
Niko Gröhn

Web Platform for Digital Magazines

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communication Technology

Thesis

11 May, 2015

Abstract

Author(s)

Title

Number of Pages

Date

Niko Gröhn

Web Platform for Digital Magazines

41 pages

11 May, 2015

Degree Bachelor of Engineering

Degree Programme Information and Communication Technology

Specialisation option Software Engineering

Instructor(s) Erja Nikunen, Principal Lecturer

Tatu Dufva, Director of Product

The purpose of this thesis was to document and explain the architectural choices behind

an application for reading digital magazines. The application was developed for the com-

pany Conmio Oy and is intended to be used as a demo application for sales purposes. It

was developed mostly as a prototype for seeing the viability of such application as a web

application.

The thesis begins with explaining the initial concept and requirements of the application,

while comparing it to some existing applications. The next parts present the technical

choices that helped further shape the initial concept. The main flow of control of the

application is also shown alongside the development workflows. Latter parts of the text

explain how different parts of the application were modularized and how this makes it

function more as a platform.

Though this thesis focuses on the web as a platform, parts of it such as the general

architecture, could be easily translated to other platforms. This makes this thesis also

work as a reference for future work on additional platforms.

The resulting application was a functional prototype that will be used for sales purposes.

The now proven prototype also paved way to developing the application on other platforms

in the future.

Keywords Digital magazine, Backbone.js, RequireJS, web-application,

single-page application

Tiivistelmä

Tekijä(t)

Otsikko

Sivumäärä

Aika

Niko Gröhn

Web-pohjainen alusta digitaalisille lehdille

41 sivua

11.05.2015

Tutkinto Insinööri (AMK)

Koulutusohjelma Tietotekniikka

Suuntautumisvaihtoehto Ohjelmistotekniikka

Ohjaaja(t) Erja Nikunen, Yliopettaja

Tatu Dufva, Director of Product

Työn tavoitteena oli dokumentoida ja selittää arkkitehtuuriset valinnat digitaalisten

lehtien lukuun tarkoitetun sovelluksen taustalla. Sovellus kehitettiin yritykselle Conmio

Oy. Se kehitettiin pääasiassa prototyyppinä selvitykseksi tämän kaltaisen sovelluksen

soveltumisesta web-sovellukseksi.

Teksti alkaa tutustumalla sovelluksen konseptiin sekä vaatimuksiin. Samalla sovellusta

verrataan jo olemassaoleviin vastaavanlaisiin sovelluksiin. Seuraavat osat esittävät

tekniset valinnat jotka tehtiin alkuperäisten vaatimusten pohjalta, sekä miten näitä

teknisiä valintoja käytetään sovelluksessa. Viimeiset osat selittävät miten sovellus

modularisoitiin ja kuinka se saatiin toimimaan alustana erilaisille digitaalisille lehdille.

Vaikka työn pääpainona on web-sovelluksen kehitys, on osia tekstistä hyödynnettävissä

myös muilla alustoilla. Teksti toimii teknisen katsauksen ohella dokumentaationa mikäli

sovellusta jatkokehitetään eri alustoille.

Lopputuloksena työssä kehitettiin sovellus joka osoittautui toimivaksi prototyypiksi. Pro-

totyyppi pääsi myynnin tueksi sekä osoitti mahdolliseksi sovelluksen toteutuksen muille

alustoille tulevaisuudessa.

Avainsanat Digital magazine, Backbone.js, RequireJS, web-application,

single-page application

Contents
List of Abbreviations

1 Introduction 1

2 Digital Publishing 1

2.1 Related Work 2
2.1.1 Flipboard 2

2.1.2 Yahoo News Digest 3

3 Project Definition 4

3.1 Concept 4
3.2 Software Design 4

3.2.1 Web and Native Applications 5

3.2.2 Single Page Applications 6

3.2.3 Application Structure 7

3.3 Interface 8
3.3.1 Mobile First Design 8

3.3.2 Mobile Interface 9

3.3.3 Desktop Interface 12

3.4 Application Resources 13
3.4.1 Content Feed 13

3.4.2 Content Feed Creation 14

4 Architecture 16

4.1 Frameworks and Libraries 16
4.1.1 Javascript Framework 17

4.1.2 Templating Engine 19

4.1.3 CSS Preprocessors 20

4.2 Module Loading 21
4.2.1 Specification 22

4.2.2 Library 23

4.3 Structure 24
4.3.1 Router 25

4.3.2 Models 25

4.3.3 MagazineView 26

4.3.4 ArticleView 26

4.3.5 PageView 27

4.3.6 Carousel Library 27

4.4 Flow of Control 28
4.4.1 Magazine Rendering 28

5 Platform 30

5.1 Modularization 30
5.1.1 Pages 31

5.1.2 Plugins 33

5.2 Continuous Integration 34
5.2.1 Build System 35

5.2.2 Build Tasks 36

5.2.3 Optimization 37

5.2.4 Deployment 37

6 Results 38

7 Summary 39

References 40

List of Abbreviations

API Application Programming Interface

CDN Content Delivery Network

DOM Document Object Model is the convention how browser interacts with
HTML

HTML Hypertext Markup Language, markup language to create web pages

JS Javascript, programming language used in web pages

JSON Javascript Object Notation, lightweight data-interchange format

MVC Model-View-Controller, a design pattern

UI User interface

URL Uniform Resource Locator

REST Representational State Transfer, architecture for web services

1

1 Introduction

This thesis was made as a part of a project to create a new application for reading digital

magazines. The aim was to create a highly modular and flexible application for transform-

ing existing news and stories into format applicable to digital magazines.

The application was developed as a research and development project for the company

Conmio Oy. Conmio creates largely custommade web and mobile applications for brands

and publishers globally. Conmio needed a new product for sales purposes and this ap-

plication was developed as a proof of concept application for the sales.

This thesis is mostly a documentation for the application architecture and the ideas behind

it, without diving too deep into the code. The text focuses on the development of the

application for the web platform, as it was chosen as the initial platform for the proof of

concept application. The thesis first looks into the initial requirements and the concept of

the application, such as different parts it consists of. The latter parts of the text look into

technical choices that helped further shape the ideas behind the application.

2 Digital Publishing

Since the introduction of the internet, publishing industries have been in constant change.

First came web sites to complement the printed media. A second large change took place

with the rise of mobile devices such as iPad, which allowed the opportunity to bring print

media into a completely new format.

Digital magazines of today are rarely replicas of their printed counterparts. Instead they

are specifically made for the digital medium, making use of the interactivity possibilities

delivered by the new medium. Digital magazines don't necessarily compete with print

2

media, but other digital media. They are optimized for the digital screens and offer digital

extras such as animations and videos. [1]

2.1 Related Work

Nowadays there are quite many applications that transform content to a more magazine-

like content for digital devices. This section takes a look at two of them that have acted as

inspiration for this application: Flipboard and Yahoo News Digest. These two applications

show two completely different concepts for digital content yet they both are well related

to the concept of this application.

2.1.1 Flipboard

Flipboard is a magazine reading application initially built specifically for iPad. The first

version of the application was launched on July 2010, a few months after the release of

the first iPad. Flipboard's concept was to combine the beauty of print magazines with the

web. It takes existing content and news from various media outlets and transforms them

into a format suitable for a magazine.

Flipboard was a big hit for the original iPad as it came along in the first third-party iPad

applications. Reading news content in a magazine-like experience by swiping sideways

was a big hit and the application was named Application of the Year 2010 by Apple. [2]

During the development of the application, Flipboard was only available as native appli-

cations for various devices. This changed in February 2015 when Flipboard introduced

its web version. The web version offers mostly the same experience as the native ap-

plications but optimized for desktop computer usage. In essence, this means changing

touch based swipe events to regular scrolling.

3

Conceptually, Flipboard is quite similar the approach taken in this application. It is likely

to be one of the largest inspirations for this application.

2.1.2 Yahoo News Digest

Yahoo News Digest is one of the freshest new ideas for news reading applications on

the market. Its aim is to offer the user 10 generated news stories twice a day, in the

morning and the afternoon. It attempts to mimic the way people are used to read morning

and afternoon newspapers. The articles are curated by selected editors. Therefore the

application offers no customization. Every user will receive the same news when the news

arrive. The application doesn't offer the user an endless stream of news but a limited set

of news and a definitive ending for the news stream. [3]

Yahoo News Digest has a rather different concept than Flipboard but nevertheless it acts

as a great inspiration for this application. The intention of Yahoo News Digest is to offer a

set amount of relevant news, instead of digital magazines with endless streams of more

or less interesting articles. As inspirator, Yahoo News Digest is a catalyst for the flexibility

of the application being developed for this thesis. The objective is that this application

could be used to create experiences similar to Flipboard and Yahoo News Digest.

4

3 Project Definition

3.1 Concept

Conmio had an existing solution for building and using digital magazines. This previous

solution was highly customizable, but the customization was on a lower level leading to

more work when shaping it to a custom magazine. Therefore the need arose to build a

more lightweight, yet flexible solution to present these digital magazines. A single appli-

cation instance should be able to support multiple customized magazines instead of the

previous solution where each type of magazine would need its own application instance.

The new application can be split up to three parts. The first is the magazine viewer ap-

plication, which is the focus on this thesis. It's the part of the application that is publicly

visible and is used to read the magazines. The other two parts are a bit separate from the

magazine application. First of these is the server side application that is used to parse

and format the existing content to a suitable format for the magazine. The last part acts

as a glue between the other two parts. This glue is the admin interface, acting between

the magazine application and the backend. The admin interface is used to construct the

magazine from the pre-formatted content, resulting in a magazine usable by the magazine

application.

3.2 Software Design

Once the concept of the application was clear, it was time to make choices regarding the

overall design and structure of the application. These choices revolved around whether

the application should be made as a native application or as a web application.

5

3.2.1 Web and Native Applications

Native applications work like traditional desktop PC applications. They are often devel-

oped for a single platform such as iOS or Android and they will only run on that single plat-

form. Native applications can easily be installed from the platform's own store. They're

also highly integrated to the device and system. They gain access to various system

components and sensors such as camera and GPS.

Web applications on the other hand, live in the web. They are accessible by virtually every

device that can access the internet. They can't be installed on devices but they can often

be bookmarked or sometimes even an application like shortcut can be created. Usually

users require the internet to access the application, but there are ways to make them work

offline.

The greatest loss for web applications over native applications, is the lack of performance.

Native applications can leverage device performance better due to the closer integration

with the system. This results in more responsive touch interfaces and generally faster per-

formance. Web application performance is constantly increasing with better performing

devices and better browsers.

Especially Google with its Android platform has been constantly thinning the line between

web and native applications. Many features that have formerly been available only for

native applications, have been incorporated into web applications. Sensors such as GPS

and gyroscopes are already available on the web. The most recent upcoming feature

is push notifications, which allows web pages to create notifications to the device in the

background. For apps that don't necessarily require top notch performance, push notifica-

tions have been one of the biggest drivers for creating a native version of the application.

[4, 5]

For the prototype application being developed, the web ended up as the winner platform.

As this acts as both the initial prototype and demo application, a short development time

6

is essential. The plan is to possibly develop native applications in the future, depending

on the success of the prototype. The main reason for picking the web as the platform of

choice is the ease of development. Conmio also has some existing solutions and libraries

for various features of the application which can further reduce the development time.

3.2.2 Single Page Applications

Traditionally, web pages have relied heavily on the server. Every change in content re-

quired a full page refresh, where HTML was rendered on the server and returned to the

browser. This results in to the client loading duplicate content on subsequent page loads

and loss of responsiveness during the page load.

Single page applications were pioneered in the mid-2000s by applications such as Gmail

and Google Maps. After the initial load, single page applications can load the subse-

quent pages without requiring a full page load. By leveraging Javascript functionality,

they can dynamically load the new content, update the URL of the browser and render

the new content. Single page applications often make the initial page load a bit longer

when compared to traditionally built pages. This is because they often include some sort

of Javascript framework or library that is used to handle the following page requests. Un-

less the application is built as an hybrid application, the first page load will also have to

load the initial page content, once it has loaded the application framework. Hybrid appli-

cations avoid this problem by supporting both client side and server side rendering of the

content or by including the data on the initial page load.

Single page applications have been mostly used for web pages that feel like applications

instead of traditional web pages like blogs. Often these applications are meant to be kept

open for a long time, so the initial longer page load time doesn't matter. [6]

For the application being developed, single page application is the obvious way to go.

The general use case is to keep the page open for a long time while the user scrolls to

the articles of the magazine. The frontend should also be decoupled from any backend

7

code, as the backend is meant to only provide JSON data that can be used in both the

web application and future native applications. For the this version, it was also decided to

not go with the hybrid approach as the benefits of a hybrid application were unimportant

for the prototype.

3.2.3 Application Structure

Single page application design was chosen because it fits the customization oriented de-

sign of the application itself. The general nature of the application is also quite application

like, unlike traditional web pages that require a server to render the content.

With initial load, the client loads the base HTML for the application, along with the core

Javascript library and CSS styles. From hereon the core libraries take over and handle

loading of the additional content to render a magazine in the client. The core files can

take benefit from heavy caching, making subsequent magazine loads super fast. Cached

files can be stored almost indefinitely on the client's browser, allowing future page loads

to be near instant. When the core of the application is already available, the content is

the only thing that needs to be loaded.

The files of the application are all static files. This means that they are generated once

during the build phase of the application instead of being generated dynamically. After

deployment, no changes are made to these files, so the clients can download and store

these files offline until a new version of the application is deployed. This makes hosting of

the application cheap and effective as the application files could be deployed to a content

delivery network. Content delivery networks (CDN) are worldwide distributed networks of

servers mainly serving static files. CDNs are covered in chapter 5 of this thesis.

All of the content that actually changes is loaded dynamically by the core of the application.

This is where the server comes into play. The server serves JSON responses to the client

that contain the contents of the magazine. Serving raw data from the server keeps the

server lightweight and reduces load times of the content from the server, as almost no

8

preprocessing of the content is required in the server. It also allows to use the same

server for other platforms as the content format isn't restricted to any platform.

3.3 Interface

The interface is designed with content-first approach and is highly dependable on the

content of themagazine. With that in mind, this section shows the general interface design

choices and some interface elements that are common to all magazines.

3.3.1 Mobile First Design

The main target devices of the application are mobile devices. As these devices have a

highly limited amount of screen real estate, the interface was designed with mobile first

methods. In mobile first design, the UI design process begins from the device with the

smallest screen real estate. By doing this, the designer can keep focused on the key tasks

and elements available, as there isn't room for extra features yet. The designer ends up

with a minimal version of the interface to make it usable. When moving to larger screen

sizes, new features can be added where they seem necessary, eventually reaching the

full desktop size.

The opposite of mobile first design is designing from top to bottom, i.e. building the largest

desktop version first and scaling that down to smaller devices. This often causes unnec-

essary clutter for the smaller screens, due to larger screens typically allowing all kinds of

extra elements in the UI. Mobile devices also lack the performance of desktop devices,

causing worse performance and slower page load times. [7, 8]

9

3.3.2 Mobile Interface

To keep the application as simple as possible, it has only one view available. This main

view of the application is the page view. This view displays a single page of the magazine,

using all available space of the browser window. Example article can be seen in figure 1.

The contents of the page are fully customizable by the magazine designer, allowing the

page to use the available space as best suited for its contents. The page can be scrolled

up and down and for all intents and purposes it acts as a regular browser page.

Figure 1: Example article page

Because the interface doesn't have any buttons for direct navigation, it requires a not so

commonmethod of navigating between pages. The navigation makes use of touch events

where available. In addition to navigating the current page by scrolling up and down, the

user can navigate the magazine by swiping to left and right. Swiping to left reveals the

next page. Swiping far enough and releasing causes the magazine to switch to the next

page. This kind of navigation is common to users coming from native applications, but

it's a rather uncommon navigation method for web pages. Some guidance is required to

help the user to understand how the navigation works. Currently this is a tooltip on the

10

first page to direct the user into swiping left.

The second common element on the page is an overlaid button that is used to toggle the

navigation. This button floats in one of the four corners of the browser window. It's up

to the magazine designer to decide how the button is presented. The button tries to stay

out of the user's way by hiding itself when the user scrolls down the page. With this it can

avoid blocking textual content while the user is reading it. The button reveals itself again

when the user scrolls up or navigates to the next page.

Navigation menu is the third element common to all magazines. It's usually hidden from

the user's sight, unless the screen is so large that we have enough empty space to make

use of. The navigation menu has two different kind of layouts, depending on the device

size.

Figure 2: Mobile navigation menu.

11

For the smallest devices the menu is a simple off canvas menu as seen in figure 2. Off

canvasmenus are hidden on either the left or right side of the page and they slide into view,

either overlaying the content or pushing the content partly off the screen. The content of

the menu is a simple table of contents for the magazine, showing the title of the article.

Pressing any of the articles causes the first page of that article to jump into the view. The

menu is toggled off by pressing the partly visible article on the right.

The second navigation layout on figure 3 is designed for tablets. The situation on tablets

isn't much different from mobile devices. The space is still limited and the content needs

to be the focus of the application. The menu is similarly an off canvas menu here, pushing

the content offscreen when the menu is opened. The only difference between the menus

of tablet and mobile is that the tablet menu has preview images available. A slightly bigger

screen allows us to improve the visuals of the application as the additional images don't

make the menu too cramped.

Figure 3: Tablet navigation menu.

12

3.3.3 Desktop Interface

The main usage of the application will be on mobile devices, but the application was

designed to work with desktop browsers too. Desktop web browsers don't have touch

events. Instead they rely on mouse and keyboard usage. The swiping gesture could be

done with a mouse as dragging from side to side, but that's rather uncommon usage for

mouse. A more common navigation method for the mouse would be buttons on each side

of the screen. As desktops also have larger screens, the sides have empty spaces so the

navigational buttons won't overlay the textual content. Accessibility by keyboard usage

was also kept in mind. The pages can also be switched with the left and right arrow keys

on a keyboard.

Figure 4: Desktop navigation menu.

The biggest difference betweenmobile and desktop layouts is the navigationmenu. Desk-

top browser windows are much wider than those of their mobile counterparts, so the in-

terface can make use of all that empty space as the page contents won't require all that

space. To make use of that extra space, the navigational menu is always visible on the left

side of the screen as seen on figure 4. This allows the user to always see their position in

the magazine. The visuals of the desktop menu are no different from the tablet version.

Naturally, the desktop doesn't have the overlaid button to toggle the navigational menu.

13

3.4 Application Resources

The application can't function solely on its own. To display the content it needs other soft-

ware to generate the content for the magazines and articles. The application doesn't

care how these are generated. The only thing that matters is the format of the con-

tent. The content, which we will refer as feed from hereon, is formatted as JSON. JSON

(JavaScript Object Notation) is a lightweight data-interchange format. It has strong roots

within Javascript standards and is generally easy to use and read. [9]

The feed is loaded either from a REST API or a static JSON file available from an URL.

3.4.1 Content Feed

Listing 1 depicts an example article from the feed. The id and content properties are

mandatory fields of the feed. The id is used mainly for constructing URLs that link to a

certain page within the magazine. The content property generally has data that comes

from the client. It's also what the templates and PageViews use for rendering.

1 {
2 "id": 1,
3 "__template": "demo/article",
4 "content": {
5 "body": [
6 {
7 "text": "Lorem ipsum dolor sit amet,

consectetuer adipiscing elit.",
8 "type": "lead"
9 },

10 {
11 "text": "Sample image",
12 "type": "image",
13 "url": "http://example.com/image.jpgg"
14 },
15 {
16 "text": "Sed posuere interdum sem. Quisque

ligula eros ullamcorper quis, lacinia
quis facilisis sed sapien. ",

17 "type": "paragraph"

14

18 },
19 {
20 "text": "Mauris varius diam vitae arcu. Sed

arcu lectus auctor vitae, consectetuer et
venenatis eget velit.",

21 "type": "paragraph"
22 }
23],
24 "description": "Lorem ipsum dolor sit amet,

consectetuer adipiscing elit.",
25 "image": {
26 "src": "http://example.com/image.jpg"
27 },
28 "meta": {
29 "author": "Lorem Ipsum",
30 "origin": "Generated sample"
31 },
32 "title": "Sample article"
33 }
34 }

Listing 1: Sample article from feed

The __template property is what defines the page module to use for this page's content.

The value directly translates to the module path, i.e. demo/article would resolve to a path

of http://example.com/pages/demo/article/ which would contain the files related to

the page module. This field is optional and default module will be used if it's missing from

the feed.

The data inside the content property doesn't have any mandatory rules. It's completely

up to the creator of the page template to decide what properties the feed should contain.

Though for common text based articles, it's recommended that a common schema is used.

All templates that present the same type of content should follow some common schema.

If the developer follows these recommendations, it's easy to change the template without

requiring any changes to the feed.

3.4.2 Content Feed Creation

The magazine application is agnostic of how the feeds are created, but the concept of the

application includes a general idea for how the feeds should be implemented. The feeds

15

are created using an entirely separate application which this section will briefly cover.

The example content creator features two kinds articles. A custom article and another

that's directly linked to the client's own feed, a regular article. From the end user's point

of view, both article types have only one single common field that is configurable – the

template. Other mandatory fields exist for both types, but they are configurable only in

custom articles. In regular articles these are fileld automatically.

With custom articles, the user can create any kind of feed for the template to use. Usually

custom articles are used for special pages such as cover and alike. Although the user

can enter anything into the feed, the feed should be usable by the page. To ease this,

templates can provide a JSON schema that is used to determine what content the user

can put into the feed for this template. Templates used by custom articles typically require

quite specific content, making it difficult to switch the template of a custom article once

the feed for it is created.

The regular articles are more restricted than custom articles. They are always linked to

external third party content feeds. i.e. if the third party feed changes, the article changes

in the magazine. The contents of the magazine mostly consist of articles of this type.

These articles aren't customizable by the user of the content creator. Before the user can

access these articles in the interface, a feed parser has to be created. The feed parsers

read the client feeds and parse the data into a format suitable for the templates. If the

resulting format follows the guidelines for articles, the end user can now add this article

into magazine using any template that also follows the feed format guidelines. The parser

is solely responsible on the format of the JSON feed for each article generated by it.

Among the articles, the user can also set magazine-wide configurations. The mandatory

configurations are magazine title and a slug that is used in URL to access the magazine.

With these, custom plugins are also enabled in the magazine configurations. Each plugin

has their own configurations. Plugins support similar JSON schemas as custom articles

so forms for configuring the plugins can be generated for each plugin.

16

Once the required configurations are created, the magazine can be published making it

available by knowing either the magazine id or the slug. The slug is a more readable

version for the magazine id for use in readable URLs.

4 Architecture

This section dives into the structure of the application and the tools used to build it. A

single-page application approach was decided for the application so the technical choices

had to be based on that decision.

4.1 Frameworks and Libraries

The amount of Javascript libraries and frameworks today is overwhelming. New libraries

appear almost every day, saturating the market. For this project it was decided that a

modern and proven to work library with sufficient existing userbase should be used instead

of the most cutting-edge library.

The main contestants for the application framework were AngularJS and Backbone.js due

to their wide usage and production stability. Conmio had some experience with using both

of these frameworks. AngularJS and Backbone.js are quite different from each other, both

great at different use cases. The simplicity of Backbone seemed to suit this application

better and the features of AngularJS didn't bring anything useful to the table. Conmio also

has some existing libraries that would be beneficial for this application and those libraries

should work with the chosen framework. These libraries proved too hard to implement

with AngularJS, which eventually caused the Backbone.js to be chosen as the framework

of choice.

17

4.1.1 Javascript Framework

Backbone.js is a lightweight Javascript framework for building MVC applications. MVC is

an architectural design pattern that encourages separation of concerns. Traditional appli-

cations that follow MVC separate the application into three different main parts: models,

views and controllers. Models represent the data of the application. They are often ei-

ther a single object or a collection of objects. Views control the visual representation of

of the models. A model gets attached to a view which displays the model's data to the

user. The view might also be able to change the model data. Controller then works as a

link between the user and the application. It receives input from the user and directs the

messages to appropriate views.

When MVC gets applied to web servers, the user input is limited to the single request that

the server gets. On servers the controller acts between the models and views, attaching

the model to the view once it has the data and then responding to the request with the

rendered view.

Backbone follows the MVC pattern as can be seen on figure 5, but there are some differ-

ences that are common to most single page applications that follow MVC. Backbone has

both models and collections of models to hold the data. It also has views that handle the

presentation of the data inside the models. But Backbone does not include controllers as

a separate entity. Its controller functionality is included in the views. Controller's task is

to take user input, create models and attach models to a view. Backbone utilizes events

for user input. As these events are usually attached to the DOM and the views represent

DOM elements, it makes sense to combine the functionality of views and controllers.

Backbone's main selling point is giving structure to the application. It offers a set of data-

structuring tools like models and collections and some UI features like views and routing.

As Backbone's name implies, it acts only as a backbone of the application. For exam-

ple, the views don't include any DOM manipulation tools. Backbone gives freedom and

flexibility to use the given tools as the user best sees fit. It has dependencies on two

of the most widely used libraries in the web: jQuery and underscore.js. jQuery provides

18

Figure 5: Backbone.js lifecycle

extremely feature-rich set of tools for the most common actions done in web applications

such as navigation within the DOM and Ajax requests. Underscore provides functional

programming helpers mostly for data manipulation with commonly used methods such as

map and filter for array manipulation.

Backbone heavily utilizes events for both user input and communication between views

and models. Backbone has two types of events for these tasks: regular DOM events

and the internal Event API. The DOM events are created through jQuery and follow the

Javascript standars, allowing easy communication between Backbone and other libraries.

The DOM events are also used when the user causes click events or other input events.

Backbone's flexiblity and the ability to give structure to the application without enforcing

any strict rules on how to use it were the main choices why it was chosen for this appli-

cation. As Backbone is fairly unopinionated on how it's used, it's rather simple to use it

along other libraries that have no relation with Backbone. One such library was Conmio's

internally developed library for creating swipeable carousel views. The library does DOM

manipulation on it's own and needs just DOM elements to render. As Backbone's views

are just DOM elements, making them work together proved to be fairly trivial.

Backbone doesn't even enforce the usage of the dependencies it has, so the developer

is free to use other libraries for their own code. For example, the templating method of

underscore.js could be replaced with full fledged templating engine such as Moustache

or Handlebars. [10, 11]

19

4.1.2 Templating Engine

Views are an important element of Javascript applications and they need a way to present

themselves to the user. In a regular web site with minimal Javascript enhancements it's

often enough to keep the HTML markup changes in code. For any larger application that

deals with a lot of views, such as single page application, it's recommended to separate

the HTML markup from the code.

Templating engine libraries allow you to define your templates in HTMLmarkup with some

additional syntax included by the library. That additional syntax consists of methods to

include variables from code to the template. The engine then takes a set of data, often

represented as JSON, alongside the template and compiles them together. The end result

should be usable HTML markup with the variables from template replaced with values

from the supplied data.

Backbone.js includes underscore.js, a Javascript library which one feature is micro tem-

plating. It's simple and well functioning and its functionality doesn't differ that much from

heavier libraries. On the other hand, its feature set includes all functionality of Javascript.

This might sound like a good thing, easing inclusion of any kind of logic in the template

markup and it's likely to work well with small applications. On larger applications, it's of-

ten recommended to use logicless templates. Logicless templates enforce separation of

logic and the template markup, keeping the templates clean. Logicless templates are very

strict on the features accessible by developer in the template markup. They do include

simple helpers such as if and each clauses and support custom helper functions that can

be defined in code elsewhere.

Handlebars is one logicless Javascript templating engine. It's an extension on another

logicless engine Moustache. It's one of the most widely used templating engines along-

side Backbone.js and they are often used together.

1 {{#page}}
2 <h1>{{ article.title }}</h1>
3 <article>

20

4 {{#each article.content }}
5 {{ paragraph this }}
6 {{/each}}
7 </article>
8 {{/page}}

Listing 2: Sample article template using Handlebars

Handlebars syntax uses braces for marking variables and helpers in the template markup.

It includes a variety of often used helpers such as if and each. These are called block

helpers. Block helpers are expressed by a block that has a beginning and end as we

can see on the page and each helpers in listing 2. The context of the variables in block

is changed to the variables given to the block helper. Helpers don't necessarily need to

be in the form of blocks. In listing 2 we find the paragraph helper in the each block. This

helper takes the current value of the above iterator and renders a paragraph from it. Logic

can be introduced into the templates with custom helpers. Custom helpers are defined in

code outside of the template, by using the Handlebars API method registerHelper.

In listing 2 we have two custom helpers. The block helper page and regular helper para-

graph. The page helper is used to mark the contents of the block as a single page in the

magazine. If multiples of this block is in template, the article would span multiple pages.

This could be wrapped in a each block to dynamically determine the amount of pages.

The paragraph helper takes a single value from the content array, determines the type of

it and outputs HTML depending on the content type. These helpers present functionality

that is used by all articles. The functionality is fully abstracted from the templates, making

the creation of templates only a matter of building the markup.

4.1.3 CSS Preprocessors

CSS preprocesssors are a powerful way to extend the capabilities of CSS. Sass and Less

are two examples of such tools. Conmio has so far used Less as the CSS preprocesssor

of choice. For this project Sass was chosen to test its capabilities.

Sass is both a scripting language and a CSS preprocessor. It's a language that extends

21

CSS and provides new methods such as nested rules, variables and mixins. It provides

two different syntaxes for the scripting, older and newer one. The older one is called SASS

and differs by quite a lot from regular CSS, using indentation and whitespace instead

of braces. The newer syntax on the other hand, is fully compatible with regular CSS,

meaning that all valid CSS is valid syntax for Sass. Thismore recent syntax is called SCSS

for Sassy CSS. Neither SASS nor SCSS are valid CSS thus they require compilation to

valid CSS.[12]

4.2 Module Loading

A good practice in any larger application is to modularize the code. In modular code,

the application's functionality is split up in multiple decoupled modules, sub-programs

someone might say. Every module should handle their own dependencies. This allows

easier maintainability for the application and allows developer to easily see how changes

to one part of the application affect another

Unfortunately, neither Javascript nor Backbone bring means to handle the loading of such

modules. Javascript has design patterns such as module pattern and object literal pat-

tern to help code modularization. Due to the nature of Javascript, each of module exists

in the global namespace, leading to possible naming collisions. Javascript wasn't initially

designed to work in a modular way like this. These patterns also don't supply methods

to handle dependencies between modules, leaving every module reliant on the global

namespace and making dependency management difficult. This is a fine method to mod-

ularize smaller scale web applications with limited amounts of Javascript.

For larger scale Javascript applications like single page applications, this way of modu-

larization is not adequate for application maintainability. For these kinds of applications

tools and libraries have been created to help the cause. Most popular ones are AMD

(asynchronous module definitions) and Common.js. Module loaders use various meth-

ods like injections of HTML script tags to make browser initiate file load. Some module

loaders don't support dynamic loading at all and only offer tools to bundle the files during

22

deployment. [13]

4.2.1 Specification

AMD (asynchronous module definitions) is a format to help handle the loading of modu-

lar Javascript code asynchronously in the browser. AMD is only a specification for this

method of module loading and doesn't include an implementation of it. AMD comes from

wanting to ease the dependency handling of Javascript applications. As the name im-

plies, it's also able to handle the dependencies asynchronously during runtime, leading

to the application being able to determine dependencies during runtime. [14]

The AMD api specifies a single method called define. This method is used to define a

module that can be loaded. As all modules are encapsulated within this method, single

file can have multiple modules. The method takes up to three arguments: module id and

dependencies which are both optional, and the factory which is a function that should be

executed to instantiante the module. The factory function should export the module value.

The dependencies of a module are typically just file paths that point to the file that holds

the module.

Another method in the AMD specification is require. It is used to load the defined mod-

ules. This method takes just two arguments: the dependencies to load and a function

to call once the dependencies are loaded. Typically this method is only used at top-level

to bootstrap the application but it can also be used inside modules to dynamically load

dependencies by getting the module name from a variable.[15]

1 define(
2 'myModule ',
3 ['modules/foo', 'modules/bar'],
4 function(foo, bar) {
5 var myModule = {
6 helloWorld: function() {
7 return 'Hello world ';
8 }
9 };

10

23

11 return myModule;
12 }
13);
14
15 require(
16 ['myModule '],
17 function(myModule) {
18 console.log(myModule.helloWorld());
19 }
20);

Listing 3: AMD module example

The listing 3 shows an example program that has one one module created with the define

call. This module has two external modules that are located in files module/foo.js and

module/bar.js relative to this file. The module exports a simple object that has one method

available. The listing also shows the require call which loads the module that is defined

above and calls the method exported by the module.

4.2.2 Library

Require.js is a Javascript library that implements the AMD API specifications. It's opti-

mized for browser usage but has versions that function in other environments such as

Node. Require.js injects the dependencies as script tags into the DOM, leaving browser

to handle the file loading. With this, it also supports Javascript files that do not conform

to the AMD format. Therefore it is trivial to use Javascript files that weren't created to be

used with module loaders. This is one essential feature of Require.js for this project, as

the application requires usage of libraries that weren't created with module loading tools

in mind. [16]

Although Require.js is able to handle the dependencies asynchronously as per the AMD

specification, it also includes an optimization tool for prepackaging the code. This tool

creates the dependency tree for the application outside the browser and then collects

the dependencies, packaging them into a single file. Loading multiple separate files in

browser is fairly expensive task and can lead to increased load times. The optimizer elim-

inates these issues by producing a single file that contains all of the dependencies. Even

24

if the optimizer is used, the application can have dependencies fetched asynchronously

during runtime. By using variables in the dependency path, the optimizer is unable to

optimize it, leaving the dependency to be loaded during runtime. [17]

4.3 Structure

The core of the application is split up to three different Backbone views: magazine, article

and pages. Along these there are the magazine and article models and a collection for

article models. All of these are created by using the Backbone.js components, wrapping

each file as AMD to be used with Require.js. Figure 6 presents the general structure and

the relationships between the different classes of the application. This section goes into

more depth on some of these classes.

Figure 6: Class diagram of the application structure.

25

4.3.1 Router

The router is a regular Backbone router. The router's task is to direct the application to

the correct view based on the URL inputted by the user. This application has only one

view to render, so the router is rather simple. Only two routes are available and they both

direct the user to the same view. The first route is an URL with just the id of the magazine,

directing the application to render the first page of the magazine. The second route should

hold a page number or other identication for a particular page in the magazine. The router

directs the view to display this page first.

4.3.2 Models

The application holds two models in it. These are the ArticleModel and MagazineModel.

The models don't contain any custom logic and they mainly act as container for the data

fetched from the magazine and article APIs. The models are responsible of fetching the

data from the correct URL, given the resource id.

The MagazineModel holds information about the name of the magazine, along with a

global configuration for the magazine. MagazineModel also includes ArticleCollection that

contains all ArticleModels that belong to this magazine. The ArticleCollection is fetched

separately and inserted into the MagazineModel once the magazine has been found.

Articles, within the context of this application, are any kind of content that can be presented

as one or more pages. The cover page of the magazine counts as a single article, as do

regular text articles. ArticleModels present the articles of the magazine. A magazine has

multiple articles, which are contained in the ArticleCollection. The API resource endpoint

for articles is expected to return a list of articles. When the collection is populated, each

of these articles in the list gets inserted into a new ArticleModel in the collection. Each

ArticleModel holds the data that should be displayed on the pages. Usually this is at least

page title, one or more images and text content. The content's vary for each article and

26

it's the job of the view to find the correct data from the model. Every ArticleModel is also

configured to hold the information on which page module should be used to render the

article as pages.

4.3.3 MagazineView

MagazineView is the core and the main view of the application. It is what the Router will

initialize once it has determined that the URL is in acceptable format. The MagazineView

has quite many tasks to perform. It's mainly responsible for creating and populating the

data models of the application and feeding the data to ArticleView before presenting the

content to the user. MagazineView also creates and controls the carousel, displaying it to

the user when the pages are ready.

The MagazineView also works as an event aggregator of the application. It is the glue

between the carousel and PageViews, listening to various events from the carousel and

forwading them to the related PageView.

4.3.4 ArticleView

ArticleView is the second most important view of the application. A new ArticleView is

created for each ArticleModel in ArticleCollection. The ArticleView doesn't act as a regular

view as it doesn't actually have anything to display on it's own. Instead it acts as a parent

and container for PageViews. Its task is to find the page module resources related to an

article and load those. It then has to create the PageView and return that view back to

the MagazineView.

27

4.3.5 PageView

The PageView is a simple Backbone.js view and the only view in this application that has

dynamically created content. By default it only renders given HTML into actual DOM ele-

ments. The default PageView is quite barebones as this view is designed to be extended

to implement custom articles.

For a simple news story without any kind of interactivity, the default PageView with cus-

tom template will likely be enough. The alternative is to create a custom PageView that

extends the default. Custom PageView's use is to add and implement interactivity on the

page. The extended view can make use of events such as ones that trigger when user

enters the page or leaves the page. Custom events can also be added for sending forms

and pressing buttons on the page. Any user interaction that is possible in browsers can

be defined as events here.

The PageViews exist as separate entities from the core application. Other than the default

one, the PageViews aren't in the application dependency tree as they are loaded dynam-

ically during runtime. Each PageView is a separate bundle that contains files required for

the template to function and display properly. Usually these files are the view, template

and stylesheet.

4.3.6 Carousel Library

Carousel is Conmio's internally developed library for building carousel views. Carousel

in this case is a set of different elements where only one is visible at a time. The other

elements are on the left and right side of the visible element, accessible through user

interaction.

It's developed mainly with mobile devices in mind so it fits this application rather well as

it is. Most of the application was built around the Carousel library, instead of making the

28

Carousel work with the application. The Carousel is able to create full screen carousels,

which act as the main interface for the user. All other code mostly acts as means to

create a DOM element for the carousel to render as a page. Navigation between pages

is handled by the Carousel library.

The Carousel is managed by the MagazineView, which creates the Carousel and adds

the pages to it. You could think of the Carousel as an extension to the MagazineView.

Carousel library also has built in events for communication between the Carousel and

other views of the application.

4.4 Flow of Control

This section looks into how the application works. Rendering the magazine is the core

workflow of the application and the location of most of the logic of the application. The

next subsection looks into how the magazines get rendered to the user. Figure 7 shows

this same flow as a sequence diagram.

4.4.1 Magazine Rendering

When the MagazineView gets initialized, its first task is to populate the MagazineModel

and ArticleCollection from the server API. The correct resources are identified by the mag-

azine id from the browser URL. The server will respond with JSON data that is used to

populate the models. Once the application has the data and the models are populated,

MagazineView will initialize the Carousel. The Carousel requires HTML elements to ren-

der as pages of the carousel. This task is delegated to the ArticleView. Each ArticleModel

within the ArticleCollection will get its own ArticleView.

The ArticleView gets ArticleModel from the parent MagazineView. The model holds in-

formation of the name of the page module that should be used to render this article as

29

Figure 7: Sequence diagram of the magazine rendering flow.

pages. The name of the page module is used to determine the path to load the module

files from. The files have standard names such as `view.js` and `styles.css`, so the view

can easily determine which resources to load. All files are optional and default ones will

be used if custom ones are not loaded.

Once the ArticleView has the page module files, it can compile the template through Han-

dlebars with data from the ArticleModel. The template will determine how many pages

the article will be presented as. For each page in the template, Handlebars will return

the page compiled as HTML string. This string is then given to the PageView which will

create HTML element of the string and attach itself to the element. The ArticleView can

hold as many PageViews as the template has pages.

30

Once all pages of the ArticleView are rendered, the view will notify MagazineView that the

PageViews are ready. MagazineView then retrieves the PageViews and sets each as a

new element in the Carousel. The MagazineView continues this, rendering all articles as

pages.

The browser URL contains the page index parameter, which tells which page of the mag-

azine should be displayed first. Once the MagazineView reaches this page index while

adding the pages to the Carousel, it will immediately display the page to the user. Until

now the user has been looking at a splash screen so it's important to get the actual content

visible as soon as possible.

Once all pages are rendered, the user can begin interacting with the magazine by chang-

ing the pages. From hereon all actions on the application are events based on user input,

whether it's user clicking a button or changing a page.

5 Platform

This chapter takes a look at the features that make the application easily customizable and

able to function as a platform for multiple different magazines that both look and behave

differently.

5.1 Modularization

The application was designed to be easily customizable and extensible. To achieve this,

a majority of the application was designed as separate decoupled modules that are not

included in the core application. These modules can be split into two different types which

are pages and plugins.

The idea of modules is to keep the core application file size as small as possible. All

31

modules are loaded dynamically during runtime. Which modules get loaded, depends on

the magazine and article configurations. A single magazine isn't likely to have more than

two or three page modules and plugin modules. The dynamic loading of modules does

bring some additional overhead to the application startup. The alternative would be to

include all page and plugin modules within the core bundle but this would result into a

large amount of unnecessary code for a single magazine. The dynamic loading makes

the application quite flexible, as the core can be cached almost indefinitely and different

magazines can utilize the same core.

During the build, modules are optimized in the same way as the main application, except

they are each their own package separate from the main application. All modules have

their own dependencies and can introduce new third party libraries to the package.

5.1.1 Pages

Pages are modules that are attached to articles. Generally the pages consist of three

different files: Backbone view, Handlebars template and Sass stylesheet.

Pages take the most benefits for modularization. A single magazine isn't likely to have

more than a few different page modules. Most of the time this is either two or three

templates. But with multiple different magazines, all having different templates, the need

for multiple page modules increases sharply. At this point it isn't feasible to bundle these

in the main application. If these were all bundled with the core application, the file would

include quite many useless pages for the current magazine leading to unnecessarily long

load times.

Listing 4 shows an example Backbone view for the custom page. This view has two

dependencies: the default page view and Facebook API library. The default page view

is used as the basis for the custom view. The custom view extends the default view,

gaining all methods and properties of the default view. The most important one is the list

of events. The parent view attaches method calls to various existing events, such as the

32

`onPageChange` in the above example. The Facebook API library is a third party library

that's installed separately, but the dependency can be loaded in the same way as our own

modules.

1 define(['views/page', 'vendor/facebook '],
2 function(DefaultPage , FB) {
3 var CustomPage = DefaultPage.extend({
4 // Extend parent view events with custom event
5 'events ': _.extend({
6 'click .facebook -share ': 'onFacebookShare '
7 }, DefaultPage.prototype.events),
8
9 // Cache elements after template is rendered

10 afterRender: function () {
11 this.$header = this.$('.header ');
12 },
13
14 // Trigger animation when user enters page
15 onPageChange: function () {
16 this.$header.addClass('play-animation ');
17 },
18
19 // Share current page to facebook
20 onFacebookShare: function() {
21 FB.ui({
22 method: 'share',
23 url: window.location.href
24 })
25 }
26 }, {
27 handlebarsHelpers: {
28
29 }
30 });
31
32 return CustomPage;
33 }
34);

Listing 4: Simple page view

The task of the Backbone view is to introduce interactivity to the page. Most of the time this

is achieved by attaching the view to various global events of the magazine or customDOM

events attached to the elements on the page. The magazine offers a wide range of useful

events for pages to use such as: `pageLeave`, `pageEnter` and `magazineReady`. For

example, the `pageEnter` could be used to trigger animations when the user navigates to

the page, avoiding animations running in the background. An example of this can be seen

33

in listing 4. These events are automatically attached to a function with a predefined name,

in case of the example, the `onPageChange`. The developer doesn't need to explicitly

define these events as they are always available. The DOM events have to be defined in

the `events` property of the view. They can be attached to any element on the page. The

code in listing 4 attaches a click event on an element with class `facebook-share`. When

the button is clicked, we trigger a Facebook sharing popup. The events are a simple yet

powerful way to introduce interaction to the page.

Another important feature of the view is to introduce logic to the template. As Handlebars

is a logicless templating engine, we need a place where to define this logic. Handlebars

features helpers, which are custom functions that can be used inside the template. The

view object has a special property `handlebarsHelpers` where the developer can define

custom helpers that will be made available in the template. These helpers will only be

available in the template attached to this view, although some global ones are available.

One of these is the `page` block helper. This one is used to mark multiple pages in simple

template. It's required on the template on every page.

Pagemodules also usually include theHandlebars template that defines the HTMLmarkup

of the view. A Sass file can also be included. By using Require.js plugins, these differ-

ent files can even be included in the dependency tree leading to just a single file as the

module output.

5.1.2 Plugins

Initially the application had designs for various additional UI elements such as page indi-

cators that float above the page at the top. These features didn't fit some magazines so

they had to be made optional. The preference was to keep the core of the application as

lean and uncluttered as possible, meaning that it wouldn't have any optional features in

the main application. The optional features should be loaded separately as sometimes

they could even introduce third party libraries.

34

Plugins are modules which can affect entire magazine instead of just single pages. The

magazine feed includes a section for a list of plugins. Each listed plugin gets loaded during

the application startup with user defined configurations from the feed.

Generally, the plugins are allowed to do anything to the magazine. At its simplest, a plugin

can be just a new UI element that floats above the page view. Plugins can also affect the

entire flow of the magazine. They can have access to the order of the pages in magazine

and manipulate it. For example, a plugin for advertisements could inject new full page

advertisements to the magazine at certain page change intervals. Plugins can also be

used to block certain devices such as desktop or mobile from accessing the magazine at

all.

5.2 Continuous Integration

As we have previously determined, the entire application consists only of static files. This

makes the requirements for deploying the application to production rather relaxed.

Some years ago the deployment of static websites didn't require much concern. Every-

thing was written to be browser compatible from the beginning and the files could be up-

loaded to the server by using FTP. But as the browsers themselves have improved, the

applications have grown larger and more complex. Tools such as Require.js and Sass

have been developed to ease the development of web applications. But on the downside

these tools often require a step of preprocessing before the application can be deployed

to the server for browser usage.

To help handle these preprocessing tasks, task runners and build systems were made.

They are able to do the preprocessing tasks that the most common tools and libraries re-

quire. They help with tasks such as running file preprocessors, optimizing files for browser

and running unit tests. One of the latest and potent task runners available is Gulp.js

35

5.2.1 Build System

Gulp.js is a streaming build system, made for automating development tasks. Gulp is

written on Node.js which is a server side platform for Javascript. Therefore Gulp also

uses Javascript to write the build tasks. Gulp uses streams to handle files. The tasks

take a stream of files and run that stream through various plugins that manipulate the files

inside the stream. At the end of the stream pipeline the output gets written as a file to a

chosen directory.

1 var gulp = require('gulp');
2 var concat = require('gulp-concat ')
3 var uglify = require('gulp-uglify ')
4
5 // Concatenate all javascript files to single file
6 gulp.task('compile', function() {
7 return gulp.src('src/**/*.js')
8 .pipe(concat({ fileName: 'script.js' })
9 .pipe(uglify())

10 .pipe(gulp.dest('build '));
11 });

Listing 5: Gulp.js task example

Listing 5 presents a simple task for pulling all Javascript files from a directory and con-

catenating those into a single file to the build directory. For manipulating the streams

Gulp requires plugins. In the same example the gulp-concat plugin is used. This plugin

takes multiple files from the stream and outputs them as a single file back into the stream.

Another one sampled is the gulp-uglify plugin which is used to optimize the file size of the

scripts. These plugins are installed from npm, the node package manager. While custom

plugins can be created to execute any possible task, the registry already holds plugins for

the most common use cases and libraries.

Another very popular task runner is Grunt.js. All tasks can be done with either task runner

and the choice between these task runners comes down to personal preference. The

biggest difference between these two is that Gulp prefers code over configuration, which

leads to simpler and more flexible tasks. The choice of Gulp over Grunt for this project

was merely the will to try something new. [18]

36

5.2.2 Build Tasks

The application makes heavy use of Gulp to run various different tasks to optimize the

application for production usage. These tasks can be split up to three main groups based

on the file type: HTML, Sass and Javascript.

HTML optimization includes minifying the main HTML file of the application. Minification

in this case removes all unnecessary whitespace and new lines from the file. The other

job of the HTML task is to precompile the Handlebars templates. Handlebars precompi-

lation creates Javascript files of the from the Handlebars markup removing the need to

compile these during runtime. This reduces the time required to render the templates to

the browser when using the application.

Sass compilation is the simplest of the tasks, but it's also the most important in the sense

that the application is unusable without running this task. While the other tasks just opti-

mize files, the Sass syntax is unusable by the browser as is. The Sass files have to be

compiled through the Sass compiler which is an external Ruby application. To ease the

stylesheet development, an additional watcher task exists that watches the Sass files for

changes and automatically executes the compilation task, refreshing the browser when it

finishes.

The Javascript optimization task acts as a wrapper for the RequireJS optimizer. All it does

is get the Javascript file that bootstraps the application and run the optimizer with that file.

RequireJS doesn't play well with Gulp as it was not intended to be used with streams.

Therefore we can only supply the path to the file where the optimizer should start. The

RequireJS optimizer will then build the dependency tree from that file and combine the

files into a single file with all required code. Javascript files are also optimized to have the

smallest possible file size.

37

5.2.3 Optimization

Javascript optimization doesn't just remove whitespace. It can also parse through the

code and optimize code structures to smaller counterparts. Often variable names are

renamed to single letter names while making sure that the code is still able to run.

These optimizations have no effect on how fast the code runs. They only reduce the

size of the produced file. On websites intended for mobile devices, small file sizes are

important to lessen the time to load the site on slower networks. Bundling multiple files

into a single file might seem to contradict with making files as small as possible. But in

fact establishing multiple connections to load multiple files is even more expensive task

for the browser to execute.

The ability of RequireJS to load files dynamically during runtime makes it possible for the

application to work without optimizing Javascript files. This makes the development fast

as the developer doesn't have to wait for the optimizer to run while developing. It also

makes it easy to see the benefits of optimization as presented in table 1.

Table 1: Comparison of application file sizes

Type Javascript CSS Handlebars Total
Unoptimized 1014KB 76.1KB 19.9KB 1.2MB
Optimized 127KB 7.6KB 0KB 256KB

5.2.4 Deployment

Since the application is all static files and the build and optimization tasks are already

included, the deployment is simple. To serve static files from a server only a simple HTTP

server is required. It doesn't need to support PHP, Java, Node.js or any other server

application. Content Delivery Networks (CDN) are a great way to serve static sites and

applications. CDNs consist of servers distributed over large areas, often globally. They

serve only static content such as text and images so the servers area cheap to deploy

globally. The main benefit of them is allowing the client to choose the geographically

38

closest server to load the content from. Due to their high-availability and -performance

they are used to deliver a large fraction of internet content these days. [19]

Before the application can be deployed to a CDN it has to be built. The build tasks for

deployment are the same ones that are used during development and are bundled with

the application code. After running the deployment tasks, the deployer only has to pick

the produced files from the correct location and push them to the CDN. All of this could

be done manually but a continuous integration (CI) server to automate the above process

is recommended.

6 Results

The aim of this project was to create a web application for consuming existing digital

content in a magazine format on mobile devices. The resulting application fulfilled the

requirements and was a functional proof of concept. For now, the application is likely to

be used as a demo application for the sales team of the company.

The biggest hurdles of the development and the end result was the lack of performance on

web usage on all but the highest end of mobile devices. Faster development time, easy

distribution and high availability are among the biggest benefits of developing web appli-

cations. Unfortunately the lack of performance on lower end devices diminishes these

benefits, making native applications more suitable for such animation heavy applications

in the current scheme of things.

During the end of the development, new libraries and frameworks have risen, the most

promising one being React.js. Building the application from the ground using the more

recent utilities could have potentially brought great performance improvements for the

application. For a wide range production usage, a revisit of the used technologies and

libraries could be beneficial. The web is also moving forward at a great speed and the per-

formance issues could be resolved by just waiting for better hardware and more efficient

browsers.

39

During the end of the proof of concept application's development, work began on native

application prototypes. The native applications were developed for both iOS and Android.

They were able to utilize the exact same content feeds as the web application, making

same magazines available for all platforms. The native applications were much more

efficient than the web counterpart. They weren't, however, able to quite reach the levels

of flexibility, customization and ease of development of new templates. A possible middle

ground would be a hybrid application, handling all animations natively yet using web views

for rendering the templates. Therefore it remains to be seen which is the most suitable

platform for this application.

7 Summary

The purpose of this thesis was to document the technical and architectural choices be-

hind an application to build and read digital magazines. This application would be both a

prototype and a demo application for the sales of Conmio Oy.

The first chapters looked into existing applications, such as Flipboard and Yahoo News

Digest, that acted as inspiration for this application. The chapters also took a look at

the application concept and design decisions that shaped the later technical choices and

created the root for the application. Once the concepts and requirements were clear, the

following chapters looked into the technical choices and how those libraries and tools were

used to construct the application. The technical choices also helped to shape the concept

of the application further. The application was developed with proven to work Javascript

libraries such as RequireJS, Backbone.js and Handlebars. The technical choices like Re-

quireJS encouraged to build the application in a modular way, making it able to function

as a platform for different kinds of digital magazines. The ease of development was also

a very important part of the application development. Build system Gulp.js was used to

make tasks to ease the development and optimize the application for production usage.

Eventually these tasks would be used when deploying the application on a server. The

results concluded with thoughts on continuing the future development as a native appli-

cation.

40

References

1 Silva DS. The Future of Digital Magazine Publishing; 2012. [Online]. Available
from:
http://elpub.scix.net/data/works/att/109_elpub2012.content.pdf
[Accesssed 1.4.2015].

2 MacManus R. How Flipboard Was Created & its Plans Beyond iPad; 2010.
[Online]. Available from: http://readwrite.com/2010/10/06/how_
flipboard_was_created_its_plans_beyond_ipad [Accesssed 1.4.2015].

3 Newton C. Yahoo's sleek News Digest app swims against the stream; 2014.
[Online]. Available from:
http://www.theverge.com/2014/1/7/5284300/yahoos-sleek-news-
digest-app-swims-against-the-stream [Accesssed 1.4.2015].

4 Insights N. Web Apps vs. Native Apps: Fight… Fight… Fight!; 2014. [Online].
Available from: https://medium.com/netxtra-insights/web-apps-vs-
native-apps-fight-fight-fight-c43e55b31649 [Accesssed 1.3.2015].

5 Marohnic V. Would push notifications for HTML5 apps kill native apps?; 2013.
[Online]. Available from: http://thenextweb.com/dd/2013/02/09/would-
push-notifications-for-html5-apps-kill-native-apps/ [Accesssed
1.3.2015].

6 Puplus DF. Rise of the SPA; 2013. [Online]. Available from:
https://medium.com/@dpup/rise-of-the-spa-fb44da86dc1f [Accesssed
1.3.2015].

7 Wroblewski L. Mobile First; 2009. [Online]. Available from:
http://www.lukew.com/ff/entry.asp?933 [Accesssed 1.3.2015].

8 Mobile First. Zurb Foundation;. [Online]. Available from:
http://zurb.com/word/mobile-first [Accesssed 1.2.2015].

9 Introducing JSON;. [Online]. Available from: http://json.org/ [Accesssed
1.3.2015].

10 Osmani A. Developing Backbone.js Applications. O'Reilly Media; 2013.

11 Backbone.js; 2014. [Online]. Available from: http://backbonejs.org/
[Accesssed 1.3.2015].

12 Sass; 2014. [Online]. Available from: https://github.com/sass/sass
[Accesssed 1.3.2015].

41

13 Osmani A. Writing Modular Javascript with AMD, CommonJS & ES Harmony;
2012. [Online]. Available from:
http://addyosmani.com/writing-modular-js/ [Accesssed 1.4.2015].

14 Why AMD?;. [Online]. Available from:
http://requirejs.org/docs/whyamd.html [Accesssed 1.4.2015].

15 AMD;. [Online]. Available from:
https://github.com/amdjs/amdjs-api/blob/master/AMD.md [Accesssed
1.4.2015].

16 RequireJS; 2015. [Online]. Available from:
https://github.com/jrburke/requirejs [Accesssed 1.4.2015].

17 RequireJS Optimizer; 2014. [Online]. Available from:
http://requirejs.org/docs/optimization.html [Accesssed 1.3.2015].

18 Gulp.js – The Streaming Build System; 2014. [Online]. Available from:
http://slides.com/contra/gulp#/ [Accesssed 1.2.2015].

19 Support R. What is a CDN?; 2015. [Online]. Available from:
http://www.rackspace.com/knowledge_center/article/what-is-a-cdn
[Accesssed 1.4.2015].

