

Nik Zakirin

Development of an Application for Trade Item
Data Verification

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

29 May 2015

 Abstract

Author(s)
Title

Number of Pages
Date

Nik Zakirin
Development of an Application for Trade Item Data Verification
52 pages + 1 appendix
29 May 2015

Degree Bachelor Of Engineering

Degree Programme Information Technology

Specialisation option Mobile Programming

Instructor(s)

Peter Hjort, Senior Lecturer
Samuli Mattila, VP Products

Consumers rely on the accuracy of product information in order to make an informed
purchase decision. The emergence of online grocery stores as well as the EU regulation
on the provision of food information is driving the demand for product data to be made
available online. In the interest of ensuring the integrity of the product data, a validation
system for the present information is needed.

The goal of this project was to design and develop a data verification application for trade
item information. This project was carried out at Digital Foodie Oy and was commissioned
by GS1 Finland.

The system is a client–server application. The scope of this project was limited to the
design and development of the client-side application running on the Apple iOS operating
system.

The result of the product development work in this final year project was the Foodie
verification iPad application, which is fully operational and has been taken into production
use by a team of product inspectors.

Keywords iOS, mobile programming, Xcode, design patterns,
Objective-C

Contents

List of Abbreviations 1

1 Introduction 2

2 Trade Item Information State of the Union 3

2.1 GS1 Organisation 3
2.2 Trade Item Classification 3
2.3 Global Trade Item Number 4
2.4 European Union Regulation 5

3 Design and Implementation 7

3.1 Data Model 7
3.1.1 Inspection Task Manager 8
3.1.2 Inspection Batch 8
3.1.3 Inspection Task 10
3.1.4 Product 11

3.2 System Architecture 13
3.2.1 Model View Controller 13
3.2.2 Singleton 16
3.2.3 Strategy 17
3.2.4 Observer 19

3.3 Key Design Strategies 20
3.3.1 Image Loading 20
3.3.2 Persistence 22

4 Foodie Verification Application 24

4.1 Inspector Use Cases 24
4.2 Functional Division of Foodie Verification 25

4.2.1 Access Control 26
4.2.2 Batch Management 27
4.2.3 Product Collection 29
4.2.4 Product Inspection 31
4.2.5 Product Reception 33
4.2.6 Product Discovery 35
4.2.7 Analytics 37

4.3 Client–Server Functionality 38

5 Usability 39

5.1 Learnability 39
5.2 Efficiency 43
5.3 Memorability 44
5.4 Errors 45
5.5 Satisfaction 46

6 Discussion 47

6.1 Results 47
6.2 Challenges and Solutions 47
6.3 Future Development 48

7 Conclusions 50

References 51

Appendices
Appendix 1. GS1 and GS1-8 Prefixes

1

List of Abbreviations

API Application Programming Interface

DI Dependency Injection

DRY Don’t repeat yourself design principle

EAN European Article Number

EU European Union

FIFO First In First Out

GS1 Global Standards One

GTIN Global Trade Item Number

HTTP Hypertext Transfer Protocol

IC Inspection Center

IGD The Institute of Grocery Distribution

iOS Apple’s mobile operating system

ISBN International Standard Book Number

ISO International Organization for Standardization

JAN Japanese Article Number

JSON JavaScript Object Notation

KVO Key Value Observation

LRU Least Recently Used

MVC Model-View-Controller design pattern

OOP Object-Oriented Programming

POS Point of Sale

RAM Random Access Memory

REST Representational State Transfer

SOC Separation of concern design principle

SSL Secure Sockets Layer

UPC Universal Product Code

Xcode Apple’s Integrated Development Environment

2

1 Introduction

The proliferation of online grocery stores from the traditional brick-and-mortar retail

stores has given rise to the demand for the availability of product information online. A

recent study carried out by the Institute of Grocery Distribution (IGD) has shown that

there is an upward trend of people preferring to do their weekly grocery shopping

online [1]. The convenience of building the shopping cart in the comfort of one’s own

home, having the groceries collected and delivered straight to the front door, and

avoiding the long queues at the checkout counters are the prime reasons that

contribute to the rising popularity of online grocery stores, especially among families

and elderly people.

There are several key elements that an online grocery store must provide to facilitate

consumers in making an online purchase. Product images and data allow consumers

to search for and identify items in the web store. Currently, the availability and

completeness of the product information online vary vastly between data suppliers and

manufacturers. Even when the information is available, there are often errors and

inconsistencies when compared to the information printed on the product packaging.

Consumers are accustomed to reading the product labels in the stores. In particular,

they rely on the accuracy and completeness of the ingredients and allergens, which is

critical in helping them to make a purchase decision. In order to protect the consumers

from false information, there needs to exist a quality assurance system that can

guarantee the integrity of the product information in digital form.

The goal of this project is to design and develop a data verification system that would

ensure the integrity of the consumer trade item data available in the GS1 data bank.

The scope of this project is limited to the development of the front-end system which

would be an application running on the Apple iPad device.

3

2 Trade Item Information State of the Union

2.1 GS1 Organisation

Global Standards One (GS1) is a global organisation responsible for the development

and maintenance of the supply chain standards. Compliance to the standards allows

companies worldwide to access and exchange information using a common

communication language. GS1 is also the official source for supplying manufacturers

with unique barcodes, allowing for easy identification of trade items in the supply chain.

[2,16.]

The GS1 system was first established in the United States when the first barcode

standard – Universal Product Code (UPC) – was introduced. The UPC is a 12-digit

identification number, represented in a series of bars capable of being read by a

machine. [2,16.] The first product ever scanned, bearing the UPC barcode, was a 10-

pack Wrigley’s Juicy Fruit chewing gum. The event took place on June 26, 1974

[3,209]. Leveraging on the success of the UPC, the European Article Numbering (EAN)

Association was established three years later and expanded the barcode to 13 digits to

accommodate for a wider range of barcode numbers to be used outside of North

America. Afterwards, the UPC and EAN barcodes were quickly adopted globally until

the two organisations merged in 2005, and were launched as the GS1 organisation.

Eventually in 2009, the UPC, EAN, and the Japanese counterpart, JAN, were renamed

to Global Trade Item Number (GTIN), thus, greatly simplifying the standards for the

industry. [3,210.]

Today, GS1 exists in over 100 countries and has added many new global standards for

facilitating commercial trading and communication [3,210].

2.2 Trade Item Classification

All trade items are classified into one of the following categories in the product

information hierarchy:

• Base: Retail consumer items typically found on the store shelves such as a

bottle of cola drink or a bag of crisps.

• Case: Wholesale items such as a big case of cola drink or a box of crisp bags.

4

• Pallet: Transportation items such as a pallet of cola drink cases.

These classifications describe the level of packaging and also define the product types

in the Foodie verification application.

2.3 Global Trade Item Number

The Global Trade Item Number (GTIN) is the GS1 System Identification Number used

for uniquely identifying products and services. A GTIN number can vary in its length

between 8 and 14 digits. Consumers most often encounter GTINs in the form of

barcodes on product packaging. In fact, the standard was initially conceived in the

United States in 1973 to facilitate automatic checkout of grocery items at the point of

sale (POS) for improving the checkout efficiency. The POS system is able to quickly

and accurately identify a product by scanning its barcode using a laser barcode

scanner. Additionally, the POS system can also read supplementary information, such

as price and weight, if they are encoded in the GTIN. Today, GTIN is globally adopted

and is considered to be highly successful. The International Standard Book Number

(ISBN) used for publications is another ubiquitous use of GTIN. [3,8-9;4,1-2.]

The GTIN family consists of four symbols that can be represented in a barcode [4,3]:

• GTIN-12: This is used in the classic 12-digit UPC barcode originally conceived

by the Uniform Product Code Council in 1973.

• GTIN-8: This is a compact form of the barcode that is useful for product

packaging with limited space.

• GTIN-13: This is most commonly used in EAN-13 barcodes found in the

European markets. In Japan, it is referred to as Japanese Article Number

(JAN), which also contains 13 digits.

• GTIN-14: This symbol has an additional digit to represent the packaging level.

Figure 1 Trade Item Through the Supply Chain. Reprinted from Palazzolo (2013) [5]

5

Every company that adopts the GTIN standard is assigned a company prefix, which is

given by a GS1 member organisation. A complete reference of the GS1 prefixes can

be seen in appendix 1 [2,19]. The prefix is reflected in the first few digits of the GTIN.

Each manufacturer is also allocated a range of numbers, which they can assign to their

products. Figure 1 shows that, while the products get distributed through the supply

chain to the end user, companies are able to trace and identify them using their GTINs,

as they are guaranteed to be unique worldwide. Additional benefit for a company to be

GTIN compliant is that it provides them with a common interface to process, store, and

communicate about their products with trading partners. [4,1.]

2.4 European Union Regulation

A significant driving force for manufacturers and retailers to provide product information

online came with a recent regulation published by the European Union (EU). The EU

1169/2011 Regulation – effective since December 2014 – mandates that all food and

beverages sold must be accompanied with a significant amount of food information.

The regulation is applicable to sales in brick-and-mortar retail stores as well as online

stores across the EU markets. [6.] The compulsory information that must be displayed

for the food and beverage products include [7]:

• The name of the product

• The list of ingredients

• Any ingredient or processing aid causing allergies or intolerances used in the

manufacture or preparation of a food and still present in the finished product,

even if in an altered form

• The quantity of certain ingredients or categories of ingredients

• The net quantity of the food

• The date of minimum durability or the ‘use by’ date

• Any special storage conditions and/or conditions of use

• The name and address of the food business operator under whose name the

food is marketed (or the importer’s name if the food business operator is

outside the EU)

• The country of origin or place of provenance where provided for in Article 26

• Instructions for use where it would be difficult to make appropriate use of the

food in the absence of such instructions

6

• The actual alcoholic strength by volume for beverages containing more than

1.2% by volume of alcohol

• A nutrition declaration.

The objective of the regulation is to provide a standard for food labelling and to allow

consumers to make an informed purchase decision. In particular, information such as

the nutrition list, ingredients, and allergens are critical for the consumers. Failing to

provide the food information to the consumers prior to the sale prohibits the store from

selling the affected products. [6.]

7

3 Design and Implementation

A typical medium to a large-scale front-end application often consists of many

functional blocks with several thousand lines of code. Moreover, new features and

change requests can cause the code base to grow rapidly. Without proper planning,

this can easily lead to a complex and unstructured code base. Therefore, employing

robust design paradigms from the outset is important in order to build a strong

foundation. This chapter discusses how the Foodie verification application was

implemented using established best practices and how common pitfalls of application

design were avoided. The aim was such that new developers, who are well versed with

the established design paradigms and principles, would be able to contribute to the

project with minimal effort and have a shallower learning curve.

3.1 Data Model

The primary structure of the inspection data model comprises nine classes pertaining

to the management and storage of the inspection data.

Figure 2 Class Diagram of the Main Blocks

Figure 2 illustrates a high-level view of the relationship between the main classes.

8

3.1.1 Inspection Task Manager

The inspection task manager was designed to be the main coordinator object

responsible for maintaining the different types of inspection data. It is a singleton

object, which signifies that there is only one instance of it in the application lifecycle. It

does not hold any internal states of its own but carries the following functions:

• Holds references to the inspection data in the memory

• Persists the inspection data into the disk memory

• Decodes the inspection data from the disk memory after a cold start

• Fetches inspection locations from the server periodically.

Figure 3 Inspection Task Manager Class Diagram

Figure 3 illustrates the interface of DFInspectionTaskManager, which exposes five

array collections representing each of the supported inspection type in the application

and an additional array collection for the inspection locations. Each collection is

immutable, which means that consumers of this class will have read-only access. This

is by design as to control and restrict all modifications to the collections to occur within

the class implementation.

3.1.2 Inspection Batch

All inspection types, save for one, are allocated in batches. When an inspection work is

requested, the server will return an inspection batch consisting of a number of

inspection tasks corresponding to a predefined quantity or time availability set by the

inspector.

9

Figure 4 Inspection Batch Class Diagram

As shown in figure 4, an inspection batch is associated with a specific inspection

location and is only valid for a certain period of time. The validity period is by default set

at four days, though it may vary depending on the needs in the future. If a batch

expires past its validity period, the server will automatically release the batch, freeing

its inspection tasks for another inspector. This mechanism has been put in place to

guarantee that all products get inspected and do not remain in the in-progress state for

an indefinite amount of time.

A batch always holds a particular state, communicated via the batchStatus property.

Table 1 lists the possible state enumerations for an inspection batch.

Table 1 Inspection Batch States

Status Description

0 Batch has been assigned.

1 Batch has started its collection.

2 Batch has completed its collection.

3 Batch has started its inspection.

4 Batch has completed its inspection.

5 Batch is ready for submission.

6 Batch has been submitted.

7 Batch was cancelled.

10

The batchStatus is exposed as a read-only property. It reflects the internal state that

is indirectly managed through the public instance methods listed in figure 4. For

example, sending the startInspection: message to an instance of

DFInspectionBatch will implicitly modify the internal state to 3. Conversely, the

internal state also acts as a safeguard against invalid message invocation. As an

example, sending the message submitBatch: when the internal state is other than 5

will return an error.

3.1.3 Inspection Task

An inspection task represents a single unit of inspection. It holds information about the

product, store-specific aisle location, and inspection photos. Inspection tasks are

commonly grouped into an inspection batch. However, its lifecycle is not dependent on

one. An inspection task may also be allocated singularly, such as in the ad-hoc

inspection mode.

Figure 5 Inspection Task Class Diagram

As shown in figure 5, an instance of DFInspectionTask holds a

collectionStatus state and an inspectionStatus state. Both states are

managed inside the class implementation and are only exposed as read-only

properties in the class interface. Table 2 lists the possible state enumerations for the

collectionStatus.

11

Table 2 Collection States of Inspection Task

Status Description

0 Task is not allocated to any inspector.

1 Task’s product is pending for collection.

2 Task’s product has been collected for inspection.

3 Task’s product collection was skipped.

In the event that a product collection was skipped, the message

skipCollectionWithReason: is sent to the object instance, along with an integer

argument specifying the reason. The allowed possible values for the reason are 0 -

Unable to Collect, 1 - Out of Stock, and 2 - No Longer Available. If the product was

successfully collected, the message passCollection is sent to the task, which will

initialise its inspectionStatus state. The complete inspection state enumeration is

listed in table 3 below.

Table 3 Inspection States of Inspection Task

Status Description

1 Task is ready for inspection.

2 Task passed the inspection.

3 Task failed the inspection.

4 Inspection was skipped.

The inspection task will receive the message finishInspection when all of its

attributes have been acknowledged. The final state will then be resolved depending on

whether there were errors. If all of the attributes were passed, then the

inspectionStatus will be set to 2. In case there were one or more errors, status 3

will be set. A timestamp record for every event performed on DFInspectionTask

objects will be saved and will get submitted to the server for analytics purposes.

3.1.4 Product

Figure 6 shows the class diagram for DFProduct and the relationship to its constituent

parts. A product represents a trade item, which can be a consumer, wholesale, or pallet

type. It has a one-to-one relationship with an inspection task and is identifiable by its

12

GTIN number. Each instance of DFProduct has a strong reference to the latest

imported datasheet, supplied by the manufacturer or the data supplier. A datasheet

defines the set of inspectable attributes pertaining to a product and their rules as set

forth by the GS1 requirements.

Figure 6 Class Diagram of DFProduct and its Compositions

A data field represents an attribute of the inspection data at the most granular level.

Each attribute has an identifier, name, value, rule, and result. A data field can also form

a hierarchical structure containing an arbitrary level of subfields. The cumulative result

is consolidated by recursively iterating through the subfields and is stored in the parent

field. Related data fields are categorised into groups where each group is assigned a

sequence number that determines the suggested order of inspection. The

DFDataSheet provides a convenience method, datasheetResultCount, that

13

returns the counts of passed, failed, warning, and unable to validate attributes. It

aggregates the results by enumerating its array of data groups and sending the

message dataGroupResultCount to each instance of DFDataGroup. This method

call is particularly useful for reporting progress to different components used throughout

the application.

3.2 System Architecture

3.2.1 Model View Controller

The most rudimentary prerequisite for any programmer wishing to develop on the

Apple iOS platform is familiarity with the Model-View-Controller pattern. The iOS

platform enforces the use of the MVC design pattern for custom objects designed for

their applications [8,1].

The MVC design pattern was initially developed to facilitate the inclusion of a graphical

user interface for front-end applications made using the Smalltalk programming

language. Simultaneously, the pattern was also intended to promote developers to

create reusable software components. [9,202.] This reusability is encouraged by

logically separating the application logic from the user interface and interactivity

components [10,121]. Today, the MVC pattern is widely used in practically all

application domains such as on the web and in mobile. Several new and modified

variants of it have also emerged to accommodate specific platform requirements.

MVC is a high-level design pattern that is more broadly known as the compound design

pattern. The semantics of the compound pattern is such that each of its components

adheres to a more basic design pattern. Together, the basic patterns interact with each

other and work in synergy to form a high-level design solution. [11,500.] The structure

of the MVC design pattern consists of three primary components: view, model and

controller objects. Each object fulfils a role and carries a specific responsibility in an

application. Figure 7 below illustrates the relationships between the three objects.

14

Figure 7 Relationship between Model-View-Controller objects. Reprinted from Apple (2012) [12]

As shown in figure 7, a view object in an application represents the object that is visible

to the user. It conforms to the composite design pattern, where a view forms a

hierarchy that may contain other views or interactive UI elements. Its role is simply to

know how to draw and present itself on the screen. A view object is also responsible for

maintaining different states that it might have and presenting the model data to the

user. [10,121.]

The model adopts the observer pattern, which notifies its registered components any

time its state changes. A registered component can be a controller, a view, or another

model. A model object encapsulates the application logic and does not concern itself

about how its data should be displayed [10,121]. For example, in a calculator

application, the model might contain the algorithms for performing multiplication,

addition, subtraction and division. However, it does not need to know how the

calculation result will eventually be presented to the user.

The final piece of the puzzle is the controller object, which acts as the mediator

between the view and the model objects. Its responsibility is to ensure consistency

between the data from the model and the data being presented by the view [13,30].

Conversely, the view also delegates the handling of its user actions to the controller,

which acts as the strategy plugged to the view. In an MVC-designed application, the

controller is typically the least reusable component as it contains a tightly coupled code

dependent on the view and the model objects [12].

In the compound design pattern where the controller acts as the mediator of data

between the model and the view objects, it is not unexpected that the controller can

15

contain a significant amount of glue code. In a large-scale application, this will lead to

an undesirable effect that the controller becomes very large and unwieldy. The

controller, which is the least reusable component, holds too many responsibilities and

is tightly coupled to logic that may be useful to other components. For example, a

commonly used view in iOS applications, UITableView, often uses the controller

object as its data source and delegate. At a minimum, there are three methods that a

controller conforming to the UITableViewDataSource and UITableViewDelegate

protocols has to implement in order to present data in a tabular format. That boilerplate

code could be located in a dedicated object that could be reused by other controllers.

Similarly, the code for fetching data from the web service and parsing the received data

is also commonly placed inside the controller. To solve the problem, the Foodie

verification application separates out the web service logic into a service layer.

Figure 8 Model View Controller with Service Layer

As illustrated in figure 8, the service object interfaces with the controller and returns the

fetched data using the block callback mechanism. Its main responsibility is to offload

and encapsulate the web service logic and data parsing previously residing in the

16

controller. The net result is that the controller’s complexity is reduced and the service

object exists as a standalone component, which can be extended and shared with

other components.

3.2.2 Singleton

Singleton is a pattern for ensuring that only one instance of a class is instantiated in the

application lifecycle [11,177]. It is a useful pattern because it provides a convenient

mechanism for sharing data between different code modules. Usage of the pattern is

ubiquitous throughout Apple Cocoa frameworks. For example, sending the message

sharedApplication to UIApplication from anywhere in the program will return

an instance of the currently active application. Similarly, NSUserDefaults,

UIScreen, and NSFileManager classes provide shared instances with methods to

obtain the common preferences, screen objects, and file manager, respectively. This

ubiquity makes it an important pattern for Cocoa developers to learn and understand.

Despite its prevalent adoption, the pattern is criticised to be akin to a global variable,

which is generally considered to be a bad coding practice. Global variables can easily

lead to errors that hard to debug due to their mutable and stateful nature. In addition,

OOP advocates the concept of encapsulation, which is about limiting the scope of

mutable states whereas the central idea of the singleton pattern directly negates that

goal.

An alternative method to singleton is to manually inject data into the modules, more

formally known as Dependency Injection (DI). However, the drawback of DI is that it

requires all controllers’ interfaces to be modified to accept the dependent objects,

sacrificing the simplicity of sharing common resources. For this reason, the Foodie

verification application utilises the singleton pattern for its service components as well

as the manager components. The advantage of services and managers to be

singletons is that their consumers can rely on a centralised location where specific data

can reside. In the case of DFInspectionTaskManager, consumers of the singleton

object can safely retrieve inspection batch resources, knowing that duplicate copies do

not exist elsewhere. Having multiple copies of the same data would be detrimental, as

the information can appear out of sync when displayed in different views. To overcome

the drawbacks discussed earlier, all singleton objects in the Foodie verification

17

application only expose immutable shared resources or they do not contain any states

at all.

Figure 9 Manager and Service Singletons

As figure 9 shows, DFInspectionTaskManager exposes six immutable shared

arrays and DFInspectionImageManager has one immutable allCacheKeys set

accessible to the public. The DFBrowseService and DFLoginService singleton

services do not hold any states of their own and only have methods for retrieving data

from the network. It is worth noting that all manager and service classes in the

application follow the platform standard naming convention to denote that they conform

to the singleton pattern. Thus, any Cocoa developer working on these classes should

be aware of the implications of this pattern.

3.2.3 Strategy

The strategy pattern is defined as a family of encapsulated sets of algorithms, which

allows its clients to use a set of algorithm interchangeably [11,24]. This pattern is

utilised in the Foodie verification application to accommodate data sources that need to

download their data in small chunks from the API.

18

@interface DFTableViewController()
@property (nonatomic, strong) NSMutableArray *items;
@end

@implementation DFTableViewController

- (NSInteger)collectionView:(UICollectionView *)collectionView
numberOfItemsInSection:(NSInteger)section
{
 return [self reachedLastPage] ? [self.items count] :
[self.items count] + 1;
}

- (UITableViewCell *)tableView:(UICollectionView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell = ...

 if (indexPath.row == [self.items count]) {
 // Count the page and download more items
 int page = floorf(indexPath.row / kPageSize);
 [self downloadItemsForPage:page];
 } else {
 // Show downloaded item
 }

 return cell;
}

@end

Listing 1 Pagination Handling In Controller

Listing 1 demonstrates the simplest way to add pagination support in a controller object

that displays its data in a tabular form. This implementation is inelegant because each

controller has to handle the page calculation and is tightly coupled with the module that

performs the data fetch. In case the controller needs to display a different set of data

from another API source, the existing controller code will need to be altered, risking

existing functionalities to break. An alternative approach that employs the strategy

pattern is illustrated in figure 10.

19

Figure 10 Encapsulated Pagination Behaviors

As figure 10 shows, the pagination logic has been extracted out of the controller and

encapsulated into another class structure. The controller delegates its pagination

functionality to the DFPaginator superclass, which defines the pagination interface.

The DFPaginator object acts as a data source, where its subclasses will be

responsible for fetching a collection of objects from the API and returning them to the

requesting controller. Here, each DFPaginator subclass might use different services

to support different sets of data from other APIs. It is worth noting that the controller is

unaware of the concrete pagination implementation. In case a new paginator needs to

be added, the existing code for the base DFPaginator or the existing concrete

paginators do not need to be modified. A new paginator can simply be added and given

to the controller. Through the use of polymorphism, the controller has the flexibility to

swap out its pagination logic dynamically at runtime.

3.2.4 Observer

The observer pattern defines a mechanism for an object to loosely communicate its

state changes to interested parties. The formal name given to the interested party is

observer and the object that initiates the communication is called the subject. [11,51.]

The observer pattern is a powerful abstraction technique, as the subject does not need

to know the details of its observers. The Apple Cocoa framework provides four

approaches on implementing the observer pattern [14]. The Foodie verification

application utilises the Key-Value Observation (KVO) approach that allows object

20

instances to listen for changes on a particular key path. The use of KVO is primarily for

displaying the inspection progress at two levels – data group and datasheet.

Figure 11 Sequence Diagram of Observer Pattern

Figure 11 illustrates the sequence diagram for the Foodie verification application’s

implementation of KVO. All views that would like to show the overall progress of a

product inspection fall under the category of Observer 1. Conversely, the

DFDataGroupTableViewCell is an example of Observer 2 where the view needs to

display the progress of a single data group. Any time an inspection result is updated,

the corresponding DFDataField instance will modify its resultChanged property,

triggering a chain of notifications to DFDataGroup, DFDataSheet, and their

corresponding Observer 1 and Observer 2 subscribers.

3.3 Key Design Strategies

3.3.1 Image Loading

The Foodie verification application displays high-resolution product images in varying

dimensions throughout the application. Having good quality images helps the inspector

identify the correct product during the collection phase.

21

In order to facilitate the different presentations, the images ideally need to be optimised

for the views where they are going to be displayed. Figure 12 demonstrates the

functional relationship between the modules on a block level.

Figure 12 Functional Block Diagram of Image Loader

When a view wants to display a product image, it will first make a request from the

image loader module. The image loader will then check if the image with the specified

resolution is already available in the caches. In the event that it is not, the module will

forward the request to the server. Finally, when the image loader receives a response

from the server containing the image data, it will cache the information and provide the

image to the original requestor.

This architecture was designed with the goal of high-performance for displaying images

in varying resolutions. From the user’s perspective, a fluid UI is reflected by the

perceived responsiveness. This means that the application cannot lag and must remain

responsive to touch inputs. Technically, this is achieved by performing the expensive

and high latency processing operations asynchronously on a background thread.

A requested image can reside in several different locations. These locations can be

thought as layers, as visualised in figure 13. The layer hierarchy helps to design a

strategy for fetching the images. In the best-case scenario, the requested image lives

in the heap memory, which would yield the smallest latency for the fetch. The next

scenario is if the image is already downloaded and saved on the disk storage. Finally,

as the slowest method, the image will need to be fetched and downloaded from the

network.

ImageLoader

Disk Storage

In-Memory
Cache

Network

View Controller

22

Figure 13 Memory hierarchy

In the event that the image needs to be fetched from the network, there is a cache

replacement strategy that takes place when the image is saved. This replacement is

necessary because of the limited amount of memory available for the application. The

strategy employed by the image loader module is called Least Recently Used (LRU).

LRU functions in the way that it does an internal bookkeeping of the images by keeping

track of which images were used recently. If the allocated cache is full and a new

image is about to be saved, LRU will replace the least recently used image with the

new one.

3.3.2 Persistence

Despite being fundamentally a client–server application, the application needs to be

able to function without network connectivity. In order to achieve this requirement, key

design decisions had to be made early in the development. For example, all inspection

data and images must be persisted on the disk cache. When the inspectors are

working in the field, there is no guarantee that there will be network access. Therefore,

the inspection results are designed to be stored on the device and can be submitted to

the server when the connectivity is restored. Additionally, to prevent the application

In-­‐memory	

Cache	

Disk	
 Storage	

Network	

Low latency

High latency

Ac
ce

ss
 s

pe
ed

/ti
m

e

23

from data loss, the inspection results are automatically saved when any of the following

events occur:

• The inspection is paused

• The inspection is completed

• A product image is asked to be captured

• A new version of the application is available

• The application is sent to the background

• A task is allocated

• A task is collected

• A task is submitted

• The user is logging out.

DFInspectionTaskManager exposes a single interface for saving the object graph –

saveWithCompletion:(void (^)())completionHandler. This method is safe

to be called concurrently from multiple threads, which allows multiple events listed

above to be triggered simultaneously.

24

4 Foodie Verification Application

Prior to the Foodie verification application, GS1 Finland relied on an electronic

datasheet document that was filled by the manufacturers. This did not allow for an

autonomous centralised information system as the large number of files sent back-and-

forth could easily become unmanageable. Additionally, the document could not

accommodate displaying the data in a dynamic manner and lacked advanced input

validation.

The Foodie verification system consists of a server solution, which acts as a product

information repository and a client application designed to run on Apple iPad devices.

The iPad was chosen as the inspection device because of its ease of use and

reliability.

4.1 Inspector Use Cases

The main users of the application are called inspectors. Figure 14 illustrates the main

activities that can be performed by the inspector.

Figure 14 Use Case for Product Inspector

25

A typical scenario for an inspector is to start the workday by allocating an inspection

batch consisting of products that have not been inspected. The server determines the

number of products to allocate based on the available work hours defined by the

inspector. The inspector then proceeds to collect the designated products in the

warehouse or in the store with the help of the supplied product information and aisle

location information. In order to eliminate human errors, the inspector utilises a barcode

scanner to match with the correct product during collection. The application will

respond with audible and haptic feedback to signal if the correct product was scanned.

Once the products are collected, inspection work can begin. Depending on the type,

each product has a datasheet containing up to 100 attributes that must be verified by

the inspector. Example attributes include the product name in relevant languages,

physical dimensions, ingredients listing, and product barcode. Each attribute will be

marked as passed, failed, warning, or cannot be validated. The product inspection is

considered done once all attributes have results. To conclude the product inspection,

the inspector is required to take a picture of the product using the built-in iPad camera.

The picture is then submitted together with the results to the server for further

processing.

4.2 Functional Division of Foodie Verification

The functions of the client application can be categorised into seven modules, as

illustrated in figure 15. This chapter presents an overview of each module along with

screen captures of their final implementations.

26

Figure 15 Functional Division of the Foodie Verification Application

The seven modules, seen in figure 15, define the functional blocks of the application,

which have been designed to be independent of each other and can serve as

standalone reusable modules.

4.2.1 Access Control

Access to the client application is granted by supplying a valid authentication

credential. The usernames and passwords are securely stored on the device keychain

store. The authentication server verifies the credential and grants the user a session

key that is valid for a fixed period. The application handles session expiration by

automatically signing the current user out and requiring the user to sign in again to gain

access to the application.

Access	

control	

Batch	

manage-­‐
ment	

Product	

collec4on	

Product	

inspec4on	

Product	

recep4on	

Product	

discovery	

Analy4cs	

27

Figure 16 Access Control to the Application

Figure 16 illustrates the login screen presented to the inspector when a valid session is

not present, such as when the application is started up for the first time. The application

supports adding multiple accounts to allow for device sharing between inspectors.

Upon successful login, only the inspection data relevant to the authenticated user will

be loaded and visible.

4.2.2 Batch Management

The batch management module provides an overall view of the progress of past and

present inspection batches allocated to an inspector. The batches are consolidated into

three sections: In Progress, Completed, and Cancelled. In this view, seen in figure 17,

most of the attention will be on the batches that are in progress. Inspectors need to

remember to submit the inspection results before the batch expires. Submitted batches

are saved as to allow for future reference. Cancelled batches do not hold any

significant information other than to keep track of the cancellation time.

28

Figure 17 Batch Management View

The batch management view also provides the entry point for requesting a new

inspection batch. Figure 18 shows the allocation view that appears when the “Add

Task” button is pressed. An inspection batch is always requested for a specific location.

This enables the server to narrow down the selection of products available for

inspection. The location can be a brick-and-mortar store, a warehouse, or an inspection

centre. The inspector is also required to either specify an explicit quantity or to provide

an estimate of the time available for the inspection. Based on the value given, the

server will determine the number of products to allocate. The batch of products

retrieved from the server is then designated to the inspector. The same products will

not be allocated to another inspector until their inspections have been completed or

released.

29

Figure 18 Task Allocation View

Usage of the task allocation view, seen in figure 18, is consistent throughout the

application such as when allocating inspection tasks for existing, wholesale, and new

products.

4.2.3 Product Collection

Once an inspection batch has been allocated, the inspector then proceeds to collect

the assigned products in the warehouse or in the store. The detail view, seen in figure

19, is composed of critical information, such as the product image, Global Trade Item

Number (GTIN), package size, and the aisle location, to assist in identifying the correct

product during collection.

30

Figure 19 Product Collection View

The inspector is assured that the correct product was collected if the GTIN information

matches the string of numbers printed under the product barcode. Alternatively, the

inspector can utilise a barcode reader to scan the barcode on the product packaging. If

the scanned barcode is found, the corresponding product will be automatically marked

as collected in the collection view. Usage of the scanner is preferred as it eliminates

any human error when comparing the numbers.

In the event that the product could not be located, it is marked as skipped by selecting

an option specifying the reason for the bypass. This scenario typically occurs when the

product is out of stock or has been removed from the inventory. A bypassed product

will trigger the server to release its inspection and possibly re-schedule for inspection at

a later time.

31

4.2.4 Product Inspection

The verification application allows for five different modes of product inspection work:

• Wholesale inspection: Case-level product inspection carried out in batches at

warehouses.

• New product inspection: Base- or case-level product inspection carried out at

inspection centres.

• Existing product inspection: Base- or case-level product inspection carried

out in batches at warehouses or brick-and-mortar stores.

• Product reinspection: Base- or case-level product inspection carried out in

batches at brick-and-mortar stores or inspection centres.

• Ad-hoc inspection: Base- or case-level product inspection carried out at

warehouses or brick-and-mortar stores.

Figure 20 shows the entry points for the inspection modes on the front-page view of the

application.

Figure 20 Front Page View

32

The Foodie verification application is a quality assurance tool used for validating the

accuracy of consumer goods data available in the GS1 data bank. Each product is

associated with a set of attributes, which are displayed in the inspection view shown in

figure 21. Each attribute will in turn be validated by comparing it with the physical

product in accordance with its rules. A rule serves to instruct and guide the inspector

on how to verify the correctness of an attribute’s data.

Figure 21 Product Inspection View

The number of attributes an inspector has to go through varies depending on the type

of the product. For a base-level product, the count is approximately 70 whereas for a

case-level product, it is approximately 15 attributes. Related attributes are bundled into

groups to help organise the information. For example, the measurement group consists

of attributes concerning the physical dimensions and weight of the product and the

nutritional information group comprises attributes related to the ingredients and

allergens.

33

Table 4 Valid Results of the Inspection Attribute

Code Result Description

0 Unable to validate The attribute is not applicable for the product.

1 Passed The data matches the information on the product.

2 Warning Low severity inconsistency between the data and the

physical product.

3 Failure Inconsistency between the data and the physical

product constitute a failure.

An attribute can be validated into one of four valid results, as listed in table 4. An

inspection is considered finished once all of its attributes have been acknowledged.

The inspector is also required to take a picture of the product using the built-in camera

to serve as proof of inspection. When at least one picture has been associated, the

inspection results are ready to be submitted to the server.

4.2.5 Product Reception

All new products entering the Finnish market after April 1, 2015 are subjected to the

new product inspection mode. The same mode is also applicable to products that have

undergone any changes in their packaging, composition, or GTIN code. The

manufacturer sends a sample copy of the case-level product to the inspection centre

(IC). Using the verification application and a barcode scanner, the IC personnel scan all

inbound products to enter them into the inventory. Figure 22 below shows the reception

details view prompted after a new product is scanned. For each product, the receiver

must specify the following parameters:

• Condition: If a product arrives in a broken condition, the manufacturer will be

notified so that a replacement can be sent. It is important that the product is in a

good condition as not to affect the physical measurements or the readability of

the packaging labels.

• Priority: By default, all new arrivals will be assigned a normal priority.

• Inspect before: The receiver can select a date in case the manufacturer has

specified a time constraint to bring the product to the market. This will flag the

system to prioritise the product in the inspection queue.

34

• Decommission type: By default, products will be donated to charity after

inspection. Products with a short expiration date will be disposed and the ones

with sensitive information can be sent back to the manufacturer.

• Storage location: Shelf spaces in the inspection centre are all marked with

barcodes. The receiver scans the barcode encoded with the storage location

information to denote where the product was unloaded.

Figure 22 Product Reception View

Once the reception is confirmed, the system will send an acknowledgement to the

manufacturer via email. All eligible products are entered into the work queue awaiting

inspection. As a rule, all new products have zero tolerance towards any discrepancy

between the data provided by the manufacturer and the actual product. The product

can only be approved when all errors in the data have been corrected.

35

4.2.6 Product Discovery

All application modules discussed so far were designed to accommodate the flow of

the inspection work. The product discovery module exists as an auxiliary module to the

application, leveraging on its access to the full product information database on the

GS1 data bank. Through the product discovery interface shown in figure 23, the user

can browse and view products by navigating the category tree.

Figure 23 Product Discovery View

Selecting a product in the discovery view will show the product’s details, as shown in

figure 24. From the details view, the user can look up when the product was last

inspected as well as the hierarchies the product belongs to.

36

Figure 24 Product Details View

The product discovery view also contains a search control, which can be used for

looking up product information by product name, brand, manufacturer, or GTIN code.

An example of the search results view is illustrated in figure 25 below.

Figure 25 Search Results View

37

The search results can be narrowed down using a combination of search filters, such

as by product type or by manufacturer.

4.2.7 Analytics

The analytics module is a reporting display, used by an inspector with a managerial

role, for monitoring the overall progress and product inspection coverage. The tool can

also be used for monitoring individual inspector performance. The server routinely

records all changes made to the product data, enabling the system to trace the

activities and calculate statistics.

Figure 26 Analytics View

Figure 26 above shows the view presented to an inspector with the right privileges. The

view provides a breakdown of the inspection progress for each product type and

inspector. The data in the report can also be filtered for a specified time period.

38

4.3 Client–Server Functionality

All product information received from GS1 Finland is stored on the Foodie server,

which acts as a central information repository. The server also contains the logic for

determining which products are assigned to the inspectors according to a predefined

order of priority. Additionally, the Foodie Server API provides methods for accessing

resources such as inspectionLocation, datasheet, codelist, or item.

Figure 27 Client–Server Communication

As shown in figure 27, all communications between the client application and the

server are authenticated and relayed using the Secure Sockets Layer (SSL)

connection. API requests are signed with an application secret and a transaction

identifier. The server has been configured to ignore all unauthenticated method calls.

39

5 Usability

An application is said to be usable when it performs according to the user’s

expectations. The ISO standard defines usability as to how well the users can use a

product in a specified context to achieve certain goals in a manner that is effective,

efficient, and satisfactory [15]. Assessing the usability of an application can be done by

evaluating it against the general principles of user interface design, more broadly

known as heuristics. According to Jakob Nielsen (1993), there are five quality

components associated with usability – learnability, efficiency, memorability, errors,

and satisfaction [16,26;17]. This chapter discusses the heuristics implemented and

evaluates how well the Foodie verification application adheres to Nielsen’s five quality

traits.

Usability is very important for the Foodie verification application. On an average, it is

estimated that an inspector is able to go through 100 wholesale products or 30

consumer products a day. That sum translates to approximately 1500 to 2100

attributes on a full workday. If the work is carried out over several consecutive weeks,

the task can quickly become tedious and monotonous. Therefore, a significant amount

of effort has been put into the design of the user interface and user interaction to

ensure that the inspectors remain engaged with the application.

5.1 Learnability

Learnability is a measure of how easy it is for users to learn a new system to

accomplish basic tasks [16,31]. At its core, the Foodie verification is a tool for

performing inspection tasks. The majority of the time spent using the application will be

in the inspection view. For this reason, most of the effort was focused on making the

application as intuitive as possible. Starting an inspection task from the front page is

never more than two taps away. User interface interactions and components were

designed with delightful animations to not only appear attractive, but to provide

affordances that guide the user in a logical flow. Additionally, all views were carefully

designed to have only the relevant elements visible, while hiding inactive elements to

reduce visual clutter. For example, the selected attribute expands a section to reveal its

inspection rules and closes when the next attribute is selected. The result status control

also animates out for the currently active attribute and collapses into its final result

40

indicating to the user that the attribute has been inspected. These examples are

illustrated in figure 28 below.

Figure 28 Inspection Details View

Once an attribute is assigned a result, the next unanswered attribute will get selected

automatically with its inspection rules section expanded. The colour of the attribute’s

value also changes to accentuate its selected state.

The automatic flow functionality also extends to the selection of data groups. Figure 29

below shows the next data group was automatically selected after the previous one

was completed.

Figure 29 Automated Inspection Flow

41

As can be seen in figure 29, a data group cell comprises five pieces of useful

information that are communicated to the user at a glance. First, the currently active

cell is clearly conveyed with a vertical bar and a highlighted text colour, differentiating it

from the rest of the cells. The progress is communicated with a horizontal progress bar,

which gives a rough estimate of its completion. Additionally, a fraction figure is

displayed next to the progress bar to cater for a more accurate state of the data group’s

progress. When the inspector scrolls through the list, a large and familiar checkmark

symbol indents the cell’s content, reducing the cognitive load on the user when trying to

find the next incomplete data group. When the user wants to review the results,

coloured dots were added to the cell to flag that its group contains at least one error or

warning. The colour of the dot indicates the type of failure and matches the colours that

the user has learned from the result status control. Despite being packed full of

information, the cell presentation managed to remain organized and uncluttered.

Another common task that an inspector has to perform is to measure product

dimensions and to enter the values into the inspection view. The standard Apple iOS

virtual keyboard, seen in figure 30, does not allow for a restricted set of numeric keys.

Approximately two thirds of the keys are redundant and the ones that are needed have

too small of a hit area, inducing frustrations when the keys are mispressed.

Figure 30 Standard Apple iPad Numeric Keyboard

To address this problem, a custom keyboard was designed, as seen in figure 31. The

customized keyboard only includes the keys necessary for entering measurement

values and a clearly labelled button for checking the result. The keys have also been

arranged in the familiar style of a basic calculator to leverage on the user’s existing

motor proficiency in quickly entering numbers successively.

42

Figure 31 Custom Measurement Input Keyboard

Typically, the iPad is best suited for reading when held in the portrait orientation.

Paragraphs are not too wide and users are comfortable with scrolling lengthy content

vertically. Conversely, the landscape orientation is the more natural way when doing

productive work. Accordingly, controls for performing repetitive tasks, such as

collecting products or validating attributes, were strategically placed so that the thumbs

could easily reach them when holding the device with both hands. Figure 32 helps to

illustrate how such a small detail can vastly improve the ease of use and consequently

make the user become more efficient.

43

Figure 32 Strategic Placement of Controls

Automatic cell selection, consistent use of colours for result and cell states, custom

input keyboard, and strategic placement of key controls are examples of deliberate

design decisions that make the Foodie verification application easy to use and allow

the user to focus on getting the work done using the system.

5.2 Efficiency

An efficient system enables its experienced users to achieve a high level of productivity

[16,31]. The Foodie verification application caters for beginners as well as experienced

inspectors. The application obviates the need for an instruction manual by hiding the

technical complexities and presenting the user with an interface that is self-explanatory.

Barcode scanning capability in the system is a prime example of this. To the inspector,

using the scanner is as simple as pointing the reader to a barcode. Behind the scenes,

the application can respond in various ways, depending on the active context. For

44

example, in the product discovery mode, the read barcode invokes a product search

based on the GTIN code. In the product inspection queue, scanning a product barcode

initiates the corresponding product inspection. In the product collection mode, the

application tries to match the read barcode with a product in the list and marks it as

collected, if found. Figure 33 below illustrates the typical barcode types found on

consumer product packaging.

Figure 33 Trade Item Barcodes

Additional complexity is introduced when the application has to parse the barcode in

order to extract the product GTIN code. Determining the product type is trivial as base-

level product packaging typically contains EAN-13 or EAN-8 barcodes, whereas case-

level product packaging includes a GS1-128 barcode. A great variety of information

can be encoded in a GS1-128 barcode, where each piece is tagged with an application

identifier to specify its semantic meaning. The application gracefully handles all

possible semantics and returns the expected product to the user, providing the

confidence that the system behaves as expected.

As the barcode example above illustrates, the seamless interaction between the

inspector and the application is achieved by intelligent system decision-making that is

invisible to the user. Using the barcode scanner not only eliminates human errors, but

also allows the inspector to become more efficient by saving time from not having to do

manual comparison work.

5.3 Memorability

Memorability refers to how well users can use a system after a period of inactive use,

without having to learn everything again [16,31]. This applies to inspectors returning

from a holiday or managers who are only using the application intermittently, to extract

statistical data or progress reports. The front page of the application, seen in figure 20,

provides clear entry points for the available activities. Getting to the analytics view is

45

only a single tap away for the managers. Consistent workflow for allocating and

managing inspection batches across different modes of inspection also allow the

inspectors to immediately recall how to use the system. Each view has a clear purpose

and all possible call-to-action buttons are visible and labelled, negating the inspector

from having to remember the contents of a menu.

Figure 34 Icon Set

The extent of design consistency in the application is not limited to the workflow, but

includes the usage of typeface, conformance to the platform standard guidelines, and

usage of custom icons. Figure 34 shows the set of key icons that is used throughout

the application. Users can easily recognise the icons and associate them with their

actions, knowing that the same action will always have the same effect. This has the

advantage of reinforcing the user’s confidence when using and operating the

application.

5.4 Errors

A high rate of failure is intolerable because users should be able to carry out the

functions of a system without frequent errors [16,26]. Bugs in software are inevitable.

Even with rigorous manual and automated testing, systems fail all the time and users

will always find a way to use an application in a way the programmer never intended it

to be used. Too often software is written to only handle situations where everything

goes as planned. Error situations are equally important to be handled and the best way

to prevent errors is to prepare for them. In a client–server architecture such as the

Foodie verification, unplanned server outages, unexpected response data, no network

coverage or programmer errors are examples of possible failures that could occur.

46

Figure 35 Error Messages

Figure 35 above shows example error messages displayed in the application. The user

is always kept informed with descriptive messages and possible recommendations on

what action to take. All inspection data are routinely saved to the disk memory. In the

event of a crash, the application should be able to recover most, if not all, of the data

from before the crash occurred.

5.5 Satisfaction

A system should be designed with the goal that it is pleasant to use [16,31]. Every

touch input in the application is responded with a delightful animation. Entering an

invalid password will cause the login screen to shake briefly. Selecting a cell will cause

it to get depressed before bouncing back. Successfully submitting an inspection result

will greet the user with a large “submitted” label, giving the user a sense of

accomplishment. Navigating forward to a new view is done with a custom slide-in

transition animation and navigating backward will have an inverse slide-out animation,

as the user would expect to happen. Every action has a corresponding reaction. Users

feel that the application reacts and behaves as it should. This symmetry can give a

sense of satisfaction and comfort to the user. Making the extra effort to implement

these custom animations may seem redundant and subjective. However, if the

inspectors enjoy using the application, it can definitely help them to stay engaged and

become more productive.

47

6 Discussion

6.1 Results

The Foodie verification application was deployed for production use and has received

numerous incremental updates since its original release. All the required features were

thoroughly tested by several inspectors at various warehouses. The feedbacks

received on the usability of the application were positive. The application is said to be

easy to use, unambiguous with an intuitive workflow, and most importantly, all the

necessary actions function according to the inspectors’ needs.

6.2 Challenges and Solutions

There were several technical challenges encountered during the development of the

application. The first issue was regarding the automatic persistence of data to the disk

memory. The application is expected to periodically save its inspection results and

gracefully recover the data in the event of an application crash. The automatic saving

was designed such that the entire object graph of the DFInspectionTask instance

was encoded to disk when a key event took place. Occasionally, a crash would occur if

the array collection were mutated when the persistence process was still in progress.

The first attempt at fixing the issue was by throttling the frequency of the automatic

save by trimming the key events. The trade-off meant that there was now a higher

probability of data lost from a crash. Furthermore, the fix still did not prevent the issue

from resurfacing, but only mitigated it by minimizing its likelihood to occur. Upon further

introspection, a second attempt at addressing the root cause of the problem was made.

Instead of persisting the same array collection that was being mutated,

DFInspectionTaskManager now performs a deep copy of the inspection data array

collections, which in turn, are serialized and persisted to the disk memory.

Another unforeseen issue that presented itself was a low memory condition on older

generation devices. During the development phase, the iPad mini 2 was the primary

device used for testing. The device is equipped with 1 GB of Random Access Memory

(RAM). The memory footprint of the application on a normal use typically ranges

between 30 MB to 80 MB. The memory consumption peaks when the inspector

attaches several photos to the inspection results. Keeping the raw image data in the

48

heap causes the memory footprint to jump in the range of 150 MB to 250 MB.

Unfortunately, the devices used by the inspectors were of the older generation iPad

mini 1, which only feature a 512 MB of RAM. The inspectors were going through

approximately 100 product inspections a day, or potentially up to 200 product images

that are kept in memory. For this reason, the users were experiencing crashes

immediately following an image capture. The issue was eventually resolved once I was

able to pinpoint the root cause of the problem. Now, the application only keeps a

maximum of two images in the memory and saves the rest on the disk. When a new

image is captured, the DFInspectionImageManager component will purge old

images based on the First-In-First-Out (FIFO) cache replacement strategy. By the

same token, the component will also purge all images from the disk cache that have

been submitted or cancelled to prevent them from accumulating over time.

Yet another challenge that was known during the design phase was related to sending

large image files under poor network conditions. Instead of submitting the inspection

results and the image data in a single network call, they are separated into two

payloads. The application employs two network operation queues that function at

different priority levels. The use of this method required the support from the API to be

able to receive the image data non-sequentially. Consequently, this approach reduces

the size of the results payload and allows it to be submitted even when the network

connectivity is poor. In order to ensure that the image data are eventually submitted, a

bookkeeping mechanism was implemented in the DFInspectionImageManager

component, which keeps track of images in the submission queue. The component

periodically checks the queue and attempts to process its items until the queue is

empty.

6.3 Future Development

Even though the application was designed based on the requirements specified by

GS1, its components were structured to be customer-agnostic. The application has a

baseline implementation that makes deploying repackaged versions for new customers

trivial. For example, the DFThemeManager component exists as a configuration point

for handling the application-wide look and feel. Changing the typeface and customising

the colour palette for a new customer can be easily accomplished as all font face and

49

brand colour method calls are routed through common UIFont and UIColor

categories.

In its current state, the application is positioned as a front-end solution for verifying data

that already exist in a data bank. However, it is no too far-fetched to consider that a

customer might request the capability for capturing new product information. A new

type of user, called data supplier, could be introduced into the use case. The

application can be extended to function as a full-featured and dynamic input form used

by data suppliers or manufacturers for entering new product data into the data bank.

50

7 Conclusions

The goal of developing a front-end system for assuring the integrity of trade item

information in the GS1 data bank was met. An iPad application was written to work in

conjunction with a server-side application that allows product inspectors to plan,

manage, monitor, and carry out inspection work at warehouses and retail stores. The

system was designed to include the complete feature set specified by GS1 Finland.

Given the proper productisation opportunity, further development can be made to

include product data capturing in the system, turning the application into a more

versatile solution to manufacturers and potential new customers.

The emergence of online grocery stores has driven the need for product information to

be made available digitally. Consumers rely on the accuracy of the product information

displayed in order to make an informed purchase decision. The hope is that having a

quality assurance system in place – enforced by an authoritative organization – will

protect consumers from false information, thus increasing the consumer trust and

accelerate the growth of the online grocery industry.

51

References

1 Henry V. The Rise and Rise of Online Grocery Shopping [online]. IGD Retail
Analysis; 10 February 2015.
URL: https://www.igd.com/Research/Shopper-Insight/Channels-and-In-store/
25717/The-rise-and-rise-of-online-grocery-shopping/. Accessed 23 March 2015.

2 GS1. The GS1 General Specifications. January 2015;15(2):16-17.

3 Drobnik O. Barcodes with iOS: Bringing together the digital and physical worlds.
Shelter Island, NY: Manning Publications; 2015.

4 GS1. An Introduction to the Global Trade Item Number (GTIN). December

2006.

5 Palazzolo M. Focus on Traceability – Regulation and Consumer Demand
[online]. Food Regulations and Labelling Standards Conference; December
2013.
URL: http://www.slideshare.net/informaoz/maria-palazzolo. Accessed 23 March
2015.

6 GS1. EU Regulation on Food Information to Consumers [online]. GS1 Europe;

2012.
URL: http://www.gs1.eu/docs/news/EU_Regulation_on_Food_Information_to_
Consumers_-_What_you_need_to_know_-_V1.0.pdf. Accessed 23 March
2015.

7 Mason Hayes & Curran. Impact Assessment of EU Food Information Regulation
(1169/2011) on Food Manufacturers and Retailers [online]. 2012.
URL: http://www.gs1.org/docs/freshfood/EU_FIR_Impact_Analysis.pdf.
Accessed 23 March 2015.

8 Iulia-Maria T. Best practices in iPhone programming: Model-view-controller
architecture — Carousel component development [online]. University of
Timisoara, RO. EUROCON 2011;1-4.
URL: http://ieeexplore.ieee.org.ezproxy.metropolia.fi/xpl/
articleDetails.jsp?tp=&arnumber=5929308. Accessed 24 March 2015.

9 Sasine JM, Toal RJ. Implementing the model-view-controller paradigm in Ada
95 [online]. Loyola Marymount University, Los Angeles, CA. ACM 1995;202-
211.
URL: http://dl.acm.org/citation.cfm?id=376571&bnc=1. Accessed 24 March
2015.

10 Hansen S, Fossum TV. Refactoring model-view-controller [online]. Journal of
Computing Sciences in Colleges 2005;21(1):120-129.
URL: http://dl.acm.org.ezproxy.metropolia.fi/citation.cfm?id=1088791.1088812.
Accessed 24 March 2015.

11 Freeman Eric, Freeman Elizabeth, Sierra K, Bates B. Head First Design
Pattern. Sebastopol, CA: O’Reilly Media; 2004.

52

12 Apple Inc. Model-View-Controller - General concepts [online]. iPhone Library
Documentation, Apple Developer Center; 2012.
URL: https://developer.apple.com/library/ios/documentation/General/
Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-
Controller.html. Accessed 24 March 2015.

13 Mahemoff MJ. Handling multiple domain objects with Model-View-Controller
[online]. Melbourne University, AU. Technology of Object-Oriented Languages
and Systems 1999;28-39.
URL: http://ieeexplore.ieee.org.ezproxy.metropolia.fi/xpl/
articleDetails.jsp?tp=&arnumber=809412. Accessed 24 March 2015.

14 Apple Inc. Introduction to Key-Value Observing Programming Guide [online].
Mac Developer Library, Apple Developer Center; 2012.
URL: https://developer.apple.com/library/mac/documentation/
Cocoa/Conceptual/KeyValueObserving/KeyValueObserving.html. Accessed 24
March 2015.

15 ISO 9241−11. Ergonomic requirements for office work with visual display
terminals (VDTs) — Part 11: Guidance on usability. Geneva: International
Organization for Standardization (ISO); 1998.

16 Nielsen J. Usability Engineering. Amsterdam: Morgan Kaufmann; 1993.

17 Nielsen J. 10 Heuristics for User Interface Design [online]. Nielsen Norman
Group; 1995.
URL: http://www.nngroup.com/articles/ten-usability-heuristics/. Accessed 22
March 2015

Appendix 1

1 (1)

GS1 and GS1-8 Prefixes

