and above.

Another tool provided by the @angular-architects/module-federation-tools used

to append further segments to the URL is called startsWith matcher. It is used

when MFE brings its own router by telling the app-shell using a matcher key word

in the router (Steyer, 2020), as shown in Listing 10:

50

Listing 10: The MFE method startWith matcher.

Listing 10 above shows how startWith matcher is used to give a key word so the

app-shell can use it to bring its own router.

Bootstrap shell with the bootstrap method is required instead of the angular one,

to make several Angular applications work in one browser. Listing 11 below

illustrates how it is used.

Listing 11: The platformBrowserDynamic to bootstrap the MFE application.

Next, it is necessary to load the MFE into the app-shell is needed and the enable

Module Federation using @angular-architects/module-federation plugin:

npm i @angular-architects/module-federation -D

51

Then the webpack.config.js file is configured using the

withModuleFederationPlugin and shareAll methods, as shown in Listing 12

below:

Listing 12: The Module Federation method used to configure the Webpack file.

By using the withModuleFederationPlugin to expose the module, the MFE will be

able to be loaded into the app-shell. The shareAll method is used to constrain

and specify the version required to avoid any versioning conflict.

5.2 Implementation of TrainCM (EKE remote 1)

The current TrainCM Angular.js application components are all managed by one

main component, the index.js. It is the entry component where the user is directed

to the right page after checking their authentication. By exposing index.js

components using the Model-Federation plugin, the entire application can be

turned into an MFE at once, regardless of user authentication.

In this manner, the complexity associated with implementing the authentication

service and components separation in TrainCM can be bypassed, as the scope

of this thesis is limited to documenting the process of migrating two monolith

applications into MFEs (remotes) hosted by another MFE application (host).

Although with the power of Webpack 5 bundler, it is straightforward to migrate the

applications to MFE using the Module Federation plugin, but still some steps need

to be taken to get it working:

52

● Step 1: Make the necessary modifications to the existing Webpack

configuration file to make it work with the Module Federation plugin.

● Step 2: Make the necessary changes to the main file index.js to convert it

to an MFE and wrap it in a Web Component.

● Step 3: Make an entry file that will just contain a dynamic import to load

the rest of the application. This pattern gives the Module Federation the

necessary time for loading the shared dependencies. (Steyer, 2020.)

● Step 4: Exposing the Web Component using the Webpack configuration

exposes.

● Step 5: Using the shared section inside the plugin will make sure to mix

several versions of a framework but also reuse an already loaded one if

the version numbers match exactly.

The requiredVersion used to point to the installed version that can be found in

the package.json. The @angular-architects/module federation has a helper

method called shared, which also takes care of this when setting requiredVersion

to auto or uses an exact version number (without any ^ or ~), as seen in Listing

13.

Listing 13: The requiredVersion property as part of the shared property block
within the ModuleFederationPlugin.

53

Above, Listing 13 displays the requiredVersion property as part of the shared

property block within the ModuleFederationPlugin. It points to the installed

version specified in the application dependencies. This configuration enables to

the applications to function without encountering versioning conflict.

● Step 6: load MFE into the shell app (the host) with lazy routing inside the

in the app.routes.ts file. A better view can be seen in Listing 14:

Listing 14: MFE loader script for the Angular.js application.

In Listing 14 above, the presentation of an MFE wrapped in web component

using WebComponentWrapper provided by the @angular-architects/module-

federation-tools is demonstrated, aiming to achieve several advantages (Steyer,

2020), which are listed below:

● Abstracting differences between frameworks

● Mounting/ Unmounting Web Components is easy.

● Shadow DOM helps with isolating CSS styles.

● Custom Events and Properties allow communicating.

54

Figure 14: MFE wrapped in Web Component. (Steyer, 2020)

Figure 14 is a simplified overview of how the Module Federation plugin is used to

grain the Angular application into the React application as a web component to

be mounted.

 React App

To load the MFE developed with Angular via Model-Federation it is necessary for

it to be wrapped in a web component by using WebComponentWrapper and the

given key data. In the code snapped above, the application developed with

Angular is fetched as a specified URL, which is more convenient for development

environments. The values of remoteName and exposedModule are coming from

the MFE Webpack configuration. An HTML element is created by the wrapper

component with the name angular.js-element, so the web component can use it

to be mounted in.

5.3 Implementation of TrackCM (EKE remote 2)

TrackCM currently has three main views, and it is implemented with React.js and

has no Webpack bundler. The only view going to be converted to MFE is the

Detections view. The implementation for TrackCM is quite like the previous one,

with a slightly different setup. To accomplish this transition, a series of steps are

outlined below :

• Step 1: Integrate Webpack 5 into the TrackCM: To be able to use the

Module Federation plugin, the Webpack 5 need to be installed by using

the following command:

yarn add webpack –dev

• Step 2: Install the HTML, COPY and CSS plugins:

yarn add html-webpack-plugin

55

yarn add mini-css-extract-plugin

yarn add copy-webpack-plugin

• Step 3: Install the webpack-dev-server to output proxy debug info to the

console:

yarn add webpack-dev-server

• Step 4: Make a configuration file in the root level of the TrackCM project:

track-cm/webpack.config.js

• Step 5: Implement the webpack.config.js file and define all the necessary

rules for loaders.

In the case of the React framework, this is all just about adding

ModuleFederationPlugin to the configuration file. It is also important to add an

entry file that contains a dynamic import to load the rest of the application:

//entry.js

import(‘./src/index.js’);

• Step 6: Wrap the MFE in a Web Component: to do that with React, it is

necessary to change the main file, the index.tsx, to index.js file and hand-

warp the application. Figure 15 below gives an overview of how wrapping

an MFE is done in a web component.

Figure 9: Wrapping the MFE application in a web component.

56

As a result of this script in Figure 15 above, the browser will mount the MFE with

every ‘react-element’ tag that occurs in this application.

• Step 7: Exposing the wrapped application with the Module Federation

plugin will require some configuration just like the previous MFE

application. Figure 16 below shows the script needed using the specified

versioning from the dependencies.

Figure 16: The MFE ModuleFederationPlugin configuration.

• Step 8: Remove all the routes of the views leaving only the route of the

Detections view. In another words, omit the routes in the track-

cm/src/Router.tsx file that will not be utilised by the MFE application.

6 Testing and Results

Testing MFE applications can be a challenging process. There are several testing

strategies for testing MFE applications as mentioned in chapter 3. This chapter

explains how the E2E testing strategy was applied on the application. The test

cases going to be implemented using the robot test library to measure the MFE

57

application based on different concepts such as performance and accessibility.

Next, identifying the test scenarios based on user expectations (in the case of

this project, the EKE-Electronics company) to ensure the quality and reliability of

the application.

6.1 Testing Plan and E2E Testing

The End-to-End (E2E) testing technique allows mirroring the entire application

journey from inception to the destination. However, there is a twist: the project is

not quite ready for the grand production stage. The testing plan is described as

below.

6.1.1 Local Context Focus

The MFE application boasts a straightforward interface, concealing intricate

infrastructure behind the scenes. To maintain simplicity, the responsibilities to

abstraction classes going to be delegated by using the Factory Design Pattern

(Rodriguez, 2020).

6.1.2 Step-by-Step Journey and Test Plan

In this subsection will dive into steps with details of E2E testing process:

6.1.2.1 Identifying Test Scenarios

The first step is to identify the necessary high-level test scenarios to meet

the user (in this case EKE-Electronics company) expectations. Here are the

possible scenarios for these applications:

1. User Authentication Flow: Authentication was not part of this thesis

so the main authentication for the Main app-shell is not implemented

yet. However, there is an authentication in the TrainCM application to

58

test that the user will be able to log in into the MFE application after the

right credentials are provided.

2. Navigation between MFEs: Ensuring smooth transitions between the

React.js (TrackCM) and Angular.js (TrainCM) applications.

3. Dashboard Views: Validating the Dashboard Content in both MFEs.

Combined View: Testing the Display of both MFEs together in the

Shell-Dashboard.

6.1.2.2 Map Scenario Steps

These steps outline the User Authentication Flow, Navigation between MFEs,

and Combined View actions.

1. User Authentication Flow:
a. Users open the home page.

b. Users locate the login form.

c. Users Enter valid/invalid credentials (Simulate

successful/unsuccessful login attempts).

d. Verify redirection after successful login.

2. Navigation between MFEs:
a. User clicks the TrackCM tab.

b. Verify the TrackCM view content.

c. User clicks the TrainCM tab.

d. Validate redirection to the authentication system.

e. Complete the authentication process.

f. Confirm redirection back to the TrainCM tab.

g. Verify the TrainCM view content.

3. Combined View:

59

a. User clicks the combined view tab.

b. Ensuring both MFEs are displayed correctly.

6.1.2.3 Manual Testing

Before getting into the automation, manually do the validation assumptions:

a. Navigate through the app as a user would.

b. Verify UI elements, interactions, and transitions.

c. Confirm that the authentication for the TrainCM MFE app works

as expected.

6.1.2.4 Automating Tests

Drawing from insights generated during manual testing, the process of developing

robust automated test scripts involve the following steps:

• Using E2E testing framework called Selenium to implement test cases

(Selenium, 2024).

• Writing the test scripts for each identified scenario.

• Employing the Factory Pattern to manage page objects and interactions

(Rodriguez, 2020).

6.1.2.5 Meaningful Assertions

After running the test cases a comparison of the actual outcomes going to be

taken with the assertions to verify whether the application behaves as expected,

to ensure correctness, and to meet the EKE-Electronics company’s expectations.

The following assertions are based on the minimum expectations of the EKE-

Electronics company of this application:

a. After logging in successfully to TrainCM, the user is redirected to

the TrainCM page.

60

b. All relevant content is displayed for TrackCM, TrainCM and Shell-

Dashboard (combined view) as expected.

c. The transition occurs seamlessly without timing issues when

navigating between MFEs.

d. The MFE app’s performance is fast and appropriately valued.

6.2 Implementing E2E Test

To start implementing the E2E test cases there are some principles to be

considered. The following subsections providing more details.

6.2.1 Testing Hierarchical Structure and Defining Class Names

When creating E2E tests, some principles should be considered. For example,

keeping the E2E test code separate from the application code, the group related

tests and maintain logical links between different parts of the test suite.

To start implementing the E2E test classes, a new directory on the top root level

of the application need to be made (Orr Sella, 2024). Listing 15 shows the

hierarchical overview.

Listing 15: Screenshot of a hierarchical overview of the e2e testing

Listing 15 above shows a creation of the e2e-test directory. It contains the

subdirectory named keyword which has the login and navigation classes. The

module is organised using the Factory Design Pattern to create specific test

instances like login and navigation tests. (Rodriguez, 2020.)

61

Next, on the top directory e2e-test, the performance-ui class where the test cases

are also created. In addition, different scenarios are going to be defined. The

performance-ui class behaves as the main class where all test cases are defined

and going to be executed.

6.2.2 User Authentication Flow: Implementing Login Test Class

TrainCM uses the Cognito from AWS (AWS, 2024). The test script will be

interacting with the Cognito authentication form. Xpath to is used to access

elements within the form. The login test instance is created and written in the

Python script language and using the Selenium library, the popular test

automation robot framework. Listing 16 shows a screenshot of the test script in

more detail:

62

Listing 16: Screenshot of the User Authentication – Login testing class.

6.2.3 Navigation between MFEs: Implementing the Test Class

To implement the navigation test class, the script is going to be written using the

same robot framework. The script will contain as the previous Login test class

some variables, and keywords that can be reused across the application test

class. These variables are:

• ${mfe_homepage}: “http://loaclhost:4200”

• ${mfe_track_cm_page}: “http://localhost:3200”

• ${mfe_train_cm_page}: “http://localhost:4100”

• ${browser}: Chrome

63

Several keywords will be reused to navigate between MFEs:

• Navigate To Track-CM View: Navigates to the TrackCM MFE page.

• Navigate To Train-CM View: Navigates to the TrainCM MFE page.

• Navigate To Shell-Dashboard View: Navigates to the combined view that

displays both MFEs together at the same time.

Listing 17 below is showing as screenshot of the implementation in the final stage

of the keyword navigation class.

Listing 17: Screenshot of the navigating test class to test navigation between
MFEs.

6.2.4 Main Testing Class: Performance-UI Testing Class

In the main test class, the keywords test classes going to be reused to avoid

redundant, for example, login and navigation keywords. These keywords classes

64

going to be imported as a resource at the beginning of the settings. This way, the

keywords can be reused across all the test cases. As Listing 18 shows, a view of

the final test script.

Listing 18: Screenshot of the main test class – the Performance-ui testing class.

In the performance-ui.robot class, the UI testing, and three test cases going to be

running and visible to do the following:

• Navigating to Track-CM and measuring the view loading time.

• Navigating to Train-CM and measuring the view loading time.

• Navigating to shell Dashboard and measuring the view loading time.

65

Each test case involves steps such as:

• Getting the current date

• Navigating to specific views

• Performing actions on the page

• Calculating end time

• Evaluating load time

• Logging the results

The purpose of the test class is to check the following:

• Performance testing, specifically measuring how long it takes for different

views to load within the application. The measure result is printed using

the Log.

• Accessibility by navigating between the tabs and making sure the content

is displayed.

6.3 Manual Testing: Running the MFE Applications

The aim of this section is to test the application manually to observe its behaviour

and subsequently compare it with the result of the E2E testing after running the

test cases. The test will be done by the developer team, and the result is

demonstrated to the project PO for approval.

6.3.1 Starting the MFE Application

To test the MFEs manually, the MFEs need to be started one by one. The order

of starting them manually is simply by opening a new terminal and executing the

order as shown in Table 3:

66

Table 3: Order of commands for running the MFE application.

App name Description Command
TrainCM - Open a new terminal

- Run the application

cd apps/frontend-legacy

npm start

TrackCM - Open a new terminal

- Start the application

cd apps/track-cm

yarn start

Shell - Open a new terminal

nx serve shell

6.3.2 Manual Testing

Following this testing plan, the manual testing should be done for validation

assumptions before getting into the automation.

The assumptions were to navigate through the application as a user would, verify

UI elements, interactions, and transitions. One more assumption is to confirm that

the authentication for the TrainCM MFE application works as expected. Figma

design is used to replace the real UI screenshots due to the privacy policies of

the EKE-Electronics company.

The result of manual testing is an MFE application that contains multiple MFEs

applications with different frameworks respective to the versions.

67

Figure 17: Screenshot of the TrainCM displayed on the shell-port 4200 after

successful login. (Figma, 2024)

Figure 18: Screenshot of the TrackCM displayed on the shell-port 4200. (Figma,
2024)

68

Figure 19: Screenshot of both the TrackCM & TrainCM displayed on the shell-
port 4200. (Figma, 2024)

Figures 17, 18, and 19 above are screenshots representing the MFE application

in the local environment with all its views (MFEs) running successfully. This

manual test was conducted by running the application locally by the developer

team. The result shows that each tab contains a functioning standalone

application. Finally, Figure 19 above shows the Shell Dashboard tab, displaying

content represents of all applications running within a single view.

6.4 Running Automate Test Cases

To execute the unit tests, automated tests can be run either vie terminal or

through the user interface (Perälä, 2020). Simply by moving the pointer inside the

performance-ui class to the specified test case, a menu appears which contains

the option run-test. Clicking on the run-test option would execute the test case.

To execute all the test cases, simply clicking on the run suits option from the start

of the class would run all the test cases. For example, if one test case is run with

PASS showing in green colour, it means the test has passed successfully as

shown in Listing 19.

69

Listing 19: Screenshot of the results of running the Track-CM automated test
case.

Another important thing this test does is measuring the view loading page using

the Log terminal as shown in Listing 20 below.

Listing 20: Screenshot of the Track-CM MFE application loading speed
measurement.

Performance in MFE using Module Federation going to be measured to

comparing to the iframe approach later.

The same measurements and approach going to be applied for the Train-CM:

Listing 21: Screenshot of the results of the Train-CM automated test case.

The log terminal in Listing 22 below shows the measuring of loading the Train-

CM as well:

70

Listing 22: Train-CM MFE application loading measurement in the log.

The last test case involves running the testing of the Shell-Dashboard to display

the combined MFEs in single page (see Listing 23):

Listing 23: Screenshot showing the results of running the Shell-Dashboard
automated test case.

The loading page measurement results of the dashboard are displayed as well in

the terminal:

Listing 24: Screenshot of the Train-CM MFE application loading speed
measurement in the log.

71

The original TrainCM application, implemented with iframe approach, is also

tested using the same measurements applied for MFE performance test to

compare the end results. To achieve that, the same robot test class is applied on

the legacy code as shown earlier in Listing 18. The loading page measurement

result is shown in the log just like in Listing 25 below:

Listing 25: Screenshot of the legacy application with iframe approach loading
performance measurement displayed in a log.

Listing 25 above shows the performance measurement and the long journey for

the user to reach the Track-CM content.

6.5 Automated Test Results

This section discusses the test results to see whether they match the assertions

defined earlier in the planning. Whether the application was verified and was

behaving as expected.

• Assertion: After logging in successfully to TrainCM, the user is redirected

to the TrainCM page.

72

Test Result: The user was successfully authenticated. However, in

practice the user is directed to another port. The issue behind this failure

is that Cognito is configured to redirect the user to port:4000 upon

successful authentication. Unfortunately, adjusting this behaviour requires

significant effort from the Dev-Ops team on the AWS cloud side, which

falls outside the scope of this thesis. To address this, an alternative “Go

To” keyword is provided to ensure redirection to the correct page.

• Assertion: All relevant content is displayed for the TrackCM, TrainCM and

Shell-Dashboard (combined view) as expected.

Test Result: The contents of all pages in each MFE are displayed

successfully. However, there is a slight issue with the styles when the

contents of the shell-Dashboard are displayed. It is worth noting that this

style issue falls also outside the scope of this thesis.

• Assertion: The transition occurs seamlessly without timing issues when

navigating between MFEs.

Test Result: When the user navigates between MFE applications after he

has been authenticated successfully, everything appears to be working as

expected without any timing issue.

• Assertion: The MFE application’s performance is fast and appropriately

valued.

Test Result: The MFE application appears to be very fast with zero

performance issues and aligns with other people’s research (Medium,

2024; Smirnov, 2019). The performance improvement is based on the

observation and using the automated test results for loading speed

compared to the iframe loading speed time.

 Table 5 below, showing the findings of performance ratio comparison results

for iframe and Module Federation approaches:

Table 4 : Findings of performance ratio comparison

Performanc
e metrices
name

iframe T1 Federated T2 Findings
(T1/T2) *
100

73

Page
loading
time
Track-CM

0.002153873443603515
6s

0.000982046127319336
s

=215%
(Federate
d faster)

Page
loading
time
Train-CM

0.000999275207519531
s

0.000998973846435546
9s

=100%
(Federate
d faster)

In Table 3, the findings are analysed using the ratio T1/T2 multiplied by 100 to

calculate the percentage. When users navigate to the Track-CM using the iframe

approach, they encounter an additional window containing the login page,

requiring reauthorisation. Only after successful authorisation does the Track-CM

content appear. This process is cumbersome and time-consuming unlike Module

Federation. Users are authenticated once to access all application contents

seamlessly. The results demonstrate that federated modules outperform iframes.

This approach enhances performance by dynamically loading modules with lazy

loading, significantly reducing the initial application load time.

7 Discussion

In this section, the results of the project going to be discussed and see whether

the findings are aligned with other similar studies. Furthermore, in this discussion

the research questions that was raised at the beginning going to be answered.

7.1 Micro-frontends in Practice

The implementation of micro-frontends using Module Federation in the EKE-

Electronics company’s web application presents a practical case study. The

seamless integration of Angular.js and React.js applications under a single MFE

app-shell offers a glance into the potential advantages and challenges of adopting

this architectural approach.

The implementation results of MFEs using Module Federation in the project show

several advantages that align with other similar studies mentioned in this thesis

74

as well as other studies (Victor, 2021). It allows for the sharing of framework

versions, streamlining development and ensuring consistency. Additionally, it

enables the hosting of multiple MFEs by the app shell, facilitating the seamless

integration of different technologies within a single view frame as is shown in the

previous section. However, it also introduces complexities and larger bundle

sizes, raising considerations about the trade-offs involved in using this technique

that also aligns with other studies (Steyer, 2022).

7.2 Answering Research Questions

To address the research questions from the Research Questions and
Methodology section earlier, the following answers are provided based on the

results of this thesis.

Q1) Main Motivations for Adopting Micro-frontends Architectures:

• Flexibility and Autonomy: Practitioners and industrial companies are

motivated to adopt micro-frontends architectures due to the flexibility and

autonomy they provide in development, deployment, and scaling. The

results of this project show that two separate technologies can be

implemented in one main MFE application. In addition, providing the space

for different expertise skills in the development team to participate in the

implementation process gives better developer experience. Furthermore,

with monorepo it is easier to deploy the MFE applications individually.

• Scalability: The results of this project demonstrate the ability to scale

different parts of a web application independently. That is a key motivation

for adopting micro-frontends.

• Ownership and Independence: micro-frontends enable single-team

ownership of specific components, fostering a sense of responsibility and

independence in development teams and give better development

experience as shown in this project.

75

• Improved Collaboration: The architecture encourages collaboration

among teams by allowing them to work on separate parts of the application

without strong interdependencies.

Q2) Key Benefits of Micro-frontends in Web Application Development:

• Simplified Development: Breaking down a monolithic application into

smaller, manageable parts simplifies the development process and

facilitates component sharing. The thesis results demonstrated the

integration of SPA applications into the micro-frontends architecture.

Furthermore, the applications could be broken down into smaller

manageable pieces, each doing a specific function.

• Autonomous Evolution: The project results showing that each micro-

frontend can evolve independently, enabling teams to make changes and

updates without affecting other parts of the application.

• Efficient Deployment: Micro-frontends allow for independent deployment

of components, reducing the risk of system-wide failures and enabling

faster release cycles. The deployment part has been discussed, although

it was not implemented since it is out of the scope of this thesis.

• Improved Maintainability: With a focus on distinct business domains and

autonomous codebases, micro-frontends make it easier to maintain and

update specific functionalities without impacting the entire application. This

applies when that functionality has been implemented as an individual

MFE application. In the final MFE application, two SPA applications have

been transformed into MFEs (remotes) hosted by another MFE application

(host), at the view level.

• Enhanced Testing Strategies: Effective testing strategies within the

context of micro-frontends architecture ensure the reliability and stability

of the application. In this project, a simple comparison was demonstrated

using E2E testing to measure the performance of the new approach

implemented using MFE with the original iframe approach. Furthermore, a

unit test and other testing strategies could improve the stability and the

reliability of the application.

76

Q3) What challenges and issues may arise when implementing an MFE
and how do practitioners address these concerns?

The challenges and issues that may arise when implementing micro-frontends

architectures include:

• Complexity of Integration: Based on the thesis results, integrating

multiple micro-frontends into a cohesive application can be challenging,

especially when dealing with different technologies, frameworks, and

dependencies.

• Consistent Design and User Experience: Ensuring a consistent design

language and user experience across diverse micro-frontends can be a

challenge, as each team may have its own interpretation of design

guidelines. For example, the two applications discussed in this thesis,

have totally different individual designs from each other.

• Communication and Data Sharing: Coordinating communication and

data sharing between micro-frontends while maintaining isolation and

encapsulation can pose challenges, particularly in scenarios where shared

state management is required. This was not discussed in this thesis due

to the Train-CM design complexity. However, with the help of monorepo it

is possible to break down both MFEs (remotes) into smaller maintained

components.

• Performance Optimisation: Managing performance across multiple

Micro-frontends, especially in terms of loading times, code splitting, and

resource optimisation, can be a significant challenge that practitioners

need to address. For example, SEO (search engine optimisation) is a

challenge that SPA application might face due to its nature.

• Versioning and Dependency Management: Handling versioning and

dependency management across different micro-frontends to ensure

compatibility and consistency can be complex, requiring robust strategies

and tools. For example, having multiple dependencies for different

applications can increase the bundle size significantly.

77

Practitioners address these challenges and issues in micro-frontends

implementations through various strategies, including:

• Establishing Clear Communication Channels: Based on the result of

this thesis, effective communication channels are set up between teams

working on different MFEs to ensure alignment on design, architecture,

and integration aspects. In this thesis, such a problem did not appear

because the team is quite small. This issue would appear more clearly with

bigger teams. A clear design and communication are essential keys for

successful implementation.

• Implementing Shared Design Systems: Developing shared design

systems and component libraries to maintain consistency in design and

user experience across MFEs is a common practice. In this thesis, there

were no shared components between MFEs due to the complexity of the

Train-CM application.

• Utilising Micro-Frontends Frameworks: Leveraging MFE frameworks

and tools that provide standardised approaches to integration,

communication, and data sharing. In this thesis for example Nx is used in

this project.

• Implementing Performance Optimisation Techniques: Employing

performance optimisation techniques such as lazy loading, code splitting,

and caching to enhance the overall performance of the micro-frontends

architecture is a recommended practice. For example, Nx was used in this

project for cashing. In addition, lazy loading with Module Federation was

used as shown earlier in the performance measurement in the testing

results. As a result of integrating MFE architecture with Module Federation

approach instead of iframe, the page loading time has increased

signifyingly by 215% as shown in Table 5. However, until the application

is deployed, it is difficult to measure how the increased bundle size of the

application can impact the loading time and the performance due the

amount of data transferred over the network.

78

• Adopting Continuous Integration and Deployment (CI/CD):
Implementing CI/CD pipelines to automate the testing, deployment, and

versioning processes across micro-frontends, ensuring consistency and

efficiency in development workflows. The subject was discussed in this

thesis, but implementation did not happen because deployment is out of

the scope of this thesis.

7.3 Transitioning from Monolith to Micro-frontends

Transitioning from a monolithic architecture to micro-frontends, as seen in the

case of the EKE-Electronics company, presents a multifaceted challenge

encompassing technical, organisational, and financial aspects. Decoupling the

existing monolithic codebase into smaller, self-contained frontend modules

requires careful planning to ensure minimal disruption to functionality and user

experience.

This process involves restructuring the application into autonomous modules,

understanding dependencies, and managing compatibility issues. Additionally,

the transition requires organisational alignment, effective communication, and

change management strategies to coordinate development and deployment

across teams. Incrementally introducing micro-frontends while maintaining

existing functionality is crucial to mitigate risks.

Overall, this transition highlights the complexity of the task, requiring a

comprehensive approach addressing technical, organisational, and financial

considerations for successful and sustainable transformation. The importance of

independence in MFE development, as emphasised in earlier studies, facilitates

easier testing, deployment, and maintenance, contributing to the robustness and

scalability of applications in the long term.

79

8 Conclusions

8.1 Achievements and Contributions

The final year project investigated the frontend infrastructure transformation of

the EKE-Electronics company's web application, particularly the successful

integration of disparate technologies such as Angular.js and React.js under a

single micro-frontend application (?) shell. The project serves as a noteworthy

achievement, demonstrating the feasibility and advantages of transitioning to a

microservices architecture.

Furthermore, the identification of challenges and the proposed solutions for

implementing micro-frontends, as evidenced in the case of the Condition

Monitoring and Train Monitoring applications, adds practical value to the field,

offering actionable insights for organisations seeking to adopt micro-frontends in

their frontend development endeavours. This has significant implications for

enhancing the scalability, maintainability, and user-centricity of their web

applications, offering a roadmap for leveraging an MFE to streamline

development and improve the overall user experience.

Overall, the achievements and contributions of this project underscore the

significance of MFEs as a transformative approach in frontend development, with

implications for the advancement of web application design, development, and

maintenance.

8.2 Future Directions

Future research in the field of MFE architecture could focus on deployment and

its strategies, including exploring different deployment models such as

continuous deployment and blue-green deployment. Additionally, after

deployment there is a need for comprehensive performance testing and analysis

to understand the real-world performance implications of MFE architecture, along

with strategies for optimising their performance. Another area for future

80

investigation is the exploration of best practices for managing the development

and versioning of micro-frontends in large-scale projects, ensuring consistency

and compatibility across micro-frontends developed by different teams.

Furthermore, potential research could focus on the impact of MFE on the overall

development workflow and developer experience, including the integration of

MFE with modern development tools and workflows. The goal would be to identify

strategies for streamlining the development and testing of micro-frontends in a

collaborative environment. Overall, future research in the field of MFE aims to

address the practical challenges and considerations involved in the real-world

implementation and management of MFE, providing actionable insights and best

practices for organisations adopting this architectural approach.

8.3 Closing Remarks

In conclusion, the implementation of an (?) MFE using Module Federation

represents a significant advancement in frontend development, offering greater

flexibility, scalability, and productivity. The case study of the EKE-Electronics

company's web application serves as a testament to the feasibility of transitioning

from a conventional approach to an MFE architecture. The successful integration

of disparate technologies, such as Angular.js and React.js, under a single micro-

frontend application shell demonstrates the potential of MFEs (?) to streamline

development and enhance the maintainability of complex web applications.

In general, the goal of this project has been achieved by providing a successful

implemented solution that can serve as a good start to further development

towards adapting the MFE architecture in the EKE-Electronics company.

In closing, the journey towards MFE architecture (?) represents an ongoing

evolution in frontend development, with the potential to revolutionise the way web

applications are designed, developed, and maintained. By embracing the

opportunities for future research and innovation, the industry can continue to

81

harness the benefits of MFE architecture (?), ultimately shaping the future of

frontend development and enhancing the overall user experience.

82

References

AWS (2024). Amazon Cognito. Available at:
https://aws.amazon.com/cognito/. (Accessed: 3 May 2024).

Azizyan, S. (2022). Moderation Panel for Virtual Event Platform as a Micro
Frontend Module. Bachelor’s thesis. JAMK University of Applied Sciences.
Available at:
https://www.theseus.fi/bitstream/handle/10024/754390/Opinnaytetyo_Azizya
n_Samson.pdf?sequence=2&isAllowed=y. (Accessed: 3 May 2024).

Barak, T. (2018). ‘Part I –E2E Testing and Selenium’, Medium, 1 February.
Available at: https://medium.com/the-hitchhikers-guide-to-e2e-testing/part-i-
e2e-testing-and-selenium-ef031978ee20. (Accessed: 3 May 2024).

Bui, S. (2021). Micro frontend: Microservice Implementation on Web
Development. Bachelor’s thesis. Metropolia University of Applied Sciences.
Available at:
https://www.theseus.fi/bitstream/handle/10024/511484/Son_Bui.pdf?sequen
ce=2. (Accessed: 3 May 2024).

EKE-Electronics Ltd (2024). Provider of Train Control and Management
System. Available at: https://www.eke-electronics.com/company/.
(Accessed: 3 May 2024).

Figma (2024). The Collaborative Interface Design tool. [Online]. Available at:
https://www.figma.com/. (Accessed: 3 May 2024).

Jackson, Z. (2023). ‘Understanding Module Federation: A Deep Dive’,
Medium, 29 August. Available at:
https://scriptedalchemy.medium.com/understanding-webpack-module-
federation-a-deep-dive-efe5c55bf366. (Accessed: 5 May 2024).

Katalon (2018). ‘Basic ways of Using Selenium WebDriver in Katalon
Studio’, Medium, 28 August. Available at: https://medium.com/katalon-
studio/basic-ways-of-using-selenium-webdriver-in-katalon-studio-
d95b1e89c312. (Accessed: 6 May 2024).

LambdaTest. (2023). ‘Testing Strategies for Micro Frontends’, LambdaTest
Blog, 23 August. Available at: https://www.lambdatest.com/blog/micro-
frontends-testing-strategies/. (Accessed: 3 May 2024).

Mezzalira, L. (2021). Building Micro-Frontends: Scaling Teams and Projects,
Empowering Developers. [Online]. Available at:
https://www.oreilly.com/library/view/building-micro-
frontends/9781492082989/. (Accessed: 14 January 2024).

83

Medium (2024). Your Micro Frontend React App 307% Faster. Available at:
https://medium.com/@ar.aldhafeeri11/your-micro-frontend-react-app-runs-
307-times-faster-ea4e15e00ff8. (Accessed: 10 March 2024).

Newman, S. (2019). Monolith to Microservices: Evolutionary Patterns to
Transform Your Monolith, 1st ed. [Online]. Available at: O’Reilly Media, Inc.
(Accessed: 3 May 2024).

Newman, S. (2020). Monolith to Microservices: Evolutionary Patterns to
Transform Your Monolith, 2nd ed. [Online]. Available at: O’Reilly Media, Inc.
(Accessed: 3 May 2024).

Nx (2024). A powerful open-source build system providing tools and
techniques for enhancing developer productivity and help to monorepo
management. Available at: https://nx.dev/getting-started/intro. (Accessed: 3
May 2024).

Orr Sella. (2014). Integration and End-to-End Test Configurations in SBT.
Available at: https://orrsella.com/2014/09/24/integration-and-end-to-end-test-
configurations-in-sbt-for-scala-java-projects/. (Accessed: 3 May 2024).

Perälä, J. (2020). ‘How to run Robot Framework test from command line?’,
Dev Community, 26 March. Available at: https://dev.to/juperala/how-to-run-
robot-framework-test-from-command-line-5aa. (Accessed: 3 May 2024).

Python (2024). ‘What is Python? Executive Summary’. Available at:
https://www.python.org/doc/essays/blurb/. (Accessed: 3 May 2024).

React (2024). The Library for Web and Native User Interfaces. Available at:
https://react.dev/. (Accessed: 6 May 2024).

Rodriguez, J. (2020). ‘How to Build an E2E Testing Framework Using
Design Patterns’, freeCodeCamp, 9 November. Available at:
https://www.freecodecamp.org/news/build-an-e2e-test-framework-with-
design-patterns/. (Accessed: 3 May 2024).

Selenium (2024). A Web Testing Library for Robot Framework. Available at:
https://robotframework.org/SeleniumLibrary/SeleniumLibrary.html.
(Accessed: 9 March 2024).

Single-spa (2024). The recommended setup. [Online]. Available at:
https://single-spa.js.org/docs/recommended-setup/#module-federation.
(Accessed: 3 May 2024).

Smirnov, A. (2019). ‘3 Reasons You Might Not Want to Use iframes’,
OSTraining Blog, 30 April. Available at: https://ostraining.com/blog/.
(Accessed: 3 May 2024).

84

Steyer, M. (2020). The Micro Frontend Revolution: Module Federation with
Angular. [Online]. Available at: https://www.angulararchitects.io/en/blog/the-
microfrontend-revolution-part-2-module-federation-with-angular/. (Accessed:
3 May 2024).

Steyer, M. (2022). Enterprise Angular: Micro Frontends and Moduliths with
Angular. [Online]. Available at:
https://www.angulararchitects.io/en/ebooks/micro-frontends-and-moduliths-
with-angular/. (Accessed: 14 January 2024).

Steyer, M. (2022). Multi-Framework and -Version Micro Frontends with
Module Federation: Your 4 Steps Guide. [Online]. Available at:
https://www.angulararch

