

Automating UI Tests for a Web Application Using Test-

Complete

Olga Shakurova

 Bachelor‟s Thesis

Degree Programme in

Business Information

Technology

 2015

 Abstract

Päiväys Date 28 February 2015

Author(s)
Olga Shakurova

Degree programme
Business Information Technology

Report/thesis title
Automating UI Tests for a Web Application Using TestComplete

Number of pages
and appendix pages
35 + 3

The goal of this thesis is to discover how to make UI test automation successful and reveal
benefits it provides for software development. The study is based on the smoke test automa-
tion project. It was completed for the case company product using TestComplete.

Test Automation is an activity which aims to save testing time, increase coverage and hence
promote efficient software testing. TestComplete is a popular commercial test automation tool
for a wide range of application types, including web applications.

The system under test is a web-based document management system for complex industrial
projects.

The objectives of the study are to provide some guiding material about automating user
interface tests for a web application using TestComplete with clear examples, images, code
blocks, and familiarize testers with problems encountered during the project implementation
and ways to avoid them.

The study process started in September 2014 and ended in February 2015. The thesis is
written based mainly on the author‟s personal experience as well as the Internet resources,
such as the SmartBear official site, e-books, articles.

To introduce the subject of the paper, the theoretical background is presented first. It is then
followed by the project description and findings. The theoretical part includes information
about software testing and test automation in general, and then focuses on the TestComplete
theoretical basis. Modular scripting and data-driven testing approaches were combined
during the implementation process.

The thesis resulted in a step-by-step description of automating user interface tests with
TestComplete. It can guide testers through the test automation process. It can also help
quickly understand the basic concepts of the tool, the benefits TestComplete and test
automation provide and possible problems that may arise during automation. It gives tips for
creating more reliable test scripts. The tangible result of the thesis is the TestComplete pro-
ject which enables to run tests automatically when the case system needs that.

Keywords
test automation, software testing, TestComplete

Table of contents

1 Introduction ... 1

1.1 Background ... 1

1.2 Goals .. 1

1.3 Thesis structure .. 2

2 Software testing .. 3

2.1 Manual vs. automated testing ... 3

2.2 Levels of testing .. 4

3 TestComplete .. 6

3.1 Overview ... 6

3.2 Web browser configuration.. 7

3.3 TestComplete project .. 7

3.4 JScript ... 8

3.5 Name mapping.. 8

3.6 Aliases .. 9

3.7 Object Browser ... 9

3.8 Object Spy .. 9

3.9 Data-driven testing .. 9

3.10 Test management ... 10

4 Project implementation .. 11

4.1 Why automate? ... 11

4.2 Methods .. 11

4.3 Software.. 12

4.4 Project structure .. 13

4.5 Sample test cases ... 13

4.6 Name mapping.. 14

4.7 Functions library .. 16

4.8 Input data for test scripts ... 19

4.9 Test scripts ... 21

4.10 Running tests .. 22

4.11 Test results ... 23

4.12 Summary .. 24

5 Discussion ... 29

5.1 Conclusions .. 29

5.2 Future development .. 30

5.3 Self-assessment ... 30

References .. 32

Appendix 1. Mapped Objects and Aliases trees .. 36

Appendix 2. Object Browser .. 37

Appendix 3. Object Spy ... 38

Terms

Data-driven Testing A scripting technique that stores test input and expected results
in a table or spreadsheet, so that a single control script can exe-
cute all of the tests in the table. Data-driven testing is often used
to support the application of test execution tools such as cap-
ture/playback tools (ISTQB 2014)

Defect A flaw in a component or system that can cause the component
or system to fail to perform its required function, e.g. an incorrect
statement or data definition (ISTQB 2014)

Distributed testing Running tests that consist of several parts executed on different
workstations and interacting with each other (SMARTBEAR 2014
a)

Failure Deviation of the component or system from its expected delivery,
service or result (ISTQB 2014)

Functional Testing Testing based on an analysis of the specification
of the functionality of a
component or system (ISTQB 2014)

Load Testing A type of performance testing conducted to evaluate the behav-
ior of a component or system with increasing load, e.g. numbers
of parallel users and/or numbers of transactions, to determine
what load can be handled by the component or system (ISTQB
2014)

Pass A test is deemed to pass if its actual result matches its expected
result (ISTQB 2014)

Regression Testing Testing of a previously tested program following modification to
ensure that defects have not been introduced or uncovered in
unchanged areas of the software, as a result of the changes
made. It is performed when the software or its environment is
changed (ISTQB 2014)

Test Automation The use of software to perform or support test activities, e.g. test
management, test design, test execution and results checking
(ISTQB 2014)

Test Automation Tool Software used for test automation

Test Case A set of input values, execution preconditions, expected results
and execution postconditions, developed for a particular objec-
tive or test condition, such as to exercise a particular program
path or to verify compliance with a specific requirement (ISTQB
2014)

Test Script Commonly used to refer to a test procedure specification, espe-
cially an automated one (ISTQB 2014)

1

1 Introduction

1.1 Background

Software is part and parcel of the modern life, it is tightly tied to human everyday activities,

inter alia, business, science, engineering, law, medicine. Software failures can cost mil-

lions. Creating a high quality software product requires thorough testing. It is a labour-

intensive task, and automation in many cases can ease a tester's workload.

This thesis topic came into existence from the need to automate a smoke test suit for a

web application. The software is a document management system for complex industrial

projects which has integrations with Microsoft Office and Autodesk AutoCAD.

A lot of software tools imitating users' actions have been created to help automate testing.

Since the owner of the web application had TestComplete installed and licensed and was

planning to use it as a test automation tool for other company products, a decision was

made to proceed with TestComplete in this project as well.

According to Gennadiy Alpaev, today TestComplete is one of the most popular commer-

cial tools. Besides a wide variety of applications, such as .NET, Android, Delphi, Java,

iOS, Windows etc., it gives testers an ability to create automated tests for Web applica-

tions. (Alpaev 2013, 7.)

1.2 Goals

The main objectives of the thesis are to provide a guiding material about automating user

interface tests for a web application using TestComplete, and familiarize testers with

problems encountered during the project implementation and ways to avoid them. The

process of creating automated test scripts with TestComplete, where the actual and ex-

pected outputs are compared, running them and deciding whether the tests have failed,

will be described.

The purpose of the thesis is to discover how to make UI test automation successful and

reveal benefits it provides for software development. The thesis can be used by testers to

get oriented in TestComplete and learn basic things that should be considered during test

automation.

2

1.3 Thesis structure

The document is divided into chapters. The second chapter introduces some basics of

automated software testing. The third chapter describes the main concepts of the automa-

tion tool. It is divided into sections, each revealing a certain feature of the tool. The fourth

chapter is devoted to the project implementation: tables, images and code blocks, which

are included whenever needed, give a better understanding of the implementation pro-

cess. The layout is performed according to Writing reports and theses at HAAGA-HELIA.

3

2 Software testing

Since this thesis focuses on automated software testing, it is important to know the theory

of the subject. Software testing is a huge field of knowledge. Different techniques, meth-

ods, types of Software testing have been contrived and classified.

Covering the vast testing theory is out of scope of this paper. A lot of weighty books have

been written on the subject. This chapter briefly presents some basics of software testing

in general and automated testing in particular.

2.1 Manual vs. automated testing

In many cases software tests are carried out manually. Manual testing has a number of

strengths:

 Manual testing can be useful when a test case needs to be run only once or twice.

As a rule, creating an automated test is more time-consuming i.e. expensive than

running it once manually (Marick 1998, 3)

 Human testers are good in finding the strangest scenarios and hence finding de-

fects by using the system in an unexpected way

 Human testers can observe, which may be useful if the goal is user-friendliness,

improved customer experience (Apica 2014) or overall design

According to Hayes, test automation is a long term strategic activity. The goal is to in-

crease test coverage, not to cut testing costs. Investments in planning, training, develop-

ment are necessary before any benefits emerge. The lack of professionalism or expertise

in testing cannot be compensated by any automation tool. (Hayes 2004, 22-25.)

The basic benefits of automated testing are:

 Automated tests are faster and more precise as compared to time consuming and

error-prone manual tests

 Automated tests can be run over and over again at any time

 Test Automation is essential when it comes to heavy user workloads. It would be

hardly possible to make, for example, 350 testers use the product simultaneously

and, of course, not cost-effective. Some tests such as load tests need to be auto-

mated (Marick 1998, 2.)

4

Considering the above, automation is not a pure replacement of manual testing. The two

approaches can be used complementarily.

2.2 Levels of testing

Starting software testing with testing the entire system would be a fatal mistake that could

lead to the product failure. As Prasad (2009, 75) assures, a practical software testing ap-

proach is to divide a testing process into different levels. A division offered by Tugberk

Ugurlu et al. (2013) gives the best fit to the context of test automation. The authors advise

to keep the slanted pyramid shown in Figure 1 in mind when writing and automating tests.

Figure 1. A healthy testing pyramid (Ugurlu, Zeitler & Kheyrollahi, 2013, 451)

A unit is usually the smallest block of code which performs a function. Unit testing is by its

nature mostly automated (Laukkanen 2006, 6). Unit testing is usually done by developers

themselves to test the code they write. Each unit must be tested in isolation. If it is not

possible to test unit separately an additional piece of code may be written (Prasad 2009,

75).

Integration testing guarantees that the unit can work not just individually. It is about testing

how different parts of the system interact with each other. Tugberk Ugurlu et al. (2013,

450) state that unit tests are quite easy to automate, whereas integration tests need a bit

more setup because they are run in an environment.

Unit and Integration testing do not make user interface testing unnecessary. UI testing is

about testing software at the user interface level. It assesses whether user interface is

correctly bound to the system, i.e. whether it returns the right output for user input. Graph-

ical user interface tests are rather hard to automate successfully (Tugberk Ugurlu & al.

2013, 451; Laukkanen 2006, 7), i.e. make them reliable and maintainable.

5

The pyramid (Figure 1) shows that unit tests should dominate. The number of UI tests is

supposed to be the least. Nontechnical members of the team can define a big part of UI

and integration tests (Ugurlu & al. 2013, 451).

A defect can be discovered at any level of testing but the sooner the better. It may happen

during the development process or on the day the product is delivered to the customer. Of

course, in some cases the latter can be catastrophic, but quite often defects continue to

be detected even in post-release. Fixing defects found in earlier phases is generally con-

sidered to cost less.

This paper focuses on automating user interface tests, namely smoke test. According to

Andreas Spillner et al. (2014, 144), a smoke test traditionally verifies the minimum reliabil-

ity for the test software, concentrates on checking its main functionality, and the output of

the test is not evaluated in detail.

6

3 TestComplete

This chapter introduces TestComplete and its core features. The chapter does not com-

pare TestComplete to other automation tools nor tries to cover everything about the tool. It

mainly focuses on the features needed for the project implementation. The content is

based on the extensive official TestComplete documentation, other online sources and

author‟s personal experience.

3.1 Overview

As mentioned above, the development environment, which was chosen for the project

implementation is TestComplete, a popular commercial test automation tool for a wide

range of application types owned and developed by SmartBear Software.

TestComplete provides a TestComplete platform and technology modules (Figure 2). The

Platform enables creating, maintaining, and executing automated tests, and modules

make testing possible across desktop, web and mobile. Each module, i.e. Desktop, Web

and Mobile, includes features that allow creating automated tests on the specified plat-

form. (SMARTBEAR 2014b.)

Figure 2. TestComplete Platform and Modules (SMARTBEAR 2014b)

TestComplete focuses on both, functional and unit testing. It can be used in regression

testing as well as in other kinds of testing types: data-driven, distributed, load, even man-

ual testing etc. (SMARTBEAR 2014c.)

In TestComplete it is possible to create keyword-driven tests and scripts. The former con-

sist of keywords, each of which corresponds to some action, such as open file, set text,

click button etc. The latter are usually functions, written in one of the scripting languages

TestComplete supports.

Desktop

TestComplete

Platform
Mobile

Web

7

Keyword-driven tests and scripts can be recorded with recording tool or created from

scratch. Creating keyword tests does not require any programming skills and is quite

easy. Scripting requires some basic programming knowledge but allows additional flexibil-

ity in tests. TestComplete supports VBScript, JScript, DelphiScript, C++Script and

C#Script. (SMARTBEAR 2014d.)

3.2 Web browser configuration

A special Web Browser configuration is needed to make test scripts runnable with Test-

Complete. SmartBear Software offers a detailed instruction for the main modern Web

Browsers: Google Chrome, Internet Explorer, Mozilla Firefox, Opera, on their web site

(http://support.smartbear.com/viewarticle/56974). Setting Web Browser correctly enables

recording test scripts and, which is more important for the project, playing them back. A

tester can spend a lot of time trying to figure out why the existing scripts are not played

back, and then find out that something in the Web browser configuration has been

changed.

3.3 TestComplete project

Test scripts are created in a TestComplete project. A tester should specify a type of the

application under test, choose settings for a Test Vizualizer and a scripting language dur-

ing the creation process.

TestComplete Test Visualizer catches information about test actions. Depending on the

chosen settings, this information can contain screen shots or screen shots along with test

object data they contain. It helps to ‟visualize‟, or better understand, the actions performed

during the test, which is useful, especially for beginners. It is also possible to disable the

Visualizer. This is what Alpaev (2013, 116,168) recommends to do as creating screen

shots is time consuming, and it is not necessary to capture all screen shots. In most cases

it is redundant.

There is an option to post image on error in the project editor. If an error occurs a screen

shot is sent to the test log. This property was enabled during the project implementation.

Choosing a scripting language is an important matter if test scripts are planned to be cre-

ated. It will not be possible to change it in the future. If someone would want to change the

selected project's scripting language, only redoing the project from scratch would work

(Alpaev 2013, 13).

8

3.4 JScript

One of the scripting languages suggested by TestComplete is JScript. A brief description

of the language is briefly given in this section as it was used during the project implemen-

tation phase. The name is quite similar to JavaScript, the most widely used programming

language on the planet. But is JScript actually JavaScript?

ECMA International - the European association for standardizing information and commu-

nication systems - delivers a standardized, international programming language based on

core JavaScript. This standardized version of JavaScript, called ECMAScript, acts the

same way in all applications that support the standard. The open standard language can

be used for developing implementations of JavaScript. The ECMAScript standard is doc-

umented in the ECMA-262 specification. The ECMA-262 standard is also approved by the

International Organization for Standardization as ISO-16262 (Mozilla Development Net-

work).

Microsoft implemented its own version of the language called JScript. The company de-

velops it separately from the ECMAScript standard. JScript and JavaScript are often con-

fused with one another and produce many problems on the browser side (Düüna 2012, 9).

However, Stephen Chapman (2013) assures that in spite of some differences, the two

languages can be considered to be equivalent to one another.

3.5 Name mapping

TestComplete operates on the object level; it reads the object properties from the applica-

tion. When the test is run, TestComplete uses the identification information about the ob-

jects, which is stored in the project, to find them on the web page. Every project has a

NameMapping.tcNM file which contains a name mapping scheme aka Name Mapping

repository. All objects data, such as, objects properties, names, types, identifiers etc., is

saved there and organized into an object hierarchy, namely Mapped Objects tree (appen-

dix 1). The data is automatically added to the repository during test recording or can be

added manually when a test is being created from scratch. The fact that the object infor-

mation and actual tests are separated from each other makes tests more stable and easi-

er to maintain, as no modifications in the tests are needed in case the application is

changed.

A special property, Extended Find, was often enabled during the project implementation.

This feature can be applied to mapped objects and is used if an object has a dynamic

parent which is not mapped. It enforces TestComplete to look for a certain object all levels

down in the object hierarchy. (SMARTBEAR 2014e.)

9

3.6 Aliases

Besides a Mapped Objects tree, there is an Aliases tree in the Name Mapping repository

(appendix 1). Each mapped object has a corresponding alias, which is just a descriptive

name. It is used in scripts to refer to the mapped object.

The Mapped Object tree represents the exact hierarchy of objects in applications. It is

necessary for finding objects on the web page. As for Aliases, it is reasonable in many

cases to shorten the Aliases hierarchy by dragging them up the tree. An object can then

be referred in a script without excluded aliases.

A descriptive name and a shortened hierarchy make scripts more readable. (SMART-

BEAR 2014f.)

3.7 Object Browser

Object Browser is an essential TestComplete tool (appendix 2). It shows all the processes

and objects visible for TestComplete, which are workable from within TestComplete. The

Sys node is the root object. Object properties and methods are displayed for a selected

item in the Object Browser window (Alpaev 2013, 29). Object Browser is a handy tool for

adding Objects to the Name Mapping Repository.

3.8 Object Spy

As Gennadiy Alpaev (2013, 32) truly states, locating the necessary element in Object

Browser may be quite challenging. To simplify the task, the Object Spy utility can be used

(appendix 3). Using the Object Spy, any object on the screen that is visible for TestCom-

plete can be selected, its properties and methods can be viewed, and it can be easily

found in the Object Browser object tree. It can also help to add the object to the Name

Mapping repository or check if it is already there (SMARTBEAR 2014g).

3.9 Data-driven testing

A lot of test data has to be inputted while performing functional testing, many data combi-

nations must to be checked in order to verify that the system works correctly and gets the

right output. One of the possibilities is to include the test data into scripts. In this case, if

the data has to be changed, the test script must be updated. This is not always an easy

task especially if a tester does not have programming skills or the test script is long and

complex. Pekka Laukkanen assures that updating scripts, with the test data embedded,

10

may become a real problem, and a small change in the system under test may require

changing all scripts (Laukkanen 2006, 23,24).

To avoid this, TestComplete supports the approach known as data-driven testing, which

implicates storing and reading test data from external sources. An external source may be

an Excel file, a CSV file, a database etc. TestComplete provides a special object, DDT, for

accessing them. (Alpaev 2013, 203.) Separating test data from the code makes test

scripts easier to modify and maintain.

3.10 Test management

Project editor is a TestComplete project management tool for creating and choosing test

items to be executed, viewing and modifying project variables, logs and properties.

Test Item is a TestComplete project element, which is used to manage tests launches.

Each test item has properties which provide easier management, such as, the Enable

checkbox, Count, Timeout etc. The Enabled checkbox allows excluding test items from

being run. The Count column allows launching the test several times if needed, the

Timeout column sets the expiration time when the test will be stopped and a correspond-

ing message will be sent to the test log. (Alpaev 2013, 102.)

By the end of the test run, the findings should be reported to the project team and man-

agement. Reporting can be also automated by TestComplete. After a test is executed, a

detailed test log of all performed actions is generated. It provides a list of passed and

failed tests with the description of each operation and reasons of possible failures. It is

also possible to export results and view them in a web browser. (SMARTBEAR 2014h.)

This does not require TestComplete and gives an opportunity of sending results to anyone

interested or store them separately with other test results.

11

4 Project implementation

This chapter describes the implementation process of the smoke test automation for a

Web application by describing the work phases, used techniques and sample test cases.

The problems encountered during the project implementation and important issues a test-

er should take into consideration while automating tests are then presented in the Sum-

mary section.

4.1 Why automate?

Before getting a comprehensive view of the testing automation procedure, it is important

to understand why it was considered to be necessary. Not all tests should be automated.

Test automation can be considered not cost effective. For example, automating some test

and running it only once will cost more than simply running it manually. However, smoke

test is something that is usually automated. (Marick 1998, 2,4.) As Andreas Lundgren

(2008, 15) writes, the purpose of automating functional testing is to replace repetitive and

often error-prone manual testing. As a rule, smoke test is run often. It aims to verify the

basic functionality of the software and validate code changes.

Some applications, such as weather-mapping system or one that relies on real-time data,

are unstable by design. In this case, automation will be difficult because the expected re-

sults are not known. (Hayes 2004, 15.)

Since the application under test is quite stable in design, the expected outputs are always

known. Smoke test is run on a regular basis and involves a lot of user‟s input, which can

be inaccurate. Moreover, running smoke test manually is a time-consuming task; it takes

approximately two working days to complete the tests.

These facts formed an opinion that smoke test automation was reasonable and that it

could be cost-effective for the case company.

4.2 Methods

Different automation approaches exist, such as linear scripting, modular scripting, data-

driven, keyword-driven, record and playback testing. Some of them have been already

mentioned in this paper. The following methods were combined during the implementation

process: modular scripting and data-driven testing.

12

The data-driven approach and some of its benefits have been discussed in paragraph 3.9.

Test data is separated from scripts, which makes test easier to edit and maintain. One

script can run many similar test cases.

As opposed to linear scripting, where non-structured scripts directly interact with an appli-

cation under test, modular scripting consists of modules or functions corresponding to

application functionality, for example, navigating or logging into the application. Modules

organize a test library, and test scripts can be constructed by combining these modules

with each other. In case of modularity creating of new tests is faster as it is possible to

reuse scripts. (Klärck.)

After learning the TestComplete basic theory, creating keyword tests and scripts, record-

ing and creating tests from scratch, consulting with experienced TestComplete users, a

decision was made to create test scripts from scratch using JScript. This choice was con-

sidered to be the most rational, because as it was already mentioned, scripting can help to

create flexible tests. Using recorder seemed, at first, to be the easiest way to create

scripts. In fact, recording gives a brilliant opportunity for beginners to study scripting tests

with TestComplete. But, as Al-Zain, Eleyan & Garfield (2012, 2) assure, creating and run-

ning tests with the recorder tool, is weak when it comes to dynamic web pages. Almost all

recorded tests fail to run during playback. TestComplete engine is not able recognize ob-

jects as the object identification information changes each time the page is loaded. The

records need further editing in order to keep them maintainable. A tester has to under-

stand each line of the code in the script, edit mapping if not done before the recording or

done incorrectly, then edit the script. It is very time-consuming because it requires too

much editing. It is much easier to utilize the API of TestComplete and create own test

scripts from scratch.

JScript was chosen as the scripting language for this project mainly due to the popularity

of JavaSctript. And as Alpaev mentions (2013, 14), it is a powerful and flexible language

with a compact syntax.

4.3 Software

Concerning the tasks set in the thesis, the following software was used:

 Microsoft Windows 8.1 Enterprise x64

 SmartBear TestComplete 10.20

 Mozilla Firefox 29

13

4.4 Project structure

In order to attain thesis objectives, the case Web application smoke test was automated.

Test scripts were created in TestComplete, the ProjectPortalTests project. Figure 3 covers

the final structure of the project. Basic Functionality Tests and Configuration Tests are

folders that contain automated test cases. The Functions Library folder includes the rou-

tines they use. They can be also used by other functions of the same level. The DDT fold-

er consists of functions, which are used for data retrieval.

The final structure looks quite simple. However, it required time and effort to make it logi-

cally and functionally applicable.

Figure 3. Project structure

4.5 Sample test cases

In order to understand how to automate tests with TestComplete, a process of creating

first test scripts presented in Table 1 will be described.

14

Table1. Sample test cases

4.6 Name mapping

The first step was name mapping. During the project implementation adding an object to

the Mapping repository typically consisted of the following steps:

1. Open a web page with an object that is to be found during the test run in the

Browser

2. Click Object Spy button in TestComplete

3. Drag the target to point to the object -> the Object Spy window opens

4. Press Highlight object in the Object tree button

5. Right click object in Object Browser ->Choose …Map object

6. Choose unique properties for identifying the object

A list of objects and identification properties that were necessary for automating the first

sample test case is presented in Table 2.

Table 2. Mapped objects for login

Alias name Properties (name: value)

browser ObjectType: Browser

pageProjectPortal ObjectType: Page

URL: application URL

formLoginform ObjectType: Form

IdStr: loginform

passwordbox ObjectType: PasswordBox

ObjectIdentifier: pwd*

tbUsername ObjectType: Textbox

ObjectIdentifier: uid

submitbtLogin ObjectType: SubmitButton

ObjectIdentifier: action_Login

No User Operation Expected output

1. admin
Log on to web application with an
admin user.

The user is successfully logged in.

2. admin

Create a workspace by clicking the
„Create‟ button. Enter the following:

The workspace properties view is
brought up.

Template selection: Default project,

Workspace name: First project,

Code: FP,

Type: Delivery and

Status: Pilot.

Save the project by clicking Create. Values are saved properly.

15

There are some techniques that were used to map the objects during the project imple-

mentation. One of them is used, for example, to map the passwordbox object in Table 2.

TestComplete can handle wildcarding; it supports standard * and ? wildcards. Wildcarding

is used for mapping objects with a dynamically generated identifier i.e. every time the test

is run, that particular property is going to get a new value. The passwordbox object‟s

property ObjectIdentifier is generated into something like pwd49545445, where the pwd

part is constant and the number is dynamic. Using the asterisk wildcard in pwd* enforces

TestComplete to pay attention only to the constant part while searching for the password

box.

As mentioned above, the Extended find feature is used when mapping objects whose di-

rect parent is not stable. In this case, the object is dragged up the Mapped Objects tree to

the most stable parent and the Extended Find checkbox is checked. In the example

shown in Figure 4, the checkboxes are moved up next to the frameMonolith object as they

can appear in different places but always within this frame. The search will be performed

all levels down the stable parent.

Figure 4. Extended Find

In some cases, an object‟s only unique property is not known and its value can be figured

out only when the test is being run. Then, a project variable can be used as the property

value. It can be, for example, manually created in the Project Editor, on the Variables

page. In Figure 5, the initial value of the temporaryVar project variable is assigned to one

of the checkboxSelectedUsers object identifiers.

Figure 5. Project variable temporaryVar

The necessary property value is assigned during the test run and the needed checkbox

can be found and checked as Figure 6 demonstrates.

16

 function addUserToWs(username)

{

 …

 Project.Variables.temporaryVar = username;

 frame.chkSelectedUsers.ClickChecked(true);

 …

}

Figure 6. Assigning value to a project variable

4.7 Functions library

After the name mapping for the sample test cases was done, TestComplete could perform

the required actions on the objects from scripts. Creating the functions, presented below,

was the next step, which later allowed their repeated usage in the actual test scripts.

The function that launches Firefox is shown in Figure 7.

function launch(url)

{

 while (Sys.WaitBrowser().Exists)

 Sys.WaitBrowser().Close();

 Browsers.Item(btFirefox).Run(url);

}

Figure 7. Launch

The Sys.WaitBrowser() method enforces TestComplete to wait until some browser pro-

cess exists in the system. If the process is found, the method returns the respective

Browser object i.e. a running web browser. The Exists property checks if a browser was

found. (SMARTBEAR 2014i.) To close the browser, the Close() method is called. It is em-

placed within a while loop to close all the instances of running browsers. To launch a

browser, the Browsers.Item(btFirefox).Run(url) method is used. The url parameter enforc-

es a specified tested web page to be opened.

A user‟s logging in to the application using the appropriate information is shown in Figure

8.

function login(username, password)

{

 var page = Aliases.browser.ProjectPortal;

 var loginForm = page.formLoginform

 if(loginForm.Exists)

 {

 loginForm.tbUsername.SetText(username);

 loginForm.passwordbox.SetText(password);

 loginForm.submitbtLogin.Click();

 page.Wait();

 if(page.FindChild(["ObjectType", "contentText"],["Panel", "Wrong username or

password, please try again."], 10).Exists)

 Log.Message("Login has failed (wrong username or password).");

 else if(page.FindChild(["ObjectType", "contentText"],["Link", "Workspaces"], 10

).Exists)

 Log.Message(username + " has been successfully logged in.");

 else

17

 Log.Error("Login has failed.");

 }

 else

 Log.Message("formLoginform not found");

}

Figure 8. Login

The Aliases object provides access to the Aliases tree and its objects in the Name Map-

ping repository.

As it logically implies from the names, the SetText() action sets the specified text to a con-

trol, while Click() simulates a left mouse button click.

After a specified button is clicked, the Wait() method is used that instructs TestComplete

to wait until the page is loaded and TestComplete is able to find the necessary objects on

the page and continue executing the test.

The FindChild method then searches for a child object with the specified properties (””Ob-

jectType”, ”contentText”) that have the specified values (”Panel”, ”Wrong username…”) in

the object hierarchy, and returns it if the object is found. Ten is depth, a number that tells

down to what level of child objects of the page object the method should search for a

specified object. It's zero by default meaning that the search should be done only in child,

not in grandchild etc. objects (SMARTBEAR 2014j).

TestComplete also provides a test log and allows posting there different types of messag-

es: events, ordinary messages, warnings, errors etc., using the Log object and corre-

sponding methods. In the above example, Log.Error() and Log.Message() methods are

used to indicate test pass or failure.

The function presented in Figure 9 demonstrates a process of creating a workspace.

function createWorkspace(workspace)

 {

 var page = Aliases.browser.pageProjectPortal;

 var wsForm = page.formMetaform;

 var star = "*"

 var nameTemplateString =

 star.concat(workspace.templateSelection, star);

 /*go to workspaces tab*/

 var btnWorkspaces = page.btnWorkspaces;

 btnWorkspaces.Click();

 page.Wait();

 /*click Create*/

 var btnCreateWorkspace = page.btnCreateWorkspace;

 btnCreateWorkspace.Click();

18

 page.Wait();

 if(workspace.templateSelection)

 {

 if(wsForm.WaitAliasChild("slWorkspaceTemplate",

 10000).Exists)

 wsForm.slWorkspaceTemplate.ClickItem(nameTemplateString);
 else

 Log.Error("The select list for workspace template has not

 appeared.");

 }

 if(workspace.includedItems)

 {

 if(wsForm.WaitAliasChild("slIncludeIntoWorkspace",

 10000).Exists)

 wsForm.slIncludeIntoWorkspace.

 ClickItem(workspace.includedItems);

 else

 Log.Error("The select list for included items has not

 appeared.");

 }

 if(workspace.name)

 {

 if(wsForm.WaitAliasChild("tbWorkspaceName", 10000).Exists)

 wsForm.tbWorkspaceName.SetText(workspace.name);

 else

 Log.Error("The text box for workspace name has not

 appeared.");

 }

 …

 wsForm.btCreateWorkspace.Click();

 page.Wait();

 }

Figure 9. Create workspace

The WaitAliasChild() method is used to pause the test execution until the object with

property values of some alias, for example the slWorkspaceTemplate select list, appears

on the page or until the time limit of 10000 milliseconds is reached. The method does not

post an error message to the test log if case the object does not appear. The Exists prop-

erty helps to detect whether the object is found in the system or not. (SMARTBEAR

2014k.)

The checkWorkspaceProps function presented in Figure 10 checks if the object properties

on a web page have specified values. This is done to verify that the values of the work-

space properties were saved properly.

function checkWorspaceProps(workspace)

{

 var page = Aliases.browser.pageProjectPortal

 var frame = page.frameMonolith;

 var returnBool = true;

 frame.linkEditWs.Click();

 if(workspace.name)

 {

 if(!aqObject.CheckProperty(frame.tbEditWsName, "Text",

 cmpEqual, workspace.name))

 returnBool = false;

 }

 if(workspace.code)

 {

 if(!aqObject.CheckProperty(frame.tbEditWsCode, "Text",

 cmpEqual, workspace.code))

19

 returnBool = false;

 }

 if(workspace.type)

 {

 if(!aqObject.CheckProperty(frame.slEditWsType, "wText",

 cmpEqual, workspace.type))

 returnBool = false;

 }

 if(workspace.status)

 {

 if(!aqObject.CheckProperty(frame.slEditWsStatus, "wText",

 cmpEqual, workspace.status))

 returnBool = false;

 }

 frame.btEditWsCancel.Click();

 return returnBool;

 }

Figure 10. Check Workspace Properties

Property checkpoints help to verify that an object property has the expected value.

A aqObject object and a CheckProperty method are used to perform a property check-

point. The object just provides a range of methods for objects (SMARTBEAR 2014l), and

its name can be actually skipped. In aqObject.CheckProperty(frame.tbEditWsName,

"Text", cmpEqual, workspace.name), for example, frame.tbEditWsName is the object

whose property is checked, “Text” is the name of the property to be checked, work-

space.name is the expected property value and cmpEqual means that the method must

check whether the expected property value equals the actual property value. Other test

conditions, such as „contains‟, „less than‟ etc., were also used during the project

implementation.

4.8 Input data for test scripts

To simplify tests maintenance by keeping input data separated from test scripts, the data-

driven approach was used for storing input data in the project. Excel sheets were chosen

as the data storage due to the format convenience, i.e. a table structure with rows and

columns.

The following test data was needed for the sample test cases: url to test, username and

password to login, workspace template, name, code, type, status. In order to execute the

tests using data-driven approach, the Excel sheets and tables presented in Tables 3-5

were created in the testCasesConfig.xlsx file.

Table 3. Sheet UrlUnderTest

URL

application URL

The column name URL is placed into the first row to make test data easier to understand.

20

Table 4. Sheet 1

Table 4 provides the input data for a user‟s logging in to the application.

Table 5. Sheet 2

Template se-
lection

Included
items

Name Code Type Status Description

Default project

First work-
space

FP Delivery Pilot

Icon URL
Home
page
URL

Logo URL Administrator Start Date End Date
Default

properties

Table 5 contains the data for creating a workspace. Only a few of the possible property

values were needed for the sample test case. However, all properties were included in the

table to make different combinations of data possible in further testing.

To read the data from Excel tables the functions shown in Figures 11, 12 were created in

the DDT folder.

 function readLoginData(fileName, sheetName, aceDriver)

{

 var Driver = DDT.ExcelDriver(fileName, sheetName, aceDriver);

 var loginsData =[];

 while(!Driver.EOF())

 {

 var loginData = {

 user: Driver.Value(0),

 pwd:Driver.Value(1)

 };

 loginsData.push(loginData);

 Driver.Next();

 }

 // Closes the driver

 DDT.CloseDriver(Driver.Name);

 return loginsData;

}

Figure 11. Read Login Data from Excel

The ExcelDriver method provided by TestComplete helps to access data in Excel sheets.

In the function above, it obtains values stored in the file filename, sheet sheetName. The

aceDriver parameter specifies whether TestComplete should use the AceDriver for con-

Username Password

admin password

21

nection (true) or not (false). If it is false TestComplete uses the ODBC driver which has no

support for Excel 2007 – 2013 (SMARTBEAR 2014m).

The tables for the sample test cases are single-row tables. In order to make the function

more flexible and possible to reuse in other test cases, where the amount of rows in the

tables may vary, the data from the file is read into an array. The while loop helps to iterate

through the rows of the file and add new elements to the loginsData array.

The readWorkspaceData function in Figure 12 retrieves the data for creating workspaces

and similarly pushes it into an array.

function readWorkspaceData(fileName, sheetName, aceDriver)

{

 var Driver = DDT.ExcelDriver(fileName, sheetName, aceDriver);

 var wssData =[];

 while(!Driver.EOF())

 {

 var wsData = {

 templateSelection:Driver.Value(0),

 includedItems:Driver.Value(1),

 name:Driver.Value(2),

 code:Driver.Value(3),

 type:Driver.Value(4),

 status:Driver.Value(5),

 description:Driver.Value(6),

 iconURL:Driver.Value(7),

 homePageURL:Driver.Value(8),

 logoURL:Driver.Value(9),

 administrator:Driver.Value(10),
 startDate:Driver.Value(11),

 endDate:Driver.Value(12)

 };

 wssData.push(wsData);

 Driver.Next();

 }

 DDT.CloseDriver(Driver.Name);

 return wssData;

}

Figure 12. Read Workspace Data

4.9 Test scripts

In this section, the scripts that execute the specific actions within the web application are

presented. Executing them in TestComplete fulfils the actions of the sample test cases

presented in Table 1.They apply all the functions created earlier.

//USEUNIT Launch

//USEUNIT ReadLoginData

//USEUNIT Login

function adminLogin()

{

 var DriverUrl = DDT.ExcelDriver("../testCasesConfig.xlsx", "UrlUnderTest", true);

 launch(DriverUrl.Value(0));

 var loginsData = readLoginData("../testCasesConfig.xlsx", "1", true);

 login(loginsData[0].user, loginsData[0].pwd);

}

Figure 13. TC 1, Login as Administrator

22

In the above Figure 13, the web browser window is opened and navigated to a certain url,

an admin user logs on to the web application, and the message is sent to the test log say-

ing whether or not the login has succeeded. //USEUNIT helps to make references to other

units.

//USEUNIT ReadWorkspaceData

//USEUNIT CreateWorkspace

//USEUNIT CheckWorspaceProps

function createFirstWs ()

{

 var workspaceData = readWorkspaceData("../testCasesConfig.xlsx", "2", true);

 createWorkspace(workspaceData[0]);

 if(checkWorspaceProps(workspaceData[0]))

 Log.Message("Workspace " + workspaceData[0].name + " has been

 successfully created and its property values checked.");

 else

 Log.Error("Workspace " + workspaceData[0].name + " has been

 created with errors.");

 }

Figure 14. TC2, Create the First Workspace

The test script shown in Figure 14 creates the first workspace and verifies if the creation

has been performed correctly.

4.10 Running tests

By the end of the automation process, a list of test scripts was created. In order to man-

age the ProjectPortalTests project, the TestComplete project editor was used. New test

items were created, added to the test list and selected to be run.

The test items for running test scripts are shown in Figure 15. Their names and test

scripts names are identical which appears to be logical and helps to avoid misunderstand-

ing.

23

Figure 15. Project Test Items

There are different ways to run tests. It is possible to run them from command line, as a

part of VisualStudio or MSBuild projects etc.(SMARTBEAR 2014n). The easiest way is to

launch them from the TestComplete IDE by selecting the Run button on the editor‟s

toolbar.

4.11 Test results

By the end of the test run, a detailed test log and a summary were generated. The Test

Run Summary (Figure 16) briefly presents the information on the run: the test group name

and status, general information, like test time, duration time etc. The Details section gives

an overview of results with a chart that visually demonstrates the number of passed and

failed test items.

24

Figure 16. Test Run Summary

It is also possible to view the details of each test item as shown in Figure 17, as well as to

filter the messages by selecting the check boxes of certain types.

Figure 17. Test Item Log

4.12 Summary

TestComplete provides handy tools like Object Spy, name mapping, Object Browser etc.

to create, run automated tests and get comprehensive test reports. However, it is not that

straightforward when it comes to automation. The problems described in this section were

all encountered during the project implementation.

Name mapping is the essential part of the automation process. In order to identify objects,

unique, unchangeable properties should be used for searching. Despite the possibilities

25

TestComplete gives to make name mapping easier, it is sometimes quite tricky to find

such a search criteria. It may be not just ordinary ObjectIdentifier and idStr etc. but some-

thing like parentElement.NextElementSibling.contentText or parentEle-

ment.parentElement.contentText. The latter property, for example, was used for mapping

as it was the only unique property of the object in the list of similar objects. In some cases,

when finding a unique identifier is problematic, it is possible to ask a developer to give an

object a unique property, for example, id. Each case is specific and there is no universal

approach in solving this kind of issues.

The fact that a test script has been run successfully once does not always mean that it is

written well enough and the automation process has been finished. The test may pass

several times and then fails. This has happened during the project implementation.

Every automation tool has peculiar properties and it is better to take them into account

during the automation process. TestComplete is not an exception. In the sample test case

the Wait() method is called. As it is stated on the SmartBear official site, The Wait() meth-

od checks whether the loading process has been finished and the following commands

are executed after the page has been completely loaded. It is then mentioned that it works

for simple pages but for complex pages, including dynamic pages, the method may return

a value before the page is loaded completely. (SMARTBEAR 2014o.) TestComplete then

starts accessing onscreen objects even though they are not yet loaded. This causes an

error and the test run fails. The sample Login test case passed using this method many

times (Figure 18) but then a series of failures followed, because TestComplete was look-

ing for the Workspaces link when it was not yet loaded.

…

page.formLoginform.submitbtLogin.Click();

page.Wait();

 if(page.FindChild(["ObjectType", "contentText"],["Panel", "Wrong username or

password, please try again."], 10).Exists)

 Log.Message("Login has failed (wrong username or password).");

 else if(page.FindChild(["ObjectType", "contentText"],["Link", "Workspaces"], 10

).Exists)

 Log.Message(username + " has been successfully logged in.");

 else

 Log.Error("Login has failed.");

…

Figure 18. Wait method

Fortunately, there are a few workarounds that can help to avoid failures. The Refresh

method can be called to force TestComplete update the objects tree (Figure 19). It is rec-

ommended to apply the method only to a restricted object hierarchy branch, otherwise the

refreshing can take a great deal of time.

26

…

page.formLoginform.submitbtLogin.Click();

page.Wait();

Sys.Refresh();

…

Figure 19. Refresh Method

It is also possible to use the WaitAliasChild method, which was mentioned above, or simi-

lar WaitChild method instead of FindChild to make TestComplete wait for an object's ap-

pearance - these methods refresh the objects tree implicitly. Both workarounds helped

and the test script ended successfully.

The test may keep on failing during playback. The reason is that the data provider cannot

retrieve all data from Excel spreadsheet. It turns out that data in every column, except for

the column name, needs to be of the same type, for example, text only or numbers only.

Otherwise, data may be treated incorrectly and hence test fails. (SMARTBEAR 2014p.)

The scenario in which the test passes and then fails may also happen, for example, if the

code in the test script enforces TestComplete to look for objects that for some reasons

have been deleted from the system. For example, in the sample test case workspace of

type Delivery is to be created. The type should exist in the system before the test is run.

An unexpected failure can occur because the Web browser configuration has been

changed. As it has been mentioned above, wrong configuration can cause incorrect play-

back.

Some specific issues must also be considered. Mozilla Firefox was used in this project. As

the Mozilla Support website informs, when a link to download a file is clicked, the Internet

Media type defines what Firefox will do. There may be some plugin installed that will au-

tomatically handle the download, or a dialog asking whether to open the file or save it may

appear (Figure 20).

27

Figure 20. Opening file dialog

The checkbox "Do this automatically for files like this from now on" in the dialog may be

checked and the dialog will not appear afterwards for that type of file. In Figure 21 the

Export button is clicked to download a file.

…

frame.linkExportWs.Click();

browser.WaitAliasChild("browserWin", 1000);

…

Figure 21. Download File

The browser object then waits for the browserWin object i. e. the dialog window to appear

However, as it has become clear, the object may not appear at all because of the individ-

ual browser settings. As a result, the download operation and hence the test fail. The

problem could be solved programmatically but it is hard to predict all of the possible sce-

narios.

To avoid these kinds of failures, it is important to have documented instructions on how to

prepare the system and the browser before a test round.

Test scripts should be simple, well designed and maintainable. If maintaining automated

tests takes more time than manual testing there is scarcely any point in automation. How-

ever, maintenance can be hardly escaped. User interfaces change even in stable applica-

tions. In case of manual testing people can handle these changes without any problems.

But automated test scripts can fail because of the slightest change. The code above initi-

ates choosing the product basic interface from the select list (Figure 22).

frame.slTemplateset.ClickItem("Product name basic user-interface");

Figure 22. Click Item with a Product Name

28

During the project implementation the product name was slightly changed and this caused

a test failure. That is why it is also necessary to be informed about such changes in ad-

vance. The easiest way is to get the information from the development team. The team

may be asked to post corresponding messages to the change log in the application ver-

sion control system.

A tester should also keep in mind that automated tests are not likely to find unexpected

defects. Running tests the same way and expecting to get a certain output makes it im-

possible to detect when something else goes wrong. A message shown after a workspace

has been archived is presented in Figure 23.

Figure 23. Archive workspace

The generated path to the archived workspace is evidently wrong. If the code in the test

script will not check it, which may happen, the defect will not be caught by TestComplete.

But the issue is not critical as it does not crucially affect the basic functionality of the prod-

uct and the expected output of the test case “successful archiving” is accomplished. After

all, it is not possible to check everything and even a human tester may not notice this kind

of issues.

Nevertheless, a tester should be careful in choosing what exactly should be checked in

the automated test. This may require the correction of flaws in existing manual tests

(something like “successful archiving” in the expected output would not be sufficient),

enough experience with the application and a good knowledge of the tool.

29

5 Discussion

The goal of this thesis was to reveal the strengths and weaknesses of test automation on

the example of the smoke test automation project for one specific company. The automa-

tion was done using TestComplete, a popular automation tool. The system under test is a

web-based document management system for complex industrial projects. The thesis

introduced the basic principles of the tool and demonstrated how to use them by describ-

ing the implementation process. The problems encountered during the project

implementation and possible ways to avoid them were then presented.

This chapter summarizes the main results of the study. The future suggestions for further

development are also discussed. The assessment of the author‟s professional progress is

done as well at the end of the chapter.

5.1 Conclusions

The tangible result of the thesis is a project which enables to run tests automatically. The

problems encountered during the project implementation have revealed that test automa-

tion should be done very thoroughly in order to avoid them.

The process should be carefully planned. The manual tests intended for automation may

require adjustment that should be controlled or done by the members of the team experi-

enced in the application. TestComplete project should be well-structured. The code needs

to be logically organized to allow easy interaction between modules, further usage in dif-

ferent test cases and thus constant test coverage improvement.

The examples with the Wait() method which does not work for dynamic web pages, or the

ExcelDriver object which may treat data of different types incorrectly have revealed that

TestComplete, just like any other Software tool, has distinctive features a tester should be

aware of. Flaws in the test script code or external data sources may result in unjustified

test failures. Thus ignorance can considerably slow down the automation process, make it

more difficult. Ideally, script developers should be experts in the automation tool.

One of the key requirements in test automation is creating scripts easy to maintain. The

thesis has set out that TestComplete provides name mapping techniques, such as Ex-

tended find, Wildcarding etc. which enable object search on dynamic web pages. Data-

Driven approach separates test data from the code. Undoubtedly, this has a significant

positive effect on maintainability. Still it has become clear that it is not enough to make

30

tests runnable. Successful test automation requires support from management to ensure,

inter alia, the timely awareness of the changes performed in the system that can affect

maintainability. Having documented instructions on how to prepare the system and the

browser before a test round is of great importance.

It has also been pointed out that automated tests are not likely to find unexpected defects.

However, the automation of the smoke test has provided essential benefit to testing. It has

given an opportunity to run the tests on new versions of the product without great efforts

and hence make sure that the changes made in the code do not affect the basic function-

ality of the system. This fully corresponds to the purpose of the smoke testing.

Test Automation has given an increased, compared to the manual testing, confidence that

the tests are run correctly according to the smoke test instructions.

The testing time has significantly decreased. The time spent on the configuration tests has

changed from 2,5 hours to 15 minutes (Figure 16).

Moreover, the data driven approach and the project code structure make the creation of

new automated tests easier. For example, it is now possible to create many workspaces

and try different inputs just by creating a short script and populating the Excel table pre-

sented in Table 5. All this clearly makes testing more efficient.

5.2 Future development

The scope of this thesis is rather narrow. The project was implemented using certain

methods, such as creating test scripts from scratch in JScript , Name mapping, Data-

Driven approach via Excel spread sheets. It was developed for a certain type of applica-

tion, namely Web application. However, TestComplete provides a wide range of possibili-

ties and tools how test automation can be done. It is a huge field to be investigated. It

would be interesting to continue with TestComplete and look for the ways to improve the

project as well as to automate tests for desktop or mobile applications. This would give a

deeper understanding of the tool and, of course, affect the final project results.

5.3 Self-assessment

Before the project implementation, I didn‟t have neither theoretical nor practical knowledge

about test automation and test automation tools. The need to automate a smoke test with

TestComplete for a specific company pushed me to research them and apply new

31

knowledge in practice. It gave me invaluable experience which helped to understand the

core concepts of test automation and realize its complexity and importance for software

development. I acquired much knowledge about TestComplete, one of the most popular

automation tools.

The project implementation was labour-intensive and absorbing. Several full project test

rounds and numerous test items runs were executed which resulted in finding defects in

the system under test as well as in the project itself. The project defects were then fixed.

They significantly helped in writing this paper.

32

References

Alpaev G. 2013. TestComplete Cookbook: Over 110 practical recipes teaching you to

master TestComplete – one of the most popular tools for testing automation. Packt Pub-

lishing. Birmingham.

Al-Zain, S., Eleyan, D., Garfield. J. 2012. Automated User Interface Testing for Web Ap-

plications and TestComplete. In: CUBE 2012, Proceedings of the CUBE International In-

formation Technology Conference, 3 – 5 September 2012, Pune, India. URL:

http://eprints.worc.ac.uk/3190. Accessed: 20 February 2015.

Apica 2014. Automated Testing vs Manual Testing: Which Should You Use, and When?

URL: https://www.apicasystem.com/blog/2014/11/07/automated-testing-vs-manual-

testing. Accessed: 20 February 2015.

Chapman, S. 2013. A Brief History of Javascript. URL:

http://javascript.about.com/od/reference/a/history.htm. Accessed: 5 May 2013.

Düüna, K. 2012. Analysis of Node.js platform web application security: Master‟s thesis.

Tallinn University of Technology. Tallinn. URL:

http://www.google.ru/url?sa=t&rct=j&q=analysis%20of%20node.js%20platform%20web%2

0application%20security%3A%20&source=web&cd=1&ved=0CC4QFjAA&url=http%3A%2

F%2Flab.cs.ttu.ee%2Fdl93&ei=o8VeUdDxIYmh4gS-

joGADQ&usg=AFQjCNE0MMCy8ZYdpi5O0gzr-

2Qy5e2phg&bvm=bv.44770516,d.bGE&cad=rjt. Accessed: 5 May 2013.

Hayes, L.G. 2004. The Automated Testing Handbook. 2nd ed. Software Testing Institute.

URL: http://books.google.fi/books?id=-

jangThcGIkC&printsec=frontcover#v=onepage&q&f=false. Accessed: 20 February 2015.

International Software Testing Qualifications Board (ISTQB) 2014. Glossary: Standard

Glossary of Terms used in Software Testing. v.2.4. URL: http://www.software-

tester.ch/PDF-Files/ISTQB%20Glossary%20of%20Testing%20Terms%202.4.pdf. Ac-

cessed: 25 February 2015.

Klärck P. Introduction to Test Automation. URL:

http://www.slideshare.net/pekkaklarck/introduction-to-test-automation?related=3. Ac-

cessed: 11 March 2015.

33

Laukkanen, P. 2006. Data-Driven and Keyword-Driven Test Automation Frameworks:

Master‟s thesis. Helsinki University of Technology. Espoo. URL: http://eliga.fi/Thesis-

Pekka-Laukkanen.pdf. Accessed: 20 February 2015.

Lundgren, A. 2008. Abstraction Levels of Automated Test Scripts: Master‟s thesis. Lund

University. Stockholm. URL:

http://fileadmin.cs.lth.se/cs/Education/Examensarbete/Rapporter/2008/Rapport_2008-

11.pdf. Accessed: 20 February 2015.

Marick, B. 1998. When Should a Test Be Automated? URL:

http://www.stickyminds.com/article/when-should-test-be-automated. Accessed: 20 Febru-

ary 2015.

Mozilla Support 1998–2015. Change what Firefox does when you click on or download a

file. URL: https://support.mozilla.org/en-US/kb/change-firefox-behavior-when-open-file

Accessed: 20 February 2015.

Prasad, K.V.K.K. 2009. Software Testing Tools: Covering WinRunner, Silk Test, Load-

Runner, Jmeter, TestDirector and QTP with case studies. Dreamtech Press. New Delhi.

URL:

https://books.google.fi/books?id=DuinhInx0moC&pg=PA2&dq=Prasad+K.V.K.K.+2009.+S

oftware+Testing+Tools:&hl=en&sa=X&ei=pUnnVNnCF-

HkyAPQxI-

DACg&ved=0CDMQ6AEwAA#v=onepage&q=Prasad%20K.V.K.K.%202009.%20Software

%20Testing%20Tools%3A&f=false. Accessed: 20 February 2015.

SMARTBEAR 2014a. Distributed Testing - Overview. URL:

http://support.smartbear.com/viewarticle/55788. Accessed: 25 February 2015.

SMARTBEAR 2014b. About TestComplete Platform and Modules. URL:

http://support.smartbear.com/viewarticle/55808. Accessed: 21 February 2015.

SMARTBEAR 2014c. About TestComplete. URL:

http://support.smartbear.com/viewarticle/ 55657. Accessed: 21 February 2015.

SMARTBEAR 2014d. Test Types. URL: http://support.smartbear.com/viewarticle/ 58033.

Accessed: 21 February 2015.

34

SMARTBEAR 2014e. About Name Mapping. URL:

http://support.smartbear.com/viewarticle/55236. Accessed: 24 February 2015.

SMARTBEAR 2014f. Changing Mapped Objects' Hierarchy. URL:

http://support.smartbear.com/viewarticle/57334. Accessed: 24 February 2015.

SMARTBEAR 2014g. About Object Spy. URL:

http://support.smartbear.com/viewarticle/55432. Accessed: 21 February 2015.

SMARTBEAR 2014h. About Test Log. URL:

http://support.smartbear.com/viewarticle/55125. Accessed: 21 February 2015.

SMARTBEAR 2014i. WaitBrowser Method. URL:

http://support.smartbear.com/viewarticle/61205. Accessed: 21 February 2015.

SMARTBEAR 2014j. FindChild Method. URL:

http://support.smartbear.com/viewarticle/55112. Accessed: 21 February 2015.

SMARTBEAR 2014k. FindAliasChild Method. URL:

http://support.smartbear.com/viewarticle/55413. Accessed: 21 February 2015.

SMARTBEAR 2014l. aqObject Object. URL:

http://support.smartbear.com/viewarticle/55360. Accessed: 21 February 2015.

SMARTBEAR 2014m. ExcelDriver Method. URL:

http://support.smartbear.com/viewarticle/55314. Accessed: 21 February 2015.

SMARTBEAR 2014n. Running Tests. URL:

http://support.smartbear.com/viewarticle/56462. Accessed: 21 February 2015.

SMARTBEAR 2014o. Waiting For Web Pages. URL:

http://support.smartbear.com/viewarticle/57082. Accessed: 21 February 2015.

SMARTBEAR 2014p. Using Excel Files as Data Storages. URL:

http://support.smartbear.com/viewarticle/56928. Accessed: 21 February 2015.

35

Spillner, A., Linz, T. Schaefer, H. 2014. Software Testing Foundation: A study guide for

the Certified Tester Exam. 4th ed. Rocky Nook Inc. Santa-Barbara.

Ugurlu, T., Zeitler, A., Kheyrollahi, A. 2013. Pro ASP.NET Web API HTTP Web Services

in ASP.NET. Apress.

36

Appendices

Appendix 1. Mapped Objects and Aliases trees

37

Appendix 2. Object Browser

38

Appendix 3. Object Spy

