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Abstract: 
Mobile genetic elements (MGEs) serve as the architects of bacterial evolution and adaptation, 
with phage-plasmids—a fascinating hybrid class exhibiting dual phage and plasmid 
characteristics—emerging as particularly significant yet elusive players in antimicrobial 
resistance spread. This thesis introduces a novel computational framework that surpasses the 
traditional binary classification of MGEs by employing advanced machine learning 
techniques to distinguish phages, plasmids, and phage-plasmids from sequence data alone. 

Through rigorous analysis of pentamer (k=5) frequency profiles derived from 4,248 carefully 
curated MGE sequences, I developed and compared three progressively sophisticated 
models: Logistic Regression, Random Forest, and Convolutional Neural Network (CNN). 
The CNN achieved remarkable 90% accuracy, revealing the power of deep learning to 
capture subtle sequence patterns that define these genetic elements. The exceptional precision 
(93%) for phage-plasmid identification represents a significant advancement in detecting 
these hybrid elements in complex metagenomic datasets. 

Strikingly, my analysis uncovered the distinctive genomic signatures of each MGE class—
AT-rich motifs dominating phages, GC-rich patterns characterizing plasmids, and unique 
sequence compositions marking phage-plasmids. Dimensionality reduction visualizations 
elegantly confirmed the intermediate evolutionary position of phage-plasmids, while 
revealing multiple distinct clusters suggesting diverse evolutionary trajectories for these 
hybrid elements. 

Beyond its methodological contributions, this research provides critical biological insights 
into the sequence-level characteristics that underpin the hybrid functionality of phage-
plasmids. The intermediate nucleotide composition and distinctive k-mer patterns observed 
in phage-plasmids offer computational evidence supporting their proposed role as 
evolutionary bridges facilitating genetic exchange between different MGE types. 



    

This work creates new possibilities for metagenomic exploration, antimicrobial resistance 
surveillance, and biotechnological innovation by enabling accurate identification of all three 
MGE classes without requiring gene annotation or reference databases. By illuminating the 
genomic nature of these important vehicles of bacterial adaptation, this research advances 
our fundamental understanding of horizontal gene transfer and provides practical tools to 
address pressing challenges in infectious disease and microbial ecology. 

Keywords: Artificial Intelligence, Machine Learning, Deep learning, Logistic regression 
Model, Random Forest Model, Convolutional Neural Networks, Neural Networks, K-mers 
Embedding, Metagenomics Sequence Predictions, Phage-plasmid, Phages, Plasmids 
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1. Literature Review 
1.1 Introduction 
Bacteriophages are viruses that kill bacteria, and plasmids are accessory DNA that replicate 

in the bacteria. Phage-plasmids are mobile genetic elements with properties of both phages 

and plasmids, functioning as hybrids (Shanet et al. 2023) Mobile genetic elements contribute 

to bacterial evolution, spread of antibiotic resistance and functioning of ecosystems (Hilpert 

et al. 2020; Kerkvliet et al. 2024). The finding of these mobile genetic elements in 

metagenomic sequences can help in understanding their distribution, diversity, and impact 

on microbial communities. Nonetheless, this work implies challenging genomic fragments 

reconstructions, high-throughput annotation, and association of antimicrobial resistance 

genes (ARGs) with mobile genetic elements (Kerkvliet et al. 2024). 

Recently developed bioinformatics tools assist in the identification of plasmids, phages and 

insertion sequence elements in metagenomes, thus aiding the study of mobile ARGs 

(mARGs) dissemination. Certain cell types influence the phage and plasmid infection. These 

cell types are associated with strains that acquire more conjugative plasmids in their natural 

environments (Haudiquet et al., 2024). The interactions of bacterial cells with mobile genetic 

elements lead to the evolution of microbial communities. A wide range of machine learning 

techniques have been employed to tackle the difficulties involved in recognizing and 

categorization of mobile genetic elements. These are random forest models for major capsid 

proteins sequences to predict phage capsid architecture (Lee et al., 2022) and alignment-free 

methods using k-mer frequencies to classify phage lifestyles (Song, 2020). Machine learning 

methods can obtain a classification accuracy that is much greater than random classification 

(33%) with several methods. These are Logistic Regression (LR), Random Forest (RF) and 

Convolutional Neural Networks (CNN). Logistic Regression has been found to be highly 

accurate in numerous studies. For instance, taking apple varieties’ classification, LR achieved 

accuracy of 99.08 when combined with deep features and PCA (Taner et al., 2024). LR might 

find it more difficult to model the intricacies in biological data when compared to advanced 

models. Random Forest, which is an ensemble learning method, was used to classify phage 

virion proteins with 91.84% accuracy (Zhang & Li, 2023). CNNs enhance the accuracy of 

classification by automatically extracting features. An example is CNN models achieving  
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accuracies of 93.16% in DNA sequence classification (Gunasekaran et al., 2021). The 

advantage of CNN is that it learns automatically hierarchically from raw data which is great 

for recognizing complex patterns. 

This literature review discusses what is known about the biology of phages, plasmids and 

phage-plasmids as well as the computational difficulties to detect them from metagenomic 

data and machine learning approaches promising for their classification. 

 

1.2 Historical Context and Taxonomic Ambiguity 

The identification of phages and plasmids has brought about the tools necessary to study 

bacterial genomes. Viruses that infect bacteria are called phages discovered in the early 20th 

century and an extrachromosomal DNA element that can replicate independently within the 

cellular context. As illustrated recently, phage-plasmids are a new class of genetic element 

which bears characteristics of both phages and plasmids. Phage-plasmids are extra-

chromosomal elements which can behave as plasmids and phages, showcasing a unique eco-

evolutionary strategy. These are extra-chromosomal elements which can act as both plasmids 

and phages, exhibiting a unique eco-evolutionary strategy. The combination of the two allows 

for rapid transmission of a phage through a bacterial population and stable maintenance either 

in lytic or lysogenic state. 

The classification of phages, plasmids and phage-plasmids is quite difficult owing to their 

diverse sequences. Traditional taxonomic approaches that involve nucleotide sequence 

homology are computationally expensive and have failed to keep pace with the increasing 

numbers of sequenced genomes (Gauthier & Hatfull, 2023). The presence of widespread 

metagenomics sequence patterns of these mobile genetic elements hinder classification 

(Smug et al., 2023). 

New bioinformatics approaches must be adopted to solve these problems.  The new 

bioinformatics tool PhamClust uses proteomic equivalence quotients to cluster phages based 

on their inter-genome relatedness (Gauthier & Hatfull, 2023). These techniques seek to 

provide a more efficient and scalable way of approaching phage taxonomy that would reflect 

the continuum of diversity evident among these genomic entities. 
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1.3 Ecological and Functional Roles 

Bacteriophages, phage-plasmids and plasmids shape microbial communities and drive 

bacterial evolution. Phages can affect ecosystem community dynamics as well as 

biogeochemical cycles. This impacts various ecosystems such as soils and sediments 

(Shaidullina & Harms, 2022; Zhang et al., 2022). According to Zhang et al. (2022), they can 

transfer antibiotic resistance genes among and between bacteria via transduction. Phage 

plasmids could be intermediate between phages and plasmids regarding nucleotide 

composition and sequence pattern, detectable by k-mer frequency analysis (Song, 2020). 

 
Figure 1.  Evolutionary trajectories of phage-plasmids (P-Ps), and gene flow between different mobile 

genetic element (MGE) types.                                                                              Adopted from (Figunia et al., 

2024) 

 

The potential of phages for biotechnology and therapeutics directed towards bacterial 

infections is huge (Shaidullina & Harms, 2022). Phage therapy researchers concentrate on 

lytic phages that can kill bacteria while avoiding temperate phages that can transfer unwanted 

genes (Grigson et al., 2023). A novel approach termed ‘phage rehabilitation’ has emerged 

aimed at modifying the bacterial composition or function without necessarily eliminating 

pathogens (Baaziz et al., 2022).  In addition, identifying nonessential genes in phages by 

CRISPRi assays can help engineer phages for various purposes, including tracking and 

quantifying in different environments (Piya et al., 2023). In case of Phage-plasmids (PPs), 

they have wider distribution in the bacteria. In addition, their carriage of phage and plasmid 
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core genes implied that they could promote horizontal gene transfer, and host adaptation 

between different MGE types (Figunia et al., 2024, Pfeifer & Rocha, 2024) 

 

1.4 Metagenomics and the Phage-Plasmids Detection Problem 

Metagenomics enables analysis of microbial communities by sequencing DNA from 

environmental samples, providing insights into community structure and function (Kim et 

al., 2024). This technique is vital in medicine, agriculture, environmental science, and 

forensics (Rahman & Rangwala, 2020). Detecting phages, phage-plasmids, and plasmids in 

metagenomic data is challenging as these mobile genetic elements spread antimicrobial 

resistance genes across hosts (Kerkvliet et al., 2024). 

To solve this problem, many computation tools have been developed but which vary in 

performance. Researchers examined 19 metagenomic phage detection tools and observed a 

significant difference in their findings. Almost 80% of contigs were marked as phage by at 

least one tool, but the highest overlap between any two tools was limited to only 38.8% 

(Schackart et al., 2023). Tools using homology-based approaches (e.g., VirSorter, MARVEL) 

are associated with low false positive rates and are robust against eukaryotic contamination. 

By contrast, sequence composition-based tools (e.g., VirFinder, DeepVirFinder) exhibit 

higher sensitivity, including for phages with limited presence in reference databases 

(Schackart et al., 2023). 

This means that the present methodologies and systems which are used to detect have 

limitations. Kerkvliet et al. (2024) indicate that in short-read metagenomics sequencing 

experiments the metagenomic assembly process is the main bottleneck for linking ARGs to 

the identified MGEs. To tackle these issues, the researchers proposed pipelines like 

MetaMobilePicker, which integrates multiple tools to identify ARGs associated with 

plasmids, IS elements, and phages (Kerkvliet et al. 2024). 
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1.5 Feature-Based Classification Strategies 

Sequence features can be used to classify mobile genetic elements (MGEs) like phages, 

phage-plasmids and plasmids. K-mer frequencies are alignment-free strategies for comparing 

genomes and predicting lifestyles (Song, 2020) and are suitable for metagenomic data. The 

D2* dissimilarity measure using k-mer frequencies is effective in classifying phage lifestyles. 

Feature extraction refers to the identification of mobility-related features in plasmids and 

MGEs. The MetaMobilePicker tool that combines various tools for identifying ARGs 

associated with plasmids, IS elements and phages (Kerkvliet et al., 2024). Kerkvliet et al. 

(2024) state that metagenomic assemblage poses the greatest obstacle to linking ARGs to 

MGEs. The MMPSO algorithm simultaneously ranks features and uses heuristic search 

techniques for optimal feature selection (Wang et al., 2022). The cABC performs a recursive 

analysis which lets you use only the most interoperative features (Lötsch & Ultsch, 2023). 

Pentamers (k=5) provide the right balance of sequence context and computational efficiency 

for genomic classification. These patterns distinguish phages from plasmids (Song, 2020). 

Phages are usually AT-rich; however plasmids are GC-rich. Phages like Lu221 and Hi226 

have AT-rich pentamer signatures (Parra et al., 2023), while conjugative plasmids exhibiting 

antibiotic resistance genes have a higher GC content (Parra et al., 2023). Phage-plasmids may 

possess unique pentamer signatures not found in a phage or a plasmid. These hybrid elements 

could be identified through k-mer patterns, indicating their hybrid origin (Parra et al., 2023; 

Song, 2020). Patterns like these may allow for quick assignment of novel genomic elements 

in meta-genomics. 

Feature selection methods enhance classification accuracy. By employing feature ranking as 

well as the heuristic search technique, the MMPSO algorithm has shown to be effective in 

selecting the best feature subsets (Wang et al, 2022). The recursive computed ABC analysis 

is a specific method that successfully reduces feature sets that skew the distribution of feature 

importance in biological data sets (Lötsch & Ultsch, 2023). 
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1.6 Machine Learning Approaches for Mobile Genetic Element 
Classification 

1.6.1 Logistic Regression 

Statistical Modeling and Machine Learning apply the Logistic Regression (LR) as the basic 

model for a classification problem. Despite its simplicity, logistic regression 

demonstrates high accuracy across multiple domains, achieving 99.08% accuracy 

when classifying apple varieties with deep features and principal component analysis 

(Taner et al., 2024). The main strength of the method lies in its interpretability as the 

features’ coeHicients directly reflect their importance and influence in the output, 

giving us insights into the features that discriminatively separate the two classes. 

Genomic analysis benefits from this interpretability as it points to biology. When 

classifying MGE using k-mer frequencies, a logistic regression can handle high 

dimensional spaces with ease and also provides a measure of confidence for each 

classification. On the other hand, the model assumes linear relationships between 

features and classification outcomes. Thus, the model is unable to capture the 

complex patterns present in sequence data. The model also struggles with the 

correlated features that are present in k-mer representations. MGE classification may 

be done with logistic regression, despite its limitation.  

 

1.6.2 Random Forest 

Random forest (RF) is a model that builds a number of different decision trees and gives the 

most frequent predictive class. Random Forest is appropriate for genomic sequence 

classification because it works well with high-dimensional data. It also has its own feature 

importance metrics and is not prone to overfitting when used with low label data. Keith et al. 

(2024) used RF models to predict phage activity, achieving F1 scores over 0.6 for generalist 

phages. The model is capable of capturing complex relationships between features, which 

could make it preferable to logistic regression for sequence classification. Random Forest 

supports feature importance and partial dependence plots and runs well on high-dimension 

data, thus rendering it promising for MGE classification. 
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1.6.3 Deep Learning in Genome Prediction 

Deep learning (especially Convolutional Neural Networks) is a powerful method to analyse 

mobile genetic elements (MGE) such as the prediction of phages, phage-plasmids and 

plasmids in genomic prediction. CNNs have been used with success in computer vision and 

natural language processing, and are now being applied to genomic sequence analysis (Ding 

et al., 2023; Sajja & Kalluri, 2021). CNNs have achieved performance as high as 97.48% in 

apple variety classification (Taner et al., 2024) and 99% in waste plastic bottle classification 

(Fadlil et al., 2022) in classification tasks. CNNs are useful to analyze genomic sequences 

having the potential to learn hierarchical features from raw data. The different layers of the 

architecture consist of convolutional layers for extraction of the local patterns, pooling layers 

for reducing dimensionality and fully connected layers for prediction. They are great in 

capturing complex patterns in the genomic sequences (Ding et al., 2023; Krützfeldt et al., 

2020). Recently a tool developed for bacteriophage lifestyle prediction using  convolutional 

neural network (CNN) (Zhang et al.2024). 

 
Figure 2.  DeepPL: A deep-learning-based tool for the prediction of bacteriophage lifecycle 

                                                                                              Adopted from (Zhang et al.2024) 
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Due to large-scale datasets and complex interrelationships that do not need feature 

engineering manually, CNNs have become widely accepted.  DeepSTF uses different types 

of neural networks to predict the locations of TFBSwith superior performance (Ding et al., 

2023). CNNs can learn discriminative features from sequence data for phage, plasmid and 

phage-plasmid classification. PlasmidFinder (Carattoli & Hasman, 2020) and PlasFlow 

(Krawczyk et al, 2018) used for predicting plasmid sequences. 

 
Figure 3. PlasFlow, a novel plasmid sequences prediction tool based on genomic signatures 

that employs a neural network approach for identification of bacterial plasmid sequences in 

environmental samples 
 

The feature interpretation of these models is difficult because they are black boxes. Also, 

their performance changes with training data quality. Providing large training datasets for 

rare type MGE types housed in the Krützfeldt et al. (2020) is also a requirement. 

 

1.7 Addressing Class Imbalance in MGE Datasets 

Datasets related to mobile genetic elements (MGEs), such as phages, phage-plasmids and 

plasmids often suffer from class imbalance which occurs when one class gets significantly 

fewer representation than the other classes (Sowah et al., 2021). The MGE data sets have 

javascript:;
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samples of different genetic elements in a disproportionate manner that leads to biased 

predictions. There are various methods to tackle this problem. The first method is 

oversampling whereby synthetic minority class samples are created using SMOTE (Malhotra 

& Lata, 2020). The other way is HCBST that removes instances of majority class (Sowah et 

al., 2021). Methods which combine both can deal with large imbalance ratios (Wang et al., 

2020). According to studies, these resampling methods improve accuracy and other metrics 

like the F1 score and AUC. For example, it was found that the HCBST had an average AUC 

of 0.73. A geometric mean of 0.67, and Matthews Correlation Coefficient of 0.35 (Sowah et 

al., 2021). Still, generating any synthetic data before dataset splitting will lead to leakage, 

therefore, resampling should only be applied to training data post-splitting (Nieto-Del-Amor 

et al., 2022). 

 

1.8. Comparative Model Performance and Interpretability 

There are many different evaluation metrics that are used to compare diverse machine 

learning models for MGE classification. This word refers to various scoring metrics including 

accuracy, precision, recall, F1-score and Area Under the Receiver Operating Characteristic 

(AUROC) curve, (Albuquerque et al., 2022: Sasaki & Sakata, 2020: Xiao et al., 2024). The 

(Xiao et al, 2024) is a model that scored 0.7792 in accuracy, 0.7448 in precision, 0.8769 in 

recall, 0.8055 in F1 score and 0.8387 in AUC on the test set. 

Compare logistic regression, random forest and CNN for MGE classification. 

a) Logistic Regression: Offers an easy-to-interpret equation that shows the importance 

of features. Identifying Heavy Metal Spe. in the YS Blase Plant. Though, it may not 

work well on complex, nonlinear functions. 

b) The Random forest model has a moderate interpretability and gives you a feature 

importance measure. It is also very good at handling high-dimensional data. It can 

learn complex relationships without much tuning. 

c) Deep learning is the technology that powers CNN. CNNs need more data and 

computing resources, while the way they make classifications is difficult to 

understand because they’re like a black box. 
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Model quality versus understanding is an important trade-off.  Complex models might 

provide better prediction power, but they lose in terms of interpretability (Arkoudi et al., 

2023; Mariotti et al., 2023). Mariotti et al. (2023) propose a Constrainable Neural Additive 

Model that balances performance and interpretability. 

 In Sasaki & Sakata (2020), the F1 scores with random forests and support vector machine 

and logistic regression were over 80%. According to Keith et al. (2024), for the random forest 

models that predict phage activity, the F1 scores were >0.6 for generalist phages but the 

performance varied by dataset. 

 

1.9. Sequence Embedding and Representation Learning 

Sequence embedding and representation learning are important techniques for genomic data 

analysis.  The patterns in biological sequences are captured in lower-dimensional space for 

downstream analysis. Genomic sequences can make use of various embedding methods like 

k-mer-based and learned. B cell receptor BCR sequences were evaluated with models ranging 

from BCR-specific embeddings to general protein language models to predict the sequence 

properties (J. Wang et al., 2023). BCR-specific data embeddings perform marginally better 

than general protein models in predicting specificity. It seems that having domain-specific 

knowledge is beneficial for enhanced performance in certain applications of machine 

learning. According to J Wang et al. (2023), structural choice of embedding strategy affects 

model performance with better prediction performance on full-length heavy chains and 

paired light chain sequences for BCR analysis. It is clear that the input sequence length and 

paired-chain information are important for embedding models. The FoldHSphere approach 

also shows that learning the discriminative embedding can bridge the gap between protein 

fold recognition performances. Sequence embedding is important for genomic analysis, and 

different techniques yield different advantages. The ideal technique will thus depend on the 

task and data. K-mer File Format that stores set of k-mer is presented in (Dufresne et al. 

2022), where pentamers used for MGE classification.  The authors of (R. Liu et al., 2022) 

developed an algorithm called KTU, which relies on k-mer based algorithms to utilize the 

frequencies of other tetra-nucleotide segments present in the genome to cluster sequence 

variants. Though not specifically focused on pentamer optimization for MGE classification, 
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these papers do provide k-mer insights that may be applicable to MGE pentamers. To detect 

mobile genetic elements, the identification of an optimal k-mer length and the use of an 

appropriate classification algorithm is required. 

 

1.10. Real-World Applications and Knowledge Gaps 

A correct annotation of mobile genetic elements (MGEs), such as phages, phage-plasmids, 

and plasmids has several applications in microbiology, ecology and medicine. In 

microbiology and ecology, these datasets help us better understand bacterial evolution, 

adaptation, and community dynamics (Arredondo-Alonso et al., 2023; Silva et al., 2022). 

Microbial genome sequencing is important for tracking antimicrobial resistance genes 

(ARGs) through hosts and environments whose insights may help us understand resistance 

dissemination (Kerkvliet et al., 2024; Mitchell et al., 2021). A precise classification of MGE 

is essential in medicine for the development of targeted phage therapies against multidrug-

resistant bacterial infections and to optimise their dosing (Bosco et al. 2023; Nguyen et al. 

2023). However, several challenges and knowledge gaps remain. 

Kerkvliet et al. (2024) found that the principal bottleneck in linking ARGs to MGEs in short-

read metagenomic sequencing is not ARG and MGE identification but rather assembly. 

According to Partridge et al. (2021), benchmarking datasets ought to be more representative, 

and biases ought to be recognized. Research indicates that the hindgut of the horse is a 

significant reservoir of ARGs. Future research must work to enhance the sensitivity and 

specificity of tools identifying MGE (Kerkvliet et al., 2024). To critically evaluate these tools, 

comprehensive benchmarking datasets must be developed soon (Partridge et al., 2021). 

Biological insights must be integrated into analytical tools for accurate MGE-ARG 

classification (Partridge et al., 2021). Investigating the role of MGEs in the expansions of 

environmental niches could help bacteria adapt. Advancing predictive algorithms for phage-

host specificity has potential benefits for phage therapy applications (Bosco et al., 2023; 

Gaborieau et al., 2024). 
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2. Objectives and Hypotheses 

2.1 Objectives 

The primary objectives of this research are as follows. 

1) To develop and evaluate three distinct machine learning approaches (Logistic 

Regression, Random Forest, and Convolutional Neural Network) for classifying 

mobile genetic elements into phages, phage-plasmids, and plasmids using pentamer 

(k=5) frequency profiles.  

2) To determine the effectiveness of pentamer (k=5) frequency profiles as feature 

representations for mobile genetic element classification, balancing discrimination 

power with computational efficiency.  

3) To investigate the compositional and sequence characteristics that distinguish 

phage-plasmids from their parent elements (phages and plasmids).  

4) To determine which machine learning approach provides the highest accuracy and 

most balanced performance across all three mobile genetic element classes. 

 

2.2 Hypotheses 

The hypotheses of this research is based on existing literature and preliminary observation.  

1) H1: Machine learning models trained on pentamer (k=5) frequency vectors can 

effectively distinguish between phages, phage-plasmids, and plasmids.  

2) H2: Phage-plasmids will display intermediate sequence characteristics between 

phages and plasmids in terms of nucleotide composition, GC content, and pentamer 

frequency patterns, reflecting their hybrid evolutionary origins.  

3) H3: Deep learning models (CNN) will outperform traditional machine learning 

approaches (Logistic Regression and Random Forest) in classification accuracy, 

particularly for phage-plasmids, due to their ability to capture complex non-linear 

patterns in pentamer frequency distributions.  

4) H4: A balanced training dataset with equal representation of all three classes will 

produce models with uniform performance across phages, phage-plasmids, and 

plasmids. 



   18 
 

3. Materials and Methods 

3.1 Data Acquisition and Description 

3.1.1 Sources of Data and Selection Criteria 

The dataset used in this study was derived from the research "Phage-plasmids promote 

recombination and emergence of phages and plasmids" published in Nature Communications 

(2024). This publication identified and cataloged a substantial number of mobile genetic 

elements from open-source databases, specifically 3,585 phages, 1,146 phage-plasmids, and 

20,274 plasmids. All sequences were extracted from the NCBI database using their respective 

accession numbers. 

To create a balanced dataset suitable for machine learning applications, I extracted equal 

numbers of sequences from each class. This might be optimal approach for developing 

effective classification models, as it reduces the overfitting tendency of the model. By 

following way, we balance our dataset for model building: 

a) All 1416 accessible phage-plasmid sequences were incorporated. 

b) A total of 1416 phage sequences were selected randomly from a total of 3585.  

c) From a total of 20,274 plasmid sequences, a random set of 1,416 was selected. 

This balanced approach ensures that model training is not biased toward any particular class, 

which is essential for developing effective classification models. 

The sequence extraction process involved. 

a) Compiling accession numbers for each mobile genetic element category from the 

source study. 

b) Include all available sequences for the phage-plasmids. 

c) For the phages and the plasmids: Randomly chosen 1,416 sequences from either. 

d) Retrieving the complete genomic sequences from NCBI using the Entrez API. 

e) Storing sequences in FASTA format in dedicated directories for subsequent analysis. 
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3.1.2 Data Organization and Management 

The sequences were placed in separate folders for each class.  Every sequence record had an 

identifier, a header with metadata and nucleotide sequence.   

 

3.2 Preprocessing and Feature Extraction 

3.2.1 Controlling Sequence Quality and Standardization 

All sequences underwent a standardized preprocessing workflow: 

1. FASTA Parsing: Extraction of sequence identifiers, descriptions, and nucleotide 

sequences. 

2. Quality Assessment: Evaluation of completeness, length, and nucleotide 

composition, including calculation of sequence length, GC content, and presence of 

non-standard bases. 

3. Sequence Standardization: Conversion to uppercase and linearization at a 

standardized position (typically the origin of replication or start of a major structural 

gene). 

4. Calculation of Basic Properties: 

o Sequence length (total number of nucleotides) 

o GC content using the formula: GC% = (G + C) / (A + T + G + C) × 100 

o Individual nucleotide frequencies (A%, T%, G%, C%) 

o Dinucleotide frequencies for all 16 possible combinations 

To ensure the quality of the data collected from all sequence classes, the data underwent pre-

processing. This was done to minimize biases that could occur as a result of lack of quality 

of the sequences or having different formats.   

 

3.2.2 Collection of K-Mer Features and Their Vectorization 

K-mer frequency analysis was employed to transform nucleotide sequences into numerical 

vectors suitable for machine learning. After evaluating different k values (k = 2, 3, 4, 5) in 
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preliminary experiments, k=5 (pentamers) was selected as it provided the optimal 

balance between discriminative power and computational eHiciency. With k=5, we 

capture suHicient sequence context to distinguish between MGE classes while 

maintaining a manageable feature space (4^5 = 1,024 dimensions). Shorter k-mers 

lacked the necessary specificity, while longer k-mers exponentially increased 

computational requirements without proportional performance gains. This choice 

aligns with previous findings by Song (2020) who also found pentamers eHective for 

MGE classification. 

The k-mer extraction process involved. 

1) K-mer enumeration in this study refers to the systematic enumeration of all possible 

k-mers. This is done through the sliding window method with the help of a step size 

of 1 

2)  Frequency calculation for every sequence, the occurrence frequency of all possible 

5-mers (4^5 = 1,024 distinct k-mers), was calculated. 

3) Normalization of raw k-mer counts for sequence length. We used the following 

formula:  

x_ij = count(kmer_j in sequence_i) / sum(count(all k-mers in sequence_i)) 

where: 

o x_ij is the normalized frequency of k-mer j in sequence i 

o count(kmer_j in sequence_i) is the number of occurrences of k-mer j in 

sequence i 

o sum(count(all k-mers in sequence_i)) is the total count of all k-mers in 

sequence i 

4) Transformation of each sequence into a 1,024 dimensional vector for normalized 

frequency of all possible 5-mers. 

The resultant feature matrix X had size 4,248×1,024, where rows corresponded to sequences 

and the columns corresponded to a k-mer frequency. 
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3.3 Dataset Partitioning and Preprocessing 

3.3.1 Train-Test Split Strategy 

Using stratified sampling, the feature matrix was divided into 80% training set and 20% 

testing set. 

a) Training set: 3,398 sequences. 

b) Testing set: 850 sequences. 

 

3.3.2 Feature Scaling and Transformation 

Two scaling approaches were evaluated. 

1. Min-Max Scaling: Feature values were scaled to the range [0, 1] using: 

x_scaled = (x - min(x)) / (max(x) - min(x)) 

2. Standardization (Z-score normalization): Features were transformed to have zero 

mean and unit variance using: 

x_standardized = (x - μ) / σ 

where μ is the mean and σ is the standard deviation of the feature. 

 

3.3.3 Label Encoding and Transformation 

Class labels were encoded according to model requirements. 

a) For LR, and RF models, we used integer encoding (0 for phages, 1 for phage-

plasmids, 2 for plasmids). 

b) One-hot encoding for the deep learning models 

o Phages: [1, 0, 0]. 

o Phage-Plasmids: [0, 1, 0]. 

o Plasmids: [0, 0, 1]. 



   22 
 

c) The labels were converted to binary for ROC curve analysis on a one-vs-rest basis. 

3.4 Machine Learning Models 

3.4.1 Logistic Regression 

We used multinomial logistic regression as our baseline model. For a multi-class problem 

with K classes, the probability that a sample x belongs to class k is modeled as: 

𝑃(𝑦 = 𝑘|𝑥) =
𝑒!!⋅#

∑ 𝑒!"⋅#$
%&'

 

Where βₖ represents the weight vector for class k. The model was set to ‘liblinear’ solver 

using one-vs-rest multi-class strategy and C=1.0 to prevent overfitting. 

 

3.4.2 Random Forest with Hyperparameter Tuning 

Random Forests combine multiple decision trees through bagging, with final prediction 
given by: 

y, = mode{y'2 , y(4,… , y)4} 

Where ŷₜ is the prediction of the t-th tree, and T is the total number of trees. 

A grid search was conducted through 108 parameter combinations with 5-fold cross-

validation. 

The model was trained using the following hyper-parameter grid search: 

o Number of trees: 100, 200, 300 

o Maximum tree depth: None, 10, 20, 30 

o Minimum samples for split: 2, 5, 10 

o Minimum samples per leaf: 1, 2, 4 

The optimum configuration (max_depth=20, min_samples_leaf=1, min_samples_split=2, 

n_estimators=300) was identified by maximizing accuracy. 
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accuracy =
1
n=I(y*2 = y+)

,

+&'

 

In this equation for each term n is the numbers of samples, ŷᵢ is predicted class of the i-th 

sample and yᵢ is true class. Feature importance scores were calculated using mean decrease 

in Gini impurity. 

Importance(j) =
1
T= = ΔGini(n, j)

,∈.#

)

/&'

 

Where. 

o Nt is the set of nodes in tree t that use feature j for splitting 

o ΔGini(n, j) is the decrease in Gini impurity achieved by splitting node n on feature j 

o T is the total number of trees in the forest 

 

3.4.3 Convolutional Neural Network (CNN) 

A 1D Convolutional Neural Network was designed with the following architecture: 
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1. Input Layer: Accepts the reshaped k-mer frequency 

vector (1024, 1) 

2. Convolutional Block: 

o Conv1D layer with 64 filters, kernel size 3, 

and ReLU activation 

o BatchNormalization layer 

o MaxPooling1D layer with pool size 2 

o Dropout layer with rate 0.5 

3. Feature Processing: 

o Flatten layer 

4. Fully Connected Layers: 

o Dense layer with 128 neurons and ReLU 

activation 

o Output layer with 3 neurons and softmax 

activation 
 

The CNN was trained using categorical cross-entropy loss: 

L = −
1
N==y+,1

2

1&'

logKp+,1L
.

+&'

 

Where: 

• y_{i,c} is 1 if sample i belongs to class c and 0 otherwise 

• p_{i,c} is the predicted probability for class c of sample i 

• N is the number of samples 

• C is the number of classes 

The Adam optimizer was used with default parameters (learning rate = 0.001, β1 = 0.9, β2 

= 0.999). Training used 50 epochs, batch size of 32, and a validation split of 20%. 
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3.5 Analysis of Performance Using Evaluation Metrics 

The performance of the model was evaluated using a combination of multiple complementary 

metrics. 

1) The ratio of instances which are classified correctly 

Accuracy = (TP + TN) / (TP + TN + FP + FN). 

2) Measures the ratio of true positive to total positive predictions. 

Precision = TP / (TP + FP). 

3) The true positive ratio to the total positive is called recall. 

Recall = TP / (TP + FN). 

4) F1-score is the average of precision and recall. 

F1-score = 2 × (Precision × Recall) / (Precision + Recall). 

5) Area Under the ROC Curve (AUC) tells us how well our model differentiates between 

classes. 

6) The number of false positive over the number of true negative. 

FPR = FP / (FP + TN). 

7) False Negative Rate (FNR): the ratio of false negatives to actual positives. 

FNR = FN / (FN + TP). 

Visualising the distributions of predictions across classes are done via confusion matrices, 

while plotting the ROC curves visualize the trade-off between true positives and false 

positives at different thresholds. 

 

 

 

 

 

 



   26 
 

4. Results 

4.1 Dataset Characteristics 

4.1.1 Sequence Length Distribution 

The sequencing results of the balanced dataset (1,416 sequences per class) showed a 

characteristic difference in the distribution of length between phages, phage-plasmids, and 

plasmids (Table 1, Figure 4). Phages had a mean length of 70,059.8 bp (σ = 53,513.8 bp), 

ranging from 3,405 to 490,380 bp. Phage-plasmids had lengths that were intermediate of that 

of phage and plasmids with a mean of 81,046.7 bp (σ = 48,542.7 bp), and range 10,545-

290,957 bp.  The plasmids showed the widest variation in length (σ = 212,574.9 bp). Plasmids 

sized from very small elements (619 bp) to extremely large (2,249,899 bp) were detected. 

Mean length was 106,071.6 bp. 

Table 1. Sequence Length Statistics by MGE Class 

Statistic Phages Phage-Plasmids Plasmids 

Count 1,416 1,416 1,416 

Minimum (bp) 3,405 10,545 619 

Maximum (bp) 490,38 290,957 2,249,899 

Mean (bp) 70,059.8 81,046.7 106,071.6 

Median (bp) 50,699.5 74,298.0 51,310.5 

Standard Deviation (bp) 53,513.8 48,542.7 212,574.9 

 

The median lengths revealed marked differences; phage-plasmids have a higher median 

(74,298.0 bp) compared with phages (50,699.5 bp) and plasmids (51,310.5 bp). The 

observation seen in Figure 4 indicates that phage-plasmids may have a more consistent size 

distribution. This could point towards selective constraints that must preserve both phage 

structural genes and plasmid maintenance functions. 
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Figure 4.  Sequence Length Distribution of Phages, Phage-Plasmids, and Plasmids. Box plots showing the 

distribution of sequence lengths across the three mobile genetic element classes, with outliers indicated as 

points outside the whiskers. 

 

4.1.2 Nucleotide Composition Analysis 

The analysis of GC content in different MGE types had shown their distribution.  The mean 

GC value for the phages was 46.0% with a significant variability (σ = 10.2%); the plasmids 

exhibited a higher mean GC value of 53.2% (σ = 8.4%). Interestingly, phage-plasmids had a 

mean GC content of 45.9% (σ = 9.3%), intermediate between that of their parent elements 

(Figure5). 

 
Figure 5. GC Content Distribution Across MGE Classes. Density plots showing the distribution of GC 

content across phages (blue), phage-plasmids (orange), and plasmids (green), with vertical lines indicating 

the mean values for each class. 
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Statistical testing confirmed significance for all pairwise comparisons (p-value < 0.05s, two-

tailed t-test). 

• Phages vs. Phage-Plasmids: t = 12.12, p = 5.26 × 10⁻³³ 

• Phages vs. Plasmids: t = 6.34, p = 2.66 × 10⁻¹⁰ 

• Phage-Plasmids vs. Plasmids: t = -5.72, p = 1.17 × 10⁻⁸ 

By analyzing the frequency of nucleotides, we were able to gain further insight into the 

biasing composition of each MGE class as shown in figure 6. Phages and phage-plasmids 

had similar percent composition of A and T. Phages values were about 26.6 and 25.5 

respectively whereas phage-plasmids values were 27.1 and 27.0. Unlike that, the distribution 

of nucleotides in plasmids was much more even, with G and C (26.6% and 26.6%, 

respectively) being present in higher proportions than A and T (23.4% and 23.4%)(Figure 6). 

 

 
Figure 6. Nucleotide Frequencies (%) by MGE Class 

 

4.1.3 K-mer Frequency Patterns 

Discriminative K-mer frequency patterns were detected across the three MGE classes. The 

dimer with the most frequency in phages is AA/TT whose average counts were 
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5508.7/5070.9. In plasmids, it is GC*CG that has A maximum frequency with 9072.7/8635.4 

as average counts. 

Phage-plasmids, notably, showed intermediate k-mer frequencies for many motifs, consistent 

with their hybrid nature (Table 2). 

Table 2. Top 10 K-mers (k=2) by Average Frequency for Each MGE Class 

Rank Nucleotide Phages Phage-Plasmids Plasmids 

1 AA 5508.72 6943.21 9072.67 

2 TT 5070.92 6908.62 8635.41 

3 AT 4793.36 6005.50 7010.75 

4 GA 4657.40 4980.71 6984.29 

5 TG 4563.79 5287.60 6704.17 

6 CA 4502.38 5315.06 6665.27 

7 GC 4384.51 4951.62 6845.48 

8 CG 4370.77 4531.50 6822.71 

9 AC 4179.18 5176.64 7020.86 

10 AG 4129.53 4689.84 6989.13 

 

Using PCA and t-SNE for dimensionality reduction of the data also visually confirms the 

differences in composition of the three classes (Figure 7). The first two principal components 

accounted for 98.92% of the variance in the PCA plot. Furthermore, the phage-plasmids’ 

position along PC1 was between phages and plasmids. t-SNE showed stronger clustering 

with several phage-plasmids. Hybrid class may contain different subgroups arising from 

more than one plasmid or evolutionary origin. 
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Figure 7.  Dimensionality Reduction and Feature Visualization of Mobile Genetic Element Classes. 

(A) PCA plot showing the distribution of phages (blue), phage-plasmids (orange), and plasmids (green) 

based on k-mer frequencies. (B) t-SNE visualization of k-mer frequency profiles showing clustering of the 

three MGE classes. 

 

4.2 Model Performance 

4.2.1 Logistic Regression Results 

The Logistic Regression model, serving as our baseline classifier, achieved an overall 

accuracy of 85% on the test dataset. Class-specific performance metrics revealed varying 

effectiveness across the three MGE classes (Table 3, Figure 8). 

Table 3. Logistic Regression Classification Performance by Class 

Class Precision Recall F1-Score Support 

Phages 0.91 0.86 0.89 313 

Phage-Plasmids 0.81 0.82 0.82 288 

Plasmids 0.83 0.87 0.85 249 

Macro Average 0.85 0.85 0.85 850 

Weighted Average 0.85 0.85 0.85 850 
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The model worked best for classifying phages (F1 = 0.89) and worst for phage-plasmids (F1 

= 0.82), showing that the latter is relatively harder to identify. Error rate analysis showed 

relatively high false negative rates for the phage-plasmids (FNR=0.1806), indicating that a 

substantial number of hybrid elements were misclassified as phages or plasmids. 

 
Figure 8: Logistic Regression Classification Performance Visualization. 

Confusion matrix showing the distribution of true vs. predicted classes for the logistic regression model, with 

color intensity reflecting prediction counts. 
 

This pattern is also seen in the AUC scores. Which gives AUC scores of 0.9623, 0.9095, and 

0.9442 to phages, phage-plasmids and plasmids respectively.  

 

4.2.2 Random Forest Results 

The Random Forest classifier, optimized through extensive grid search, achieved an overall 

accuracy of 89% on the test dataset, representing a substantial improvement over Logistic 

Regression. As shown in Table 4, class-specific metrics are presented, and these metrics are 

visualized in Figure 9. 
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Table 4. Random Forest Classification Performance by Class 

Class Precision Recall F1-Score Support 
Phages 0.92 0.93 0.93 313 
Phage-Plasmids 0.91 0.83 0.87 288 
Plasmids 0.84 0.90 0.87 249 
Macro Average 0.89 0.89 0.89 850 

Weighted Average 0.89 0.89 0.89 850 

 

The Random Forest model showed marked improvements in both precision and recall for 

phage-plasmids compared to Logistic Regression, increasing the F1-score from 0.82 to 0.87. 

This enhancement likely reflects the model's ability to capture non-linear relationships in the 

feature space that better distinguish hybrid elements. 

As per error analysis across all classes, the false positive rates (FPR) were significantly lower 

(average FPR = 0.0548) as compared to logistic regression (average FPR = 0.0743).  But 

phage-plasmids had a relatively high false negative rate (FNR = 0.1667) indicating persistent 

challenges in hybrid element detection. 

 
Figure 9. Random Forest Classification Performance Visualization.  

Confusion matrix showing the distribution of true vs. predicted classes for the Random Forest model, with 

color intensity reflecting prediction counts. 
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The AUC scores for the Random Forest model were found to be very high (above 0.95) for 

the three classes. The AUC score was 0.9848 for phages, 0.9585 for phage-plasmids, 0.9740 

for plasmids and their average was 0.9724. 

 

4.2.3 CNN Results 

The Convolutional Neural Network model achieved the highest overall accuracy at 90%, 

outperforming both Logistic Regression and Random Forest. Table 5 summarizes the 

performance metrics for each class, and Figure 6 provides a visual representation of the same. 

Table 5. CNN Classification Performance by Class 

Class Precision Recall F1-Score Support 

Phages 0.91 0.94 0.93 313 

Phage-Plasmids 0.93 0.82 0.87 288 

Plasmids 0.86 0.95 0.91 249 

Macro Average 0.90 0.90 0.90 850 

Weighted Average 0.90 0.90 0.90 850 

 

However, the recall for phage-plasmids (0.82) remained comparable to other models, 

suggesting that the CNN was highly selective but still missed a similar proportion of true 

hybrid elements. 

The CNN achieved the highest F1-score (0.91) of any model-class combination for plasmids, 

fueled by excellent recall (0.95); thus, illustrating the model's strength in identifying plasmid 

sequences across a wide range of sizes and compositions. (Figure 10). 
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Figure 10.  CNN Classification Performance Visualization.  

Confusion matrix for the CNN model demonstrating improved classification accuracy across all three classes 

compared to the Random Forest model. 
 

Error analysis revealed that the CNN achieved the lowest average false positive rate (0.0486) 

across all classes, representing a 35% reduction compared to Logistic Regression and 11% 

reduction compared to Random Forest. The false negative rates were also lowest with the 

CNN (average FNR = 0.0965), indicating superior overall sensitivity. 

The CNN model yields the best AUC scores of all models: 0.9851 for phages, 0.9664 for 

phage-plasmids, 0.9781 for plasmids, and average AUC score of 0.9765. 

 

4.3 ROC examination and Comparative Model Performance 

Figure 11 shows the ROC curves for each model and for each class. The ROC curves plot the 

true positive against the false positive using different classification thresholds. with the area 

under the curve (AUC) providing a quantitative measure of classification performance. 
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Figure 11. ROC Curves for Classification Models 

(A) ROC curves for phage classification. (B) ROC curves for phage-plasmid classification. (C) ROC curves 

for plasmid classification. Different colors represent different models: Logistic Regression (blue), Random 

Forest (orange), and CNN (green). 
 

As visualized in Figure 11, all models performed well in distinguishing phages and plasmids 

(AUC > 0.94), but showed comparatively lower performance for phage-plasmids. This 

pattern is consistent across all three models, indicating that hybrid elements present inherent 
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classification challenges regardless of the algorithm employed. However, the CNN model 

demonstrated the most balanced performance across all three classes, with the highest AUC 

for phage-plasmids (0.9664). 

 
Figure 12. Comparative Model Performance 

Heatmap comparing key performance metrics across the three models, showing progressive improvement 

from Logistic Regression to Random Forest to CNN. 

 

The comparison of three models in terms of various parameters is shown in figure 12. It is 

evident that the performance of random forest and CNN is better than that of logistic 

regression. The CNN outperformed both Logistic Regression  and Random Forest, while 

Random Forest model outperformed Logistic Regression model. 

  

 

 

 

 

 



   37 
 

5. Discussion 

5.1 Interpretation of Key Findings 

This study aimed to classify bacteriophages (phages), plasmids, and phage-plasmid hybrids 

using three machine learning approaches. All models performed significantly above random 

chance (~33% for three classes), with the baseline logistic regression attaining 85% accuracy. 

The random forest reached 89% accuracy, and the CNN achieved 90% accuracy, confirming 

that more complex, non-linear models better capture distinguishing patterns in sequence data. 

The CNN outperformed other classifiers, demonstrating superior ability to capture complex 

sequence patterns. CNN performance was particularly strong for plasmid identification (F1-

score of 0.91, recall of 0.95), suggesting it effectively learned subtle motifs that simpler 

models missed. The CNN model's high AUC scores (0.9851 for phages, 0.9664 for phage-

plasmids, and 0.9781 for plasmids) further confirm its robust discriminative ability across all 

classes. 

Our k-mer frequency approach (k=5) provided rich information for uncovering class-specific 

sequence signatures, validating our choice of feature representation. Pentamers offered an 

optimal balance between capturing sufficient sequence context and maintaining 

computational efficiency. By balancing the training dataset across classes, we ensured the 

classifiers did not become biased toward majority classes, leading to relatively uniform 

performance across categories. The CNN achieved F1-scores of 0.93 (phages), 0.87 (phage-

plasmids), and 0.91 (plasmids), supporting Hypothesis 5 that balanced training produces 

models with more uniform performance across classes. 

 

5.2 Model Performance by Class 

The results across all models are consistent: phages and plasmids were classified more 

accurately than phage-plasmids. The best performance observed with phages as Precision 

0.91, Recall 0.86, F1 = 0.89 and the worst with phage-plasmids with Precision 0.81, Recall 

0.82, F1 = 0.82 which misclassifies a lot of hybrid sequences. Lower performance can be 

expected for hybrid elements since they are intermediate and linear models have limitations. 
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The Random Forest classifier showed marked improvement for the phage-plasmid class, 

raising its F1-score to 0.87 (from 0.82), largely through a boost in precision (91%) while 

maintaining recall around 83%. The model captured the feature interactions that define 

phage-plasmids well according to Ma et al. (2023). The CNN classified all input samples to 

their correct classes. The accuracy in identifying phages was very high - with a precision of 

0.91, recall of 0.94 and F1 = 0.93. The classification of plasmids had an F1 score of 0.91. 

Fang et al. (2019) developed PPR-Meta, a deep learning tool that was among the first to 

simultaneously classify sequences as phage, plasmid, or chromosomal, illustrating the 

promise of CNNs in this domain. Likewise, a recent random forest-based classifier, 

SourceFinder, by (Aytan-Aktug et al., 2022) achieved high accuracy (AUC ≈0.94) for 

distinguishing chromosomal DNA, plasmids, and phages using k-mer distributions. Our 

CNN’s performance (average AUC ~0.977) is comparable or superior to these state-of-the-

art approaches, albeit our task omits chromosomal sequences and explicitly targets the hybrid 

phage-plasmid class. 

The plasmid recall soared to 0.95, meaning the CNN missed very few plasmids. This high 

recall suggests the CNN was able to generalize across the great diversity of plasmid sizes and 

compositions (which ranged from kilobase miniature plasmids to megaplasmids). By 

scanning the k-mer composition with convolutional filters, the CNN captured subtle 

sequence patterns that are hallmarks of plasmids but were not fully leveraged by simpler 

models. This ability to automatically learn hierarchical features aligns with findings from 

Fadlil et al. (2022), who demonstrated CNN superiority in capturing complex patterns in 

classification tasks. 

For phage-plasmids, the CNN achieved an F1 of 0.87, matching the Random Forest. 

Interestingly, the CNN traded a slight decrease in recall (82%, similar to logistic regression's 

82% and just below the Random Forest's 83%) for a further increase in precision (93%). In 

practical terms, when the CNN predicts a sequence to be a phage-plasmid, it is very likely 

correct (only a 7% false discovery rate). This high precision is valuable for database curation 

or experimental follow-up, where one might prioritize high-confidence predictions for 

validation. The persistent recall around ~82% across all models for phage-plasmids suggests 

a subset of hybrid elements consistently evade detection, likely because they closely resemble 
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conventional phages or plasmids. Kerkvliet et al. (2024) similarly observed that some phage-

plasmids have lost many characteristic genes, blurring distinctions with classical elements. 

Based on analysis of errors, the CNN showed the overall lowest false positive rate at 0.0486. 

This is at least a 35% improvement versus Logistic Regression and an 11% versus Random 

Forest. The average FNR, which comes out to be 0.0965, was also lowest with CNN, which 

indicated it had better sensitivity as well. This lower error rate allows for better 

classifications, especially for metagenomic use cases. It was seen at the class-level of 

performance that phages were easiest to classify, then plasmids, then the phage-plasmid 

which was hardest. The classification difficulty aligns with previous reports that variation in 

genetic modes creates problems. The application of sophisticated algorithms like CNN 

helped this performance gap in identifying hybrid MGEs. 

 

5.3 Distinct sequence and unique genomic signature 

The nucleotide composition and k-mer frequency analysis revealed clear differences 

corresponding to their hybrid nature and identifiable genomic signatures for each class. 

 

5.3.1 Genome Size and Composition 

The median genome length of phage-plasmids was found to be ~74 kb, which is longer than 

that of typical phages (median ~50 kb) and plasmids (median ~51 kb). However, plasmids 

were found to show higher length variability than phage-plasmids. It would seem that the 

phage-plasmids will need to encode elements required for phage structure, as well as 

functions which allow for plasmid maintenance, which imposes an upper size limit. Higher 

median length than parents denotes selective constraints requiring essential genes from both 

phage and plasmid. The minimum size of the phage-plasmid was 10,545 bp and was higher 

than the minimum of phage 3,405 bp and that of plasmid 619 bp. This means that a size 

threshold exists below which elements cannot house both functions. Shan and colleagues 

(2023) state that the need for phage-plasmids to encode both phage and plasmid functions 

reflects their hybrid nature. 

 



   40 
 

5.3.2 Nucleotide Composition 
Statistical analysis of nucleotide composition revealed distinctive patterns across the three 

MGE classes. Plasmids had the highest average GC content (~53.2%), whereas phages 

averaged around 46.0% GC. Interestingly, phage-plasmids showed an average GC of 

~45.9%, mirroring phages more closely. Statistical testing confirmed the significance of these 

differences (p < 0.05, two-tailed t-test) for all pairwise comparisons, despite the similarity 

between phage and phage-plasmid means. 

At the individual nucleotide level, phages and phage-plasmids showed similar proportions of 

adenine (A) and thymine (T), with values of approximately 26.6% and 25.5% for phages, 

and 27.1% and 27.0% for phage-plasmids, respectively. In contrast, plasmids exhibited more 

balanced nucleotide distributions, with slightly higher proportions of guanine (G) and 

cytosine (C) (26.6% each) compared to A and T (23.4% each). 

The fact that phage-plasmids did not simply average the GC content of phages and plasmids 

but leaned towards the lower GC/AT-rich side could be explained by several factors. Parra et 

al. (2023) noted that AT-richness in certain phage regions (packaging sites, regulatory 

regions) might explain why phage-plasmids lean toward lower GC content despite carrying 

some plasmid genes. 

 

5.3.3 K-mer Signatures 

MGE Classes show different sequence characteristics according to k-mer. Phages were 

enriched for AT dimers (AA and TT: 5,508.7 and 5,070.9 average counts), while plasmids 

were enriched for GC-rich dimers (GC and CG: 9,072.7 and 8,635.4 average counts). Phage-

plasmids were intermediate in frequency demonstrating mixed genotypes. Analysis via PCA 

and t-SNE revealed those compositional differences. The first two principal components 

explained 98.92% of variance. T-SNE showed different clusters, suggesting that they have 

different origins. Haudiquet et al. (2024) observed the AT-rich motifs also enable genetic 

exchanges in mobile elements which may help to preserve hybrid status. These pentamers 

that have been enriched could serve as signature motifs for hybrid elements. 
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5.4 Implications for Mobile Genetic Element Classification 

Creating very accurate classification models for phages, phage-plasmids, and plasmids has 

important consequences for MGE study and the overall classification strategy. 

 

5.4.1 Beyond Binary Classification 

Traditional MGE classification used binary frameworks categorizing elements as phages or 

plasmids, leading to misclassification of hybrid elements like phage-plasmids. Our three-way 

classification system addresses this by modeling phage-plasmids as a distinct class. This 

approach recognizes MGEs exist on a continuum rather than discrete categories, as noted by 

Shan et al. (2023). Our models' high performance proves this three-way classification is both 

biologically appropriate and computationally feasible. Kerkvliet et al. (2024) proposed 

integrated approaches using key genetic markers for phage and plasmid functions, allowing 

elements on a continuum. The identification of class-specific patterns provides a foundation 

for nuanced classification systems, with potential to expand beyond three classes to recognize 

additional hybrid categories. 

 

5.4.2 K-mer Embedding Effectiveness 

The effectiveness of k-mer frequency embeddings for MGE classification, particularly with 

k=5, confirms the value of this approach. Unlike methods relying on gene annotation or 

homology, k-mer-based approaches capture statistical patterns without requiring extensive 

prior knowledge, making them valuable for identifying novel elements. Our findings align 

with studies demonstrating the utility of k-mer embeddings. Lötsch & Ultsch (2023) used 

tetranucleotide frequency vectors to classify metagenomic contigs with over 90% accuracy, 

while Song (2020) found that k=5 provides optimal balance between specificity and 

computation. The effectiveness of pentamer frequencies aligns with Mariotti et al. (2023), 

who found they provide robust discrimination while maintaining efficiency. This approach 

addresses a limitation of existing tools that depend on protein family databases or reference 

genomes. By focusing on sequence composition rather than specific genes, our models are 

more robust to MGE genetic diversity and mosaicism. This aligns with Schackart et al. (2023) 
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and Kerkvliet et al. (2024), who found composition-based approaches can identify sequences 

missed by homology-based methods. 

 

5.5 Biological Significance and Applications 

The results from this study have various biological significance and application prospects for 

a range of microbiological fields. 

 

5.5.1 Evolutionary Insights 

The intermediate compositional characteristics of phage-plasmids provide computational 

evidence supporting their role as evolutionary intermediates between phages and plasmids. 

The differences in sequence length, GC content, and k-mer distributions align with their 

proposed role as bridges facilitating genetic exchange between MGEs. These findings 

complement work by Kerkvliet et al. (2024), who showed phage-plasmids can promote 

recombination between phages and plasmids. Our identification of sequence motifs enriched 

in phage-plasmids may provide insights into mechanisms enabling this recombination. The 

multiple phage-plasmid clusters observed suggest diverse evolutionary origins, with some 

more closely related to phages and others to plasmids, reflecting different stages in the 

evolutionary continuum. This aligns with findings from Hilpert et al. (2020) on prophage 

domestication and Shan et al. (2023) on hybrid elements in bacterial evolution. 

  

5.5.2 Metagenomic Applications 

The models produced in this work which have high accuracy can be applied immediately for 

metagenomic analysis, which is currently lacking in bioinformatic pipelines.  The models 

allow for reliable identification of phage-plasmids in complex metagenomic datasets, 

offering a more comprehensive characterization of mobile genetic elements in microbial 

communities. This feature is useful for examining horizontal gene transfer across habitats 

ranging from human microbiomes to environmental specimens. Understanding the 

transmission of antibiotic resistance genes and metabolic genes is improved by the 
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identification of phage-plasmids. Common metagenomic tools usually analyse phages or 

plasmids, not both. VIBRANT (Schackart et al., 2023), VirSorter (Schackart et al., 2023) and 

DeepVirFinder (Rahman & Rangwala, 2020) are tools targeting sequences from viruses, 

PlasmidFinder (Carattoli & Hasman, 2020) and PlasFlow (Krawczyk et al, 2018) target 

plasmids. 

We explicitly model phage-plasmids as a separate class to tackle this issue. Due to its 

accuracy for phage-plasmid identification, the CNN model can be useful in metagenomic 

screening, as it can generate low false positives and demands less computing resources 

compared to prophage prediction or gene annotation. 

 

5.5.3 Clinical and Biotechnological Relevance 

Improved detection of phages and plasmids can help to monitor the transmission of antibiotic 

resistance genes. As shown by Kerkvliet et al. (2024), phage-plasmids can act as vectors for 

the spread of resistance genes in different bacterial populations and host ranges.  The models 

developed in this work could potentially be used in surveillance systems to interrogate 

clinical samples for the presence of these hybrid vectors and monitor their frequency over 

time, aligning with comments by Haudiquet et al. (2024) staging multifunctional mechanisms 

for monitoring resistance gene transmission vectors. The phage-plasmids can be identified 

so that new genetic tools can be developed which will have the properties of both.  Shan and 

colleagues (2023) utilized engineered hybrids of phage and plasmid towards applications in 

biotechnology where targeted delivery of a phage and stability of a plasmid are required. The 

found motifs can be applied to create novel vectors with new properties. 

 

 

 

 

javascript:;
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5.6 Limitations 

This study advances phage, plasmid, and phage-plasmid classification, but has important 

limitations.  

Dataset Composition and Bias: The balanced training sets do not reflect natural abundance, 

where plasmids outnumber phage-plasmids. This may lead to under-detection of rare 

elements in metagenomic data. Public databases contain taxonomic biases favoring certain 

hosts, potentially limiting generalizability. Phage-plasmid annotation subjectivity could 

introduce classification errors despite curation efforts.  

Dataset Size and Diversity: Although including 4,000 genomes, the dataset may not fully 

represent all subgroups, creating uncertainty for novel sequences in metagenomic 

applications. We selected 1416 phages, and plasmid sequences from 3585 phage, and  

plasmid sequences respectively, which might lead to generalization problem of the 

classification models and for unknown sequences. 

Fragmented Sequence Classification: Models trained on complete genomes may 

underperform on short metagenomic contigs that incompletely capture k-mer profiles.  

Category Scope: The three-class classifier excludes bacterial chromosomes and other mobile 

elements, risking misclassification of chromosomal sequences. A broader classification 

framework may be needed for metagenomic use.  

Computational Constraints: K-mer frequency extraction and CNN training require significant 

resources, though models remain lightweight. Hyperparameter optimization was time-

intensive.  

Interpretability: While CNNs perform well, their black-box nature limits understanding of 

classification decisions, despite k-mer importance analysis. 
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6. Conclusion 
This research evaluated three machine learning approaches for classifying mobile genetic 

elements into phages, phage-plasmids, and plasmids, with the Convolutional Neural Network 

achieving 90% accuracy. The study shows phage-plasmids represent a distinct class with 

characteristics intermediate between phages and plasmids. We identified specific pentamer 

motifs for each MGE class, with AT-rich patterns in phages, GC-rich in plasmids, and unique 

signatures in phage-plasmids. The k-mer frequency approach proved effective for MGE 

classification without requiring gene annotation or homology. While all models performed 

well, the CNN's precision for phage-plasmid identification (93%) demonstrates deep 

learning's value, though recall challenges (~82%) persist across models. These findings 

impact horizontal gene transfer and microbial evolution understanding. Future work could 

enhance feature representations, expand model applications to metagenomic datasets, 

develop larger reference collections, and investigate the biological significance of identified 

motifs. The methodological framework combining k-mer frequency analysis with machine 

learning provides a template for addressing similar classification challenges in genomics. By 

modeling intermediate categories rather than forcing binary classifications, this approach 

acknowledges the continuous nature of biological diversity. This research demonstrates the 

effectiveness of machine learning for distinguishing MGEs based on sequence composition. 

The high performance validates k-mer frequency profiles for classification and supports 

phage-plasmids as hybrid entities bridging phages and plasmids. 
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