

Michael Mstoi

Business Application Development In Azure

Cloud Service Introduction

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

25 April 2015

 Abstract

Author(s)
Title

Number of Pages
Date

Michael Mstoi
Business Application Development In Azure

52 pages
25 April 2015

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor(s)

Olli Hämäläinen, Senior Lecturer

The goal of this project was to study and develop an e-commerce web application with
Microsoft’s newest technology called ASP.NET. The development was done with Microsoft
tools like Visual Studio 2013 and C# language. However, to develop the application, an
entirely new approach was taken. Development environment and all development tools
were deployed to Microsoft’s Cloud Service called Azure. The main purpose of this project
was to show that nowadays it is possible to develop and maintain business applications in
Cloud Service. This approach opens new business opportunities for many small and medi-
um-sized companies.

There are many companies in Finland and all over the world, which demand better organi-
zation and administration of their business intelligence data. Fluent communication, effec-
tive maintenance and sharing of various documents and other business objects of a com-
pany have become very critical aspects of a business nowadays.

During the implementation of the thesis work, the following technologies were learned and
introduced: Microsoft Azure Cloud Service, Windows Server 2012, Microsoft SQL Server
2012, Microsoft IIS 8.0, Visual Studio 2013 and Microsoft Team Foundation Server. Then
all those technologies were installed and integrated into the Microsoft Azure Cloud Ser-
vice. After that an ASP.NET MVC sample application was developed and tested with Visu-
al Studio 2013. Finally the developed application was deployed into a production environ-
ment to be accessed and used worldwide.

Keywords Azure, ASP.NET, MVC, CSS, T-SQL, C#, IIS, Cloud Service

Contents

1 Introduction 1

2 Introducing ASP.NET MVC 4 project and ASP.NET platform 2

2.1 Introducing the sample project 2

2.2 Introducing ASP.NET MVC Application Platform 3

3 Microsoft Azure Cloud Service and Subscription 5

3.1 Accessing Microsoft Azure through the Portal 7

3.2 Subscribing Azure and Billing Options 8

3.3 Creating Azure Account for the Project 9

4 Microsoft Server Environment 12

4.1 Introducing Windows Server 2012 12

4.2 Installing Windows Server 2012 R2 in Cloud Service 15

4.3 Introducing IIS 8 19

4.4 Installing IIS 8 on Windows Server 2012 21

4.5 Introducing MS SQL SEVER 2012 25

5 Project Development Environment 29

5.1 Microsoft .NET Framework 30

5.2 Microsoft Visual Studio 33

5.3 Team Foundation Server: Installation and Usage 36

6 Developing the SecondHandStore application 44

6.1 Basic Implementation 44

6.2 Further Development of the Application 50

7 Conclusion 51

References 52

1

1 Introduction

There are many companies in Finland and all over the world, which demand better or-

ganization and administration of their business intelligence data. Fluent communica-

tion, effective maintenance and sharing of various documents and other business ob-

jects of a company have become very critical aspects of a business nowadays.

Microsoft SharePoint has made possible an administration and sharing of up-to-date

documents and other objects of a company. In addition, a new phenomenon called

Cloud Services provides new and better ways to conduct daily business tasks of an

organization.

The aim of this thesis is to learn and combine different new technologies into a suitable

package for an organization’s business intelligence management. During the imple-

mentation of the thesis work, the following technologies will be learned, integrated and

introduced to the reader:

 Microsoft Azure Cloud Service

 Windows Server 2012

 Microsoft SQL SERVER 2012

 Microsoft IIS 8.0

 Visual Studio 2013

 Microsoft Team Foundation Server

 ASP.NET MVC 4 application example

All the above technologies are studied and integrated together and then they will be

installed into Microsoft’s Cloud Service. Three environments will be created: Production

Environment, Development Environment and Test Environment. The Production Envi-

ronment will be installed in the Azure Cloud Service and will include MS IIS 8.0 (which

holds ASP.NET MVC 4 application) and MS SQL Server. The Development Environ-

ment will also be installed in Azure Cloud Service and will include Visual Studio 2013,

MS SQL server, MS Team Foundation Server. The third environment called the Test

Environment will also be created in Azure Cloud Service and will be used for the appli-

cation’s alpha testing and for the other aspects of the project. After successful testing

the project will be swapped into the Production Environment.

2

2 Introducing ASP.NET MVC 4 project and ASP.NET platform

2.1 Introducing the sample project

In this section an example project is introduced. This project is a web application and

supports conducting e-commerce business in the final version. By developing and de-

ploying the application, many tools and domains introduced in the previous chapter will

be studied and integrated into a solidly functioning ensemble or package. The applica-

tion is called SecondHandStore and it is developed by using Microsoft’s ASP.NET

MVC 4 application framework.

The application is developed gradually with tools installed in the virtual machine which

resides in Microsoft Azure Cloud Service. This environment is called the Development

Environment. Altogether there are four versions of the developed application:

1. Basic implementation

2. Adding navigation and chart to basic implementation

3. Creating shopping cart and adding items

4. Administration of the application

The application is developed with the Microsoft Visual Studio 2013 Community edition.

All versions are added to the Microsoft Team Foundation Server (TFS) version control

system. After the development is done and the application is tested, the released ver-

sion will be deployed into another environment called the Production Environment. This

environment also resides in Microsoft Azure cloud service. After deployment the appli-

cation can be viewed and used from any computer in the world by the internet.

The SecondHandStore application contains an online product catalog of different out-

fits. Customers can browse products by page and category. They can add products or

remove products into a shopping cart, then check out by entering their shipping details.

In addition, the administration area of the application enables the administrator of the

application to create, add, remove and read the catalog items.

3

2.2 Introducing ASP.NET MVC Application Platform

ASP.NET MVC was created by Microsoft Corporation. It is a framework for developing

web applications. It combines the effectiveness of Model-View-Controller (MVC) archi-

tecture and best parts of ASP.NET platform. It delivers significant advantages for de-

veloping complex and non-trivial web development projects and is an alternative to

ASP.NET Web Forms. ASP.NET MVC is lightweight framework and is highly testable

with existing ASP.NET features. This framework is a part of .NET platform and can be

found in System.Web.Mvc assembly.

ASP.NET MVC is based on ASP.NET and it allows the developers to build web appli-

cations based on three logic levels: Model, View, and Controller. The Model is the

business level of the application. The View presents the display or user interface of the

web application and the Controller is a layer which controls the application input and

handles the interaction. In addition, the Controller layer also updates the Model in order

to reflect a change in state of application and passes new information to the View. After

accepting new information from the Controller, the View renders user interface to show

updated information.

The phenomenon of Model – View – Controller is not new. It was used in Smalltalk

applications in the late 1970’s. It was conceived in Xerox Corporation to enforce a sep-

aration of concerns, which in other words meant decoupling the domain model and

controller logic from the user interface. The most important part of the MVC application

is the domain model. The domain model is created by identifying the real–world enti-

ties, rules and operations that exist in industry (domain) that the application must sup-

port. After identification the application developers create the domain model which is a

software representation of the domain. In the case of this final year project the domain

model will be created with C# classes, structs (types in C# jargon) etc.

Each request that comes to the application is handled by the Controller. In ASP.NET

MVC framework controllers are .NET classes. There is no business or data storage

logic in the controller. The role of the controller is to encapsulate the application logic. It

processes incoming requests, performs operations on the domain model and selects

views to render to the user.

4

The responsibility of the view is to render a user interface for the application user. The

View of the MVC pattern is implemented through the view engines of ASP.NET MVC

framework. The framework includes two built-in view engines that are full–featured and

well tested. The first one is the legacy ASPX engine which is also known as the Web

Forms view engine. This engine is useful for maintaining compatibility with older MVC

applications. The second one is the Razor engine, which was introduced with the third

version of the MVC. It has a simple and elegant syntax.

Because of the fact that ASP.NET MVC is based on .NET platform, the developer has

flexibility to write code in any .NET language and access some API features of exten-

sive .NET class library and huge ecosystem of third-party .NET libraries. Master pages,

form authentication, membership, profiles, roles, and internationalization are ready-

made ASP.NET platform futures. Those features can reduce the amount of code need-

ed to develop and maintain a web application [1].

Next, Microsoft Azure Cloud Service will be introduced. The actual development of

MVC application will be shown in the chapter 6 of this final year project.

5

3 Microsoft Azure Cloud Service and Subscription

It is very common that today’s business enterprises heavily rely on a datacenter. The

enterprise’s datacenter has a very pivotal role in conducting daily business tasks suc-

cessfully. The datacenter of the enterprise is created and maintained by the enter-

prise’s own Information Systems manager or some other accordant key role.

In order to create an on-premises datacenter, the system manager has to purchase

and install the hardware, obtain and install an operating system and the required appli-

cations, configure the network and firewall and set up the storage for data. After the

installation and configuration tasks have been done the responsibility for maintaining

the datacenter through the lifecycle begins. The purchase and installation of this kind of

datacenter comes with a huge impact on capital costs of the enterprise, which explains

why new technology called Cloud Computing was emerged to provide alternative solu-

tions to an on-premises datacenter.

Microsoft Azure is a public cloud. Cloud Computing provides a modern alternative for

on-premises datacenters. The responsibility for maintaining hardware and software lies

completely on the public cloud vendor, which provides a wide variety of platform ser-

vices for different kind of enterprises. The enterprise leases the needed hardware and

software services on as-needed bases. Cloud Computing also makes possible for the

enterprise to lease such hardware or software which otherwise is too expensive to pur-

chase. The payment for cloud services usually are billed to enterprises based on used

time.

The subscribed user usually manages the provided cloud services through the portal.

For example, in order to create a new virtual machine, the user configures the compu-

ting node size, the CPU, the size of storage, the operating system, network configura-

tion and other parameters through the provided cloud portal. After that, the created and

configured virtual machine is ready for usage within a very short time, contrary to creat-

ing a virtual machine on on-premises hardware, which could take more than a week to

install, configure and use.

Besides the public cloud, there are two other kinds of clouds available – private cloud

and hybrid cloud. In the case of a private cloud, the enterprise purchases hardware and

6

creates its own cloud environment for its employees. The hybrid cloud on the other

hand, integrates public and private clouds. For example, the enterprise may deploy and

host a website on the public cloud but link it to a high-secure database which resides in

the private cloud.

Microsoft Azure is deployed onto 19 datacenters across the globe. It makes possible

for startups to start with very low cost and scale to rapidly gain customers. Azure is

also very flexible to set up development and testing configurations, test new software

versions without installing them on the hardware. For example the user may quickly

install Windows Server 2012 R2 on cloud and test its existing application on this new

platform without any complicated consequences [2].

Microsoft Azure provides the following services: Compute Services, Data Services,

Application Services and Network Services. More information about Azure services is

found in Table 1.

Table 1. Services provided by Microsoft Azure

Compute Services Includes Azure Cloud Services, Azure

Virtual Machines, Azure Websites and

Azure Mobile Services

Data Services Includes Microsoft Azure Storage, Azure

SQL Database and Redis Cache

Application Services Includes services, which helps the user to

build and operate his/her own applica-

tions, such as Azure Active Directory,

Service Bus, Azure Scheduler, Azure Me-

dia Services and so on.

Network Services Includes Azure features, such as Virtual

Networks, Azure Traffic Manager.

For this final year project Compute and Data services were used. Next, the portal for

accessing Azure cloud service will be introduced.

7

3.1 Accessing Microsoft Azure through the Portal

In order to manage and use services provided by Microsoft Azure, an online portal is

used. The online portal is used to create and manage virtual machines, web pages,

storage places and other services. Currently only two versions of portals are available

for Microsoft Azure. The first version is called Azure Management Portal. The second

portal is called Azure Preview Portal and is accessed through https://portal.azure.com

page. Both portals have a completely different look and feel. In this document we will

focus on Azure Management Portal.

Azure Management Portal is accessed through https://manage.windowsazure.com.

The user may see all of the resources being used in the subscription. See Figure 1 for

an example.

Figure 1. All Items created by the user in Azure Management Portal.

As may be seen in Figure 1, all available items of the current subscription are shown

on the left side of the screen. Besides looking at all items in one list, the user has pos-

sibility to select specific items by their resource type, for example virtual machines and

mobile services. In Figure 2, the user has selected Virtual Machines and the list of all

created virtual machines and their status is shown on the screen.

https://portal.azure.com/
https://manage.windowsazure.com/

8

Figure 2. Created virtual machines and their status.

After selecting and clicking a specific virtual machine from the list of virtual machines,

the Dashboard for the selected virtual machine will be opened. The menu options and

Dashboard are not the same for all resource types. They change depending on the

type of the resource. For example, menu options for a website contain different sets of

tools which are not relevant to virtual machines. Figure 3 shows an example of availa-

ble commands for virtual machine resources.

Figure 3. Available commands for virtual machine resource type.

As one can see from Figure 3, the dashboard of a virtual machine shows all possible

operations available for selected virtual machine.

3.2 Subscribing Azure and Billing Options

In order to use services provided by Microsoft Azure a subscription is needed. The user

must have a Microsoft account or a work or school account to access the subscriptions.

The most common subscriptions are found in Table 2.

9

Table 2. Showing the most common subscriptions of Microsoft Azure.

Free Trial Gives the user $150 credit and a month to

try any combination of available resources

in Azure. At the end of trial the services

will be suspended and will no longer work.

It is possible to upgrade the subscription

to pay-as-you-go subscription to any time.

MSDN Subscription If the user has MSDN subscription, he/she

get specific amount of credit for every

month.

BizSpark account BizSpark program provides benefits for

startups and the user gets $150 credit

every month for each of those five MSDN

accounts included in BizSpark program.

Pay-as-you-go The user attaches a credit or debit card to

this subscription and pays for what he/she

uses.

Enterprise agreement This subscription demands that the enter-

prise is committed to use a certain amount

of services in Azure and payment is done

ahead of time.

Table 2 shows that a user can create Free Trial subscription and later may easily up-

date it to Pay-as-you-go or to another subscription.

3.3 Creating Azure Account for the Project

For this project, Azure Free Trial account is used. In order to create and access Mi-

crosoft Azure, Microsoft account is needed. I had no previous Microsoft account, so I

created one. My Microsoft account’s username is michaems@outlook.com. After in-

serting all required information and credit card number, the account was created and

ready for the use. One may see the account creation summary in Figure 3.

mailto:michaems@outlook.com

10

Figure 3. Microsoft Azure Free Trial account creation summary.

As may be seen in Figure 3, a free trial gives the user to use the Azure Cloud services

for 30 days and with $150 credit amount. After the trial expiration, the user may extend

the usage explicitly by allowing Microsoft to charge from the user’s credit card.

As soon as the Azure Account is created, the user may sign in from http://login.live.com

address. Figure 4 shows the interface for signing in.

Figure 4. Interface for signing in Microsoft Azure services.

http://login.live.com/

11

By providing a username and password, the user signs in and may create and config-

ure the required objects and services. See Figure 5.

Figure 5. Microsoft Azure is signed in. No services created yet

Next, the Microsoft Server environment will be introduced. In that section, I will present

key properties of Microsoft Windows Server 2012. A new virtual machine will be creat-

ed for the final production environment. The operating system Microsoft Server 2012

will be installed and set up to the newly created virtual machine. Later this server will

be used to host the developed ASP.NET application’s final version. This will enable the

users of that application to access it from anywhere in the world and use its provided

operations.

12

4 Microsoft Server Environment

4.1 Introducing Windows Server 2012

Before going any further, let us define what a server is. A server is a computer pro-

gram, running on operating system, which is capable to accept request from other ap-

plications and give a corresponding response. The other application may reside in the

same computer or it may be running on another hardware (or computer), which resides

anywhere in the world. The application sending request to the server application is

called client application.

Both client and server applications operate within a client-server architecture. In order

to create a connection between client and server applications, the TCP/IP protocol is

used. TCP stands for Transmission Control Protocol and IP stands for Internet Proto-

col. In addition, in order to identify the request from the client and respond to it correct-

ly, the server application runs on the background and continuously acts as a socket

listener [3].

There are many server application types. In order to distribute and share different kind

of resources to the users, the following server applications have been created and be-

ing used during the computing era:

 Web Server

 Database Server

 Mail Server

 Print Server

 Game Server

 Application Server

Hardware requirements for hosting server applications are different than for example

hardware requirements for general desktop computers or computers for other purpose.

Usually to implement a server environment, the speed of CPU is not a critical factor.

Rather, many operating systems and applications used in server environment do not

provide graphical user interface, which reduces the use of CPU resources.

13

Because of the fact that server computers are connected through the network, it is not

mandatory that the computer, hosting the server environment, to have a monitor or to

provide audio or USB interfaces. Rather, it is very critical that the server’s hardware is

able to provide fast network connections and high input / output throughout. Also, be-

cause the servers run for long periods without interruption, high availability of the serv-

er is a very important and critical factor.

Because servers are running for long periods without shutdown, they have more fans

to prevent the hardware from overheating. In addition, the noise of server hardware

and the fact that servers need stable power supply, good internet access and good

security, often they are stored in dedicated server centers. The server casings are

mostly flat and wide and are capable to store many devices next to each other in the

server rack. Operating systems used in server environment usually are administered by

system administrators and they are fine-tuned for stability and performance rather than

for user-friendliness and ease of use.

In the market there are many vendors who provide Server Operating Systems. Some of

those operating systems may be acquired free of charge based on the public GNU

agreement, while others may cause a significant impact on the enterprise’s investing

costs. One may see five major server operating systems and their descriptions in Table

3.

Table 3. Five major server operating systems of the prevailing market.

Mac OS X server This is Apple’s UNIX server operating sys-

tem. At its core it shares many compo-

nents with FreeBSD. Mac OS X Server

has the same architecture as Mac OS X

operating system and includes additional

services, applications, and administration

tools for managing and deploying servers.

Microsoft Windows Server 2012 R2 Released By Microsoft company in Octo-

ber 2013. This is the sixth release of Win-

dows Server family of operating systems.

This product includes graphical user inter-

face, but the user also has an option only

14

to install “Server Core”.

Linux Operating System The Server edition of Ubuntu Linux is free.

This is very good choice for small compa-

nies, that want to minimize up-front costs

but get professional support and service if

needed.

FreeBSD This operating system is derived from BSD

and is UNIX version. It is very useful for

high performance network applications

and is easy to use.

Solaris This operating system is created by Sun

Microsystems. It is mainly used by com-

pany’s own 64 bit workstations and serv-

ers, which are based on AMD Opteron and

Intel Xeon processors. Solaris also runs

on systems manufactured by IBM, Intel,

Dell etc.

Windows Server 2012 R2 was released in October 2013 by Microsoft Corporation. This

was the sixth Server Operating System of Microsoft’s server family. There are four

Windows Server 2012 R2 editions: Standard edition, Datacenter edition, Foundation

edition and Essentials edition. The Standard edition is a very popular choice; it is fea-

ture rich and handles all general network needs. It provides only two virtualized in-

stances. The Standard edition can be stripped down to its core for more security and

better performance. The Datacenter edition is best used in highly virtualized environ-

ments and provides unlimited virtual instances. This is a very important and rich feature

which is why this edition costs four times more than the Standard edition.

The Foundation edition includes most core features of found in above mentioned edi-

tions, but it has some significant limitations, for example, the maximum number of us-

ers is 15, the maximum number of Routing and Remote Access connections is 30, the

maximum number of Internet Authentication Service is 10, only one CPU socket is al-

lowed, it cannot host virtual machines, and some other limitations. The Essentials edi-

tion is used by very small enterprises with fewer than 25 users and fewer than 51 de-

vices. This edition is very cost-effective to provide small-business networking. It in-

15

cludes the following features: Improved client deployment, allows to be installed as

virtual machine, improved file history, System Restore, BranchCache and some other

features.

4.2 Installing Windows Server 2012 R2 in Cloud Service

In order to install Windows Server 2012 R2 for the Production environment in the Azure

Cloud, the first virtual machine shall be created. To create a new virtual machine, the

user logs in the Azure Cloud Service and selects “Virtual Machines” option on the left

pane of the user interface. Then the user presses the “New” button on the dashboard.

A new window is opened, and the user selects the “Virtual Machine - > From Gallery”

option. See Figure 6.

Figure 6. Creating new Virtual Machine in Azure Cloud Service.

After pressing the “From Gallery” option, another window is opened, and the user gets

options to choose the desired operating system and/or configuration. In our case, we

can select the first choice, which is Windows Server 2012 R2 Datacenter. However,

Microsoft SQL Server 2012 is used for our Production Environment. In “Choose an

Image” window, there is an option called SQL Server 2012 SP2 Enterprise.

16

Bellow the text of this option, the user may also see “Windows Server 2012 R2”. This

means that by selecting this option, Azure Cloud Service will create virtual machine,

install Windows Server 2012 R2 Datacenter edition on it and then in addition Microsoft

SQL Server 2012 SP2 Enterprise edition will be installed on newly created Windows

Server 2012 R2. So for our case we select this option and press “Next”. See Figure 7.

Figure 7. Selecting the appropriate operating system image from the list of available

images.

After pressing “Next”, the user enters the Virtual Machine’s name, new username and

password for new user. In our case as the name for the virtual machine was selected

“ProductionEnv” and new user name was entered as “michaems”.

The next to deal with is configuration of virtual machine. Cloud service DNS name was

entered to be “ProdMichaems.cloudup.net”. All other options were left to default, and

after pressing “Final” button, the creation of virtual machine with appropriate operating

system and MS SQL Server 2012 R2 started. See Figure 8.

17

Figure 8. Creating “ProductionEnv” virtual machine with appropriate operating system.

The created virtual machine and cloud service holding Windows Server 2012 R2 is

seen in Figure 9.

Figure 9. The created virtual machine and cloud service holding Windows Server 2012

R2.

18

After the creation was done, the new virtual machine was connected by a remote desk-

top connection. See Figure 10.

Figure 10. “ProductionEnv” Windows Server 2012 R2 connected through remote desk-

top connection.

During the installation process of Windows Server 2012 R2, also MS SQL Server 2012

R2 was installed. One may see the interface of it in Figure 11.

Figure 11. The user interface of newly created MS SQL Server 2012 R2.

19

Next IIS 8 will be introduced and configured for the user.

4.3 Introducing IIS 8

The Microsoft Internet Information Server (IIS) application has been existed for a long

time, more than 15 years. Since the first release, it has been evolved all the time, from

being a simple HTTP basic service provider to a fully functional and configurable appli-

cation services platform. Currently it is fully integrated into Microsoft’s client and server

operating systems.

The first version of IIS was released with Windows NT 3.51. That time it was only a set

of services providing functionalities such as HTTP, WAIS and Gopher. This release did

not gain much popularity; most users preferred the third-party vendor’s products, for

example, Netscape’s server. The second version of IIS came with the version Windows

NT 4. Significant improvement of this version was close integration with Windows NT

operating system. It took advantage of Windows security accounts and provided inte-

grated administration through a management console. Microsoft Index Server began its

existence with this second release of IIS. This service made it possible to introduce a

web browser interface for management and context indexing.

IIS 3 came into existence with Windows NT Service pack 3. Microsoft’s concept called

Active Server Pages (ASP) was introduced with this version of IIS. Nowadays ASP is

referenced as Classic ASP to be distinguished from currently wildly known and used

ASP.NET. Classic ASP was a server-side scripting environment, which gave users a

possibility to create dynamic web pages. Using VBScript or JScript, programmers got a

very strong competitor to the Common Gateway Interface (CGI) and to other third-party

scripting technologies.

Classic ASP was refined further into version 2.0 with the appearance of IIS 4. This ver-

sion of ASP provided an object-oriented functionality and had six built-in objects to pro-

vide standardized functionality in ASP pages. After the forth version of IIS, it was not

any more possible to download and install IIS outside the Windows operating system.

With the release of Windows 2000 IIS 5.0 was introduced, and with release of Windows

XP came IIS 5.1. Those two versions of IIS were almost identical with only slight differ-

ences. The most significant difference of the IIS 5.0 with previous versions was full

20

integration with the operating system. It became a service of the Windows operating

system, meaning it became the base for other applications, especially for ASP applica-

tions. IIS now had a functionality to serve either static content (ISAPI) functions or ASP

scripts. It used ASP file extensions to determine application and hand off the scripts

directly to script engine, thus bypassing the static content handler. This architecture

endured in all forthcoming versions.

IIS 6.0 no longer was installed by default, as it shipped with Windows Server 2003.

Even after installation it served only HTML static pages by default. This minimized se-

curity holes of the operating system. Administrators and programmers could restrict

account access and had to explicitly enable ASP and ASP.NET. Kerberos authentica-

tion allowed secure communication within an Active Directory domain and solved many

remote permission issues.

In IIS 6.0 request processing was changed. IIS 6.0 used the HTTP.sys listener to ac-

cept the requests and then delegate them to worker processes. These workers were

isolated in application pools, which made it possible to restrict the consequences of

possible process failures within the pools. The separate memory pool created by an

administrator for separate applications prevented a faulty application from crashing

other applications outside its memory pool. This feature made it possible for the overall

system stability to stay intact.

IIS 7.0 was fully rewritten from the base code of previous versions. It became the pro-

grammer’s dream because of many significant new features. ASP.NET platform was

fully integrated, and configuration was transferred into XML files. Also request tracking,

diagnostics and new administration tools were welcomed by programmers and admin-

istrators. The modular structure of IIS 7.0 and IIS 7.5 allowed an easy implementation

and installation of modules with custom functionality. A new unified IIS Manager com-

bined all management functions of IIS and ASP.NET functions in one location. Mi-

crosoft’s PowerShell was fully integrated to IIS 7.0 and Request Tracing could be con-

figured at the server, site, or application level [4].

Currently the newest version of IIS is 8.0. This version is not a radical change from IIS

7.5, but due to some changes it embraces cloud and newest storage architectures. IIS

8.0 functions now integrate well also with non-Microsoft technologies, going towards

open web environment. IIS 8.0 is fully integrated application environment. New IIS

21

Configuration Editor allows the administrator to change every configurable feature via

the user interface, C# and JavaScript. PowerShell is becoming the default scripting

language for administrators and allows to script IIS configuration in PowerShell.

4.4 Installing IIS 8 on Windows Server 2012

The installation of IIS 8 on Windows Server 2012 is done via Server Manager. With the

basic installation the server is able to serve a static content. It is very common, that the

user gets IIS 8 preinstalled with the MS Server operating system from the vendor. Later

the user adds required features to existing installation. To perform default IIS 8 installa-

tion, the user opens the Server Manager in MS Server 2012 and from the dashboard

selects Add Roles and Features option. See Figure 12.

Figure 12. Installing IIS 8 from “Add roles and features” option.

An installation wizard is opened and the user selects, in this case, the role-based or

future-based option. See Figure 13.

22

Figure 13. Selecting the “Role Based or Future Based” installation.

The next step is to select the Web Server (IIS) option and finalize the installation. See

Figure 14 and 15.

Figure 14. Selecting Web Server (IIS) for installation.

23

Figure 15. The installation wizard finalizing IIS 8.0 basic installation.

The installed Internet Information Manager with a basic set of installation looks as in

Figure 16.

Figure 16. Internet Information Manager with basic installation.

24

To test the installed IIS 8 the following site is accessed: http://localhost/iisstart.htm from

the browser. The result is shown in Figure 17, which indicates that IIS 8.0 basic instal-

lation was successful.

Figure 17. IIS 8.0 test interface showing IIS Windows Server as successfully installed

and started.

http://localhost/iisstart.htm

25

4.5 Introducing MS SQL SEVER 2012

The first version of Microsoft SQL Server was released in 1989 for OS/2 operating sys-

tem. The release was a result product of collaboration of three corporations: Microsoft,

Sybase and Ashton Tate. Nowadays Microsoft Corporation fully owns this software

product line. Microsoft SQL Server is a relational database management system

(RDMS). It is database software, whose primary task is to save and retrieve data re-

quested by other software applications. Those applications may reside in the same

computer or alternatively the request may come from the software running in computer

which resides in another corner of the globe.

There are five editions of MS SQL Server 2012. One may see the descriptions of those

editions in Table 4.

Table 4. MS SQL Server 2012 editions.

Edition Description

Standard Standard edition Includes basic data man-

agement and Business Intelligence capa-

bilities. It suits the needs of relatively

smaller organization.

Business Intelligence Business Intelligence edition allows an

organization to build, deploy and manage

high scalability solutions. The edition is

new in the SQL Server family. Its main

focus is on delivering Business Intelli-

gence–focused solutions.

Enterprise Enterprise edition is the premium edition of

SQL Server. It contains all available func-

tions found in other editions, and provides

a comprehensive data center solution.

Developer Developer edition is identical to Enterprise

Edition, but its main purpose is to deliver

license for developing and testing solu-

26

tions. It can be easily updated to Enter-

prise Edition if needed.

Express Express Edition is free and its main pur-

pose is to deliver entry–level product. This

edition is ideal for learning and developing

small–scale applications.

Very often MS SQL Server 2012 as a product is divided roughly into two distinct cate-

gories: Database Engine and Business Intelligence (BI). Altogether, the product con-

tains several components. Those components are Business Intelligence, Database

Engine, T-SQL Programming Interface, Security Subsystem, Replication, SQL Server

Agent, SQL Server Integration Services, and SQL Server Management Tools.

Business Intelligence of MS SQL Server is a mechanism or tool, whose primary task is

to transform raw data into knowledge which can be used to make more informed and

intelligent business decisions. For example, a company selling daily consumable stuff

could use its data to identify sales trends and from that analysis the company could

decide to focus sales efforts on a particular region or area, thus making more profit.

The Database Engine is the core component of MS SQL SERVER 2012. It operates as

a service on the hardware and is often referred to as an instance of the SQL Server. In

order to get data from the SQL Server, the application needs to connect to the Data-

base Engine. After a connection is established, the client application will send T-SQL

statements to the instance (or database engine). The instance in return will send data

back to the client application. Security layer resides within the established connection

and validates access to data as specified by security policy [5].

The storage component of the Database Engine takes care of storing data on the disk.

It physically organizes tables, indexes and other related structures on a computer’s

disk subsystem. The storage component also referred to as Storage Engine is a core

component within Database Engine.

In order to retrieve data, SQL Server provides a rich programming language called

Transact-SQL or T-SQL. The language is implemented in the T-SQL Programming

Interface component, which resides in the Database Engine. Using T-SQL, a user may

27

write data manipulation queries that enable the user to modify or access the data on

demand. T-SQL also makes possible to write queries for creating database objects

such as tables, views, indexes, stored procedures triggers and user-defined functions.

.NET based programming languages such as C# or Visual Basic.NET can also send

commands from client applications to Database Engine. T-SQL language has several

enhancements in MS SQL Server 2012. Such enhancements are for example windows

functions, error handling and a simpler form of paging.

The Security Subsystem of SQL SERVER 2012 is very robust and allows a user to

control access via two modes of authentication: Windows and SQL. An administrator

may configure SQL Server on multiple levels. The access can be controlled to a partic-

ular instance of SQL Server, to a specific database, to objects of that database or even

to columns within a particular table.

Native and Transparent Data Encryption allow the administrator of the database to en-

crypt an entire database without affecting how clients access the data. In SQL SERV-

ER 2012 it is also possible to create users within the database without requiring creat-

ing server login known as contained databases. This option was not available in the

previous versions of SQL Server. An administrator was required to create a server log-

in prior to granting access on the database level.

Replication (or Replication Component of the Database Engine) allows distributing data

locally or to different locations, using the File Transfer Protocol, over the internet and to

mobile users. It can be configured to merge data, pull data, and push data across wide

area networks or local area networks. Snapshot replication is the simplest type of repli-

cation. It periodically takes a snapshot of the data and distributes it to subscribed serv-

ers. This kind of replication is used for moving data at longer intervals, for example

nightly.

Another type of replication, called transactional replication is used if users demand

higher throughout. Instead of snapshot distribution, transactional replication sends the

data as soon as change happens. In transactional replication, server-to-server topology

is used. Usually in this topology one server is the source of data and the other one is

used for backup copy or for reporting [6].

28

The primary task of the SQL Server Agent is to execute scheduled tasks, for example,

loading the data warehouse, backing up databases or rebuilding indexes. This compo-

nent runs on a separate service. Each instance of SQL Server has a corresponding

SQL Agent service. SQL Agent can be configured to send alerts or notifications when

the executed job succeeds, fails or completes.

Another component residing in Database Engine is called SQL Server Integration Ser-

vices (SSIS). This platform makes possible of creating high-performance frameworks

for extraction, transformation and loading (ETL) of data warehouses. Using SSIS, the

user may quickly import or export data to various sources such as Oracle, text file, Ex-

cel and so on.

To monitor, manage, maintain and develop SQL Server environment, a graphical user

interface is included in SQL SERVER 2012. It is called SQL Server Management Stu-

dio (SSMS). SSMS allows the user to perform different actions against an instance of

SQL Server. It is an integrated environment which includes a broad set of tools that

simplify and the process of developing and configuring SQL Server instances [6]. One

may see SSMS interface in Figure 18.

Figure 18. User interface of SQL Server Management Studio.

29

5 Project Development Environment

To develop the ASP.NET application, an appropriate development environment was

needed. The development environment for the project of this final year thesis was se-

lected to run on Microsoft Azure Cloud service on a separate virtual machine. Windows

Server 2012 R2 was selected as an operating system which hosted Microsoft .NET

platform, development tool Microsoft Visual Studio 2013, Microsoft SQL Server 2012

R2, and a version controlling tool called Microsoft Team Foundation Server (TFS).

The creation of a new virtual machine for development environment was similar to the

one previously created in section 4.2, which is why the process will not be repeated in

this section. During the creation of new virtual machine for development named “De-

velopmentEnv”, an image with Visual Studio 2013 was selected, which installed also

Microsoft Visual Studio 2013 on Windows Server 2012 operating system. See Figure

19.

Figure 19. Creation of “DevelopmentEnv” virtual machine with Visual Studio 2013 de-

velopment tool.

After a new virtual machine had been created and connected, Visual Studio 2013 was

executed and was ready for creating new applications. See Figure 20.

30

Figure 20. Visual Studio 2013 Community Edition on newly created virtual machine.

The next section will describe a software platform, which was used for the development

of the application of the final year project.

5.1 Microsoft .NET Framework

The development of .NET framework began by Microsoft Corporation in late 1990’s. It

is a software platform that runs on Microsoft Windows. It provides Language Interoper-

ability, which in other words means that programming languages supporting .NET

framework can use the code written by other programming languages supporting the

.NET framework. Another significant issue concerning .NET is that it provides a very

large class library, which is called Framework Class Library (FCL). FCL provides nu-

meric algorithms, network communications, web application development, user inter-

face, data access, database connectivity and cryptography.

Applications created on .NET framework are executed by an application virtual ma-

chine which provides memory management, security, application hosting, execution

and threads handling and some other services. This virtual machine is called Common

Language Runtime (CLR). So CLR and FCL together constitute the core of .NET Soft-

ware Framework.

Common Type System or CTS for short is another building block of .NET Framework.

The role of CTS specification is to fully describe all possible programming constructs

and data types supported by the runtime. It also details how they are represented in

.NET metadata format and how those entities shall interact with each other. Another

31

specification, called Common Language Specification (CLS), defines common types

and programming constructs that all .NET programming languages shall agree on.

.NET programming languages are also called managed languages.

With the installation of Microsoft Visual Studio development tool, the user gets options

for using following managed languages: C#, Visual Basic.NET, JScript.NET C++/CLI,

and F#.

.NET-aware compiler creates a *.dll or *.exe binary files from the source code of the

programmer. The created binary file (.dll or .exe) is termed as assembly. The assembly

contains CIL (Common Intermediate Language) code. CIL is similar to Java bytecode

in that it is not compiled to platform-specific instructions. The created assembly also

includes metadata, which vividly describes in detail the characteristics of every entity

(or type) resided in the binary. To describe the assembly itself, the assembly includes

another metadata called manifest. The manifest of the assembly contains a list of ref-

erenced external assemblies needed to properly execute the code, version information

of the assembly and culture information.

CIL or Common Intermediate Language provides language integration. Each .NET –

aware compiler creates nearly identical CIL instructions. Before running the code, a CIL

code needs to be compiled on the fly. That is why an entity called JIT compiler is used

to compile CIL code into meaningful CPU instructions. Thus programmers can write a

code that can be efficiently compiled with the JIT compiler and executed on hardware

with a different architecture. Once CIL instructions are compiled into platform-specific

code, they are retained in the memory for later use after the first call. Next time a func-

tion is called there is no need to compile the CIL code again.

Every developer understands the importance of code libraries. Libraries like MFC, Java

EE, and ATL among others enable developers to leverage their code with well-defined

set of existing code. However C# or other .NET – aware programming languages do

not provide language – specific code library. Rather developers are using .NET –

aware languages to leverage .NET libraries, which are language – neutral. That is why

.NET uses extensively namespace concept, in order to keep all the types within the

base class libraries well organized.

32

A namespace is a group of related types, found in the assembly. For example, Sys-

tem.Data namespace contains basic database types; mscorelib.dll assembly contains

many namespaces, such as System.IO, System.Collections, and System.Diagnostics.

Let us take a small example for demonstrating assembly, namespace and type con-

cept. Most developers have used the console application of Windows operating sys-

tem. In order to use the windows console from the developed C# or Visual Basic.NET

application, the .NET framework provides Console class (or type in .NET jargon).

To write some text to console, the developer calls for example WriteLine() method of

Console type: Console.WriteLine(“Hello from C#”). The Console type resides in System

namespace. System namespace on the other hand resides in mscorelib.dll assembly.

So in order to use the Console type, the developer includes System namespace into

source code by means of “using” keyword: “using System;” This action makes sure that

crated executable has a link to mscorelib.dll assembly in its metadata, and mscore-

lib.dll assembly is loaded into memory during application execution [7].

.NET platform is considered platform–independent. Thus .NET assemblies may be

used to develop and deploy applications on non-Microsoft platforms, such as Solaris,

Mac OS X, Linux, and so on. The reader may see the names and the explanations of

some namespaces of .NET Framework in Table 5.

Table 5. Some namespaces of Microsoft .NET Framework.

System The namespace contains types for

mathematical computations, environ-

ment variables, garbage collection, ran-

dom number generation, and so on.

System.Collections The namespace allows the developer to

create customized collections. It con-

tains base types, interfaces and con-

tainer types.

System.IO

System.IO.Ports

The namespaces are used for port ma-

nipulation, file I/O, compression of data,

and so on.

System.Windows.Forms The namespace contains .NET Frame-

33

work’s original user interface toolkit.

Types defined in this namespace are

used to create Windows desktop appli-

cations.

System.Web The namespace allows the developer to

create ASP.NET web applications.

System.Threading

System.Threading.Tasks

The namespaces are used for multi-

threaded applications, which are able to

distribute workloads to multiple CPUs.

System.Data

System.Data.Common

System.Data.SqlClient

The namespaces are used to interact

with relational databases using

ADO.NET.

Microsoft.CSharp

Microsoft.ManagementConsole

Microsoft.Win32

The namespaces are called Microsoft

root namespaces. They contain types

that are used to interact with services

unique to the Windows operating sys-

tem.

Microsoft .NET platform and its namespaces are used by different application devel-

opment tools which are provided by numerous vendors in the market. Next, a devel-

opment tool used in this final year project will be introduced.

5.2 Microsoft Visual Studio

Microsoft Visual Studio is an IDE for developing .NET based applications running on

Microsoft Windows operating system. Other types of applications created by Visual

Studio are Web applications and Web Services. IDE means Integrated Development

Environment. It is possible to create .NET application using freely available .NET SDK

and notepad editor. But developers working for industrial enterprises seldom create

applications in that way. Instead they use Microsoft Visual Studio for application devel-

opment and get many advantages to create, test and deploy their applications to end

users much faster.

MS Visual Studio can produce both managed code and unmanaged code. Intrinsically

it does not support any programming language or tool, but instead it allows plugging

codded functionality. The plugged functionality usually is codded and packed into

VSPackage. After installation the functionality is available as a service. After installing

34

Visual Studio, the following built-in languages are available for immediate use:

VB.NET, C#, F#, C, C++, and C++/CLI. It supports also other languages, provided that

language-specific service exists. Via language services installed separately, Visual

Studio supports M, XML/XSLT, HTML, CSS, Python, and Ruby languages.

Visual Studio integrates various Microsoft platforms to produce different types of appli-

cations. Those platforms are Windows API, Windows Forms, Windows Store, Windows

Presentation Foundation (WPF) and Microsoft Silverlight. As for the features Visual

Studio provides following: Code Editor, Debugger, Windows Forms Designer, Web

Designer, Class and Data Designers, Object Browser, Solution Explorer, Data Explor-

er, Properties Editor and other features [8].

Visual Studio 2013 Community edition was used in this Final Year Project. This edition

was launched in November 2014 and is going to take over traditional Visual Studio

Express edition. Express editions in previous versions of Microsoft Visual Studio were

free and were allowed to be used for commercial applications. But Express versions

had many limitations and did not provide many features of other editions. In contrast of

Express edition, Visual Studio 2013 Community edition has no any limitation for appli-

cation development and is allowed to be used for commercial and non-commercial ap-

plication development. It is intended for small-size enterprises with a maximum of five

application developers. One may see other editions of Microsoft Visual Studio 2013 in

Table 6.

35

Table 6. Microsoft Visual Studio 2013 editions.

Ultimate 2013 with MSDN Reliably captures and reproduces bugs

found during manual and exploratory test-

ing to eliminate "no repro" bugs. Performs

unlimited web performance and load test-

ing. Collects and analyses runtime diag-

nostic data from production systems. In-

cludes all remaining features in other edi-

tions.

Premium 2013 with MSDN Improves code quality with a peer code

review workflow within Visual Studio. Au-

tomates user interface tests to validate

application UI. Finds and manages dupli-

cate code in the code base to improve the

application architecture. Determines how

much code is being tested with code cov-

erage analysis.

Test Professional 2013 with MSDN Organizes and defines test plans with test

case management and exploratory testing.

Provisions and manages virtual lab envi-

ronments for testing with consistent con-

figurations.

Professional 2013 with MSDN Gets access to Microsoft platforms and

tools past and present, with new releases

added all the time, including Visual Studio.

Includes also capabilities of Online Editi-

on.

Visual Studio Online Professional 2013 Works in the same IDE to create solutions

for the web, desktop, cloud, server, and

phone. Hosts team projects only in the

cloud.

36

5.3 Team Foundation Server: Installation and Usage

Developing an application is not an easy task. An essential factor to successfully de-

velop the software is how the development team members communicate with each

other, as well as with people who have a significant stake in the software being devel-

oped.

Team Foundation Server is a tightly integrated environment which provides a core col-

laboration functionality for software development teams. The core collaboration func-

tionality includes the following components: Version Control, Project Management, WIT

(Work Item Tracking), Test Case Management, Build Automation, Reporting and Feed-

back Management. Thus, different engineering teams, such as developers, testers,

architects, business analysts, project managers and other groups contributing to the

software being developed use Team Foundation Server to collaborate and communi-

cate accurately.

The Team Foundation Server is made up of two tiers. Those tiers can be physically

deployed across one or several computing nodes. The first tier is called Application

Tier. This tier consists of a set of web services. The client computer communicates with

this tier by using web service-based protocol. The tier also includes web access site for

interacting with the server without using Visual Studio as a client.

Second tier is called Data Tier. This tier is made up of a Microsoft SQL Server data-

base, which contains the database logic for the Team Foundation Server application as

well as the data for Team Foundation Server instance [9].

The Express edition of Team Foundation Server provides Version Control, Work Item

Tracking and Build Automation. This set of functionality is fully enough for this Final

Year Project. Express edition is perfect start for small teams up to five developers. Mi-

crosoft also provides 90-day trial edition which includes all missing functionalities of

Express edition. After trial period is over, it is possible to apply the license product key

to activate full functionality of TFS. Trial edition can be downloaded and installed from

http://aka.ms/TFS2013Downloads site. For this Final Year Project the Express edition

is downloaded and installed from https://www.visualstudio.com/downloads/download-

visual-studio-vs#d-team-foundation-server-express site.

http://aka.ms/TFS2013Downloads
https://www.visualstudio.com/downloads/download-visual-studio-vs#d-team-foundation-server-express
https://www.visualstudio.com/downloads/download-visual-studio-vs#d-team-foundation-server-express

37

Setting up the Team Foundation Server is roughly divided into two distinct phases: In-

stallation phase and configuration phase. The installation phase finalizes copying the

components onto the hardware. During the configuration phase the administrator of

Team Foundation Server decides which SQL Server instance to use, which accounts to

use for permissions, which optional components to use and other similar options. Fig-

ure 21 shows the installation wizard of Team Foundation Server 2013 Express edition.

Installation package was downloaded into Development Environment virtual machine

(which hosts already Windows Server 2012 R2 operating system and Visual Studio

2013 Community edition).

After the required components have been copied onto hardware, the configuration wiz-

ard starts, may be seen in Figure 22. The configuration wizard provides a guided way

of picking the best configuration options for the Team Foundation Server. In our case

the configuration wizard installed Microsoft SQL Server 2012 Express edition into the

Development Environment.

Figure 21. Wizard for Installing Team Foundation Server 2013 Express edition.

38

Figure 22. Configuration Center of Team Foundation Server 2013 Express edition.

During the configuration wizard, the user may observe how the configuration progress

evolves forward. See Figure 23.

Figure 23. Configuration of different components of Team Foundation Server 2013 Ex-

press edition.

39

Finally, when all the components are configured, the user will be informed about the

results. In our case, configuration progressed smoothly, as can be seen in Figure 24.

Figure 24. Final wizard shows the configuration results of Team Foundation Server

2013 Express edition.

Before saving any source code and using source control for further application devel-

opment, a team project must be created. A team project is the basic container of the

work used by TFS (Team Foundation Server). The Team project is created through

Team Explorer, which is part of Visual Studio 2013. From Team Explorer the Connect

icon is pressed and TFS running on local host is selected. See Figure 25.

40

Figure 25. Connecting Team Foundation Server from Visual Studio’s Team Explorer.

After selecting DefaultCollection and pressing the Connect button, Team Foundation

Server will be connected, and the user can create Team Project. It is created by select-

ing File -> Team Project from the menu of Visual Studio 2013. The Wizard is opened

and the user enters name and description for new Team Project. All other options are

leaved by default. See Figure 26.

Figure 26. Create new Team Project from File->Team Project from the menu of Visual

Studio 2013.

41

As soon as the new team project is created, it may be seen in the source control ex-

plorer by selecting the Source Control Explorer option in the Team Explorer. See Fig-

ure 27.

Figure 27. Newly created Team Project in Source Control Explorer.

Finally, Team Foundation Server may be configured to be connected from any com-

puter in the world, and it can be given a friendly DNS name for easier connection from

users across the world. In our case, there is no need to be connected from the outside

of the development environment, thus no friendly DNS shall be given to the installed

TFS. Finally some version control concepts will be explained. Version control is the

single most important tool used during development of software. That is why it is a big

advantage to understand the purpose, core concepts and benefits of version control

before using it for the production.

There are many names used for version control. For example, revision control, source

control and SCM (Software Configuration Management) are used to refer to the same

set of functionality. Generally speaking, version control provides following capabilities:

a) a place to store source code, images, build scripts, and other artifacts related to

software product, b) the ability to track the history of those files, and c) mechanisms to

work in parallel with team of software developers. If one of the developers makes mis-

take during source code editing or accidentally deletes some files, a version control

42

system lets the developer to roll back time and get back the state before editing or ac-

cidentally removing important files.

There are 10 core concepts of version control system: Repository, Working Copy,

Working Folder Mappings, Get, Add, Check-Out, ChangeSet, Check-In, Branching and

Merging, and History.

The Repository of the version control system is a place where the source code of the

software is saved. It is represented as a tree of files, similar to regular directory struc-

tures. However, the repository of the version control system is able to track the chang-

es of those files, which makes it possible to know the state of any file at any given time.

The Team Foundation Server saves the initial version of the file, and then stores the

changes between each version for subsequent changes.

Before making changes to the existing version of software, the developer downloads

the source code from the repository of the version control system to its local computer.

This copy of the software is called a working copy. This local version or a working copy

is also known as workspace in Team Foundation Sever. It can also be called a sand-

box. After editing the code and making the changes to the working copy, the developer

commits it to repository, and thus other developers can access to new version of soft-

ware. Using a working copy makes it possible for developers to work in parallel.

A Working Folder Mapping is the link between working copy of source code in local

system of the developer and the place in repository, where all files are stored. Once the

working folder mapping has been set up, the developer must download the files from

repository to its local machine (or local system). In Team Foundation Server this pro-

cess is known as Get. In some other version control systems, for instance in SVN, this

process is called check-out.

As the developers begin to develop the software, there is no file in the repository. That

is why they need to Add created files to repository. They select which files and folders

to take from the local machine and add to repository, so those may be shared to the

rest of the development team. Naturally there is no need to share all files of the project.

For example, compiled binaries derived from the source code usually are not shared.

Team Foundation Server provides tools to developers for selecting files to add to re-

pository.

43

Check-Out means a slightly different thing in other version control systems. For exam-

ple in SVN Check-Out is the same as Get (download files to local machine) in Team

Foundation Server. In Team Foundation Server check-out means that developer is

currently working on working copy and a notification is sent through TFS to other de-

velopers. However, in latest version of TFS, there is no need for developer to explicitly

check-out files in order to work on therm. This new mode of TFS is called Local Work-

space. With Local Workspace the developer can edit any downloaded file immediately.

As files are checked out and edited, the developer needs to apply generated changes

back to repository. The set of changes to be applied is called ChangeSet. The Chang-

eSet contains all the changes to be done with the files. As soon as the ChangeSet is

applied, the process is called Check-In in Team Foundation Server. In some other ver-

sion control systems Check-in is called Commit. In TFS Check-in is performed as a

single atomic transaction. This means, that if for some reason Check-in is not applica-

ble, the whole ChangeSet is rolled back. In TFS it is also possible to provide some ad-

ditional data with Check-in, for example comments about changes and so on.

Branching and Merging is a process, which makes possible for different development

teams to work in parallel without interfering with other teams. A branch is a set of files

in different part of the repository. Every team may work on its own branch. In some

point in the future, however, there will be need to combine all sets of the code into one

set. This process is called merging. Branching and merging strategy adaptation must

be approached with care, as there are many different strategies to conduct the pro-

cess.

A version control system works as file system, that stores all the changes made to it.

However it adds also an extra layer or dimension called History. The version control

system can tell everything what happened to particular file or folder over time. This

feature makes version control system to be useful for application development and

provides capabilities to know what code actually was shipped to particular customer at

any given time. It also makes it possible to get back in time and understand which kind

of changes the particular file or folder has been undergone, who has worked on the file,

which kind of changes he/she has done and why. Team Foundation Sever provides for

all of this history functionality. In addition it also makes easy to see what changes oc-

curred to a file before it had been renamed.

44

6 Developing the SecondHandStore application

The SecondHandStore application will follow a classic approach taken by any online

store in the world. The application is going to be a solid and realistic and demonstrate

best practices. Using the MVC pattern provides the developer with maintainable, ex-

tensible and well-structured code. An online product catalog will be created so that cus-

tomers can browse by category and page. Also shopping cart and checkout option will

be added, where customers can add or remove products, and enter their shipping de-

tails. Finally administration area will be created, which includes create, read, update,

and delete facilities for managing the catalog.

6.1 Basic Implementation

In order to create the first version of the application, a blank solution is created in Visu-

al Studio 2013. It is named “SecondHandStore”. A Visual Studio solution is a container

for one or more projects. Two projects are added to that blank solution. First project will

contain the application’s domain model and is named “SecondHandStore.Domain”. The

second project will contain the application’s MVC model and is named “SecondHand-

Store.WebUI”. See Figure 28.

.

Figure 28. SecondHandStore application’s projects in Visual Studio’s Solution Explorer.

Since this is an e-commerce application, the most obvious domain entity is a product. A

new folder called Entities is created in the domain project and a C# class called Prod-

uct is added. See Listing 1.

45

Namespace SecondHandStore.Domain.Entities

{

public class Product

 {

public int ProductID { get; set; }

public string Name { get; set; }

public string Description { get; set; }

public decimal Price { get; set; }

public string Category { get; set; }

}

}

Listing 1. The C# code of Product class.

Product information will be saved in the database. In order to get product information

from the database, a new folder called Abstract is created and IProductsRepository is

added to that folder. See Listing 2.

using System.Linq;

using SecondHandStore.Domain.Entities;

namespace SecondHandStore.Domain.Abstract

{

public interface IProductRepository

 {

IQueryable<Product> Products { get; }

}

}

Listing 2. IProductsRepository interface.

A class that uses IProductsRepository interface can obtain Product objects without

knowing their real residing place. For the obtaining class it does not matter, if Product

objects come from the database or some other source.

The next step is to create Controller and View in SecondHandStore.WebUI project.

There is already a folder in this project called Controllers, so the developer adds a new

controller by selecting “Add Controller” from the right-click menu. The new Controller is

named ProductController. The controller is coded to contain an IProductsRepository

private member which lets the controller to retrieve all product data from the database.

In addition, the ProductController contains an action method called List, which renders

a View showing a complete list of products. See Listing 3 for the View code.

46

@model IEnumerable<SecondHandStore.Domain.Entities.Product>

@

{

ViewBag.Title = "Products";

}

@foreach (var p in Model)

{

<div class="item">

<h3>@p.Name</h3>

@p.Description

<h4>@p.Price.ToString("c")</h4>

</div>

}

Listing 3. The code of List view.

The next step is to create a database and populate it with data. If an SQL Server in-

stance is installed on the development environment, it will be possible to create a data-

base from Visual Studio’s Server Explorer. SQL Server is connected from Server ex-

plorer and the “SecondHandStore” is created. A table called “dbo.Products” is created

in the “SecondHandStore” database and the data is added manually. See Listing 4 for

creating a Products table.

CREATE TABLE Products

(

[ProductID] INT NOT NULL PRIMARY KEY IDENTITY,

[Name] NVARCHAR(100) NOT NULL,

[Description] NVARCHAR(500) NOT NULL,

[Category] NVARCHAR(50) NOT NULL,

[Price] DECIMAL(16, 2) NOT NULL

)

Listing 4. Creating Products table in SecondHandStore database.

In order to connect from the ASP.NET MVC application to the database and retrieve

product information transparently, an Entity Framework will be used. Entity Framework

is widely used in the web application development community and it can be download-

ed and installed through the NuGet Package Manager. After installing the framework, a

context class, which associates the model with the database, is created. A new folder

called Concrete is created in SecondHandStore.Domain project and a new class called

EFDbContext is added to that folder. See Listing 5.

47

using SecondHandStore.Domain.Entities;

using System.Data.Entity;

namespace SecondHandStore.Domain.Concrete

 {

public class EFDbContext : DbContext

{

public DbSet<Product> Products { get; set; }

}

}

Listing 5. Creating EFDbContext class.

At the end of development a basic infrastructure of the application is ready and the

appearance of the user interface is finalized with CSS styles. CSS stands for Cascad-

ing Style Sheets. It is a style sheet language for describing the look and formatting of

any document written in markup language. The main purpose of CSS is the separation

of document presentation from document content.

In order to create the desired look and feel, the default layout was modified. There is a

default layout file called _Layout.cshtml in Views/Shared folder of SecondHand-

Store.WebUI project. The contents of that file were modified according to Listing 6.

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />

<title>@ViewBag.Title</title>

<link href="~/Content/Site.css" type="text/css" rel="stylesheet"

/>

</head>

<body>

<div id="header">

<div class="title">SECONDHAND STORE</div>

</div>

<div id="content">

@RenderBody()

</div>

</body>

</html>

Listing 6. _Layout.cshtml contents were modified to present a desired user interface.

48

Visual Studio created a CSS file automatically when ASP.NET MVC project was creat-

ed. The created file is called Site.css and it can be found in the Content folder of the

SecondHandStore.WebUI project. As can be seen in Listing 6, _Layout.cshtml default

layout file has a link to Site.css file. In order to create the desired look and feel, the

CSS code was added to the end of Site.css code. Listing 7 shows a fragment of added

code.

BODY { font-family: Cambria, Georgia, "Times New Roman"; margin:

0; }

DIV#header DIV.title, DIV.item H3, DIV.item H4, DIV.pager A {

font: bold 1em "Arial Narrow", "Franklin Gothic Medium", Arial;

}

DIV#header { background-color: #444; border-bottom: 2px solid

#111; color: White; }

DIV#header DIV.title { font-size: 2em; padding: .6em; }

DIV#content { border-left: 2px solid gray; margin-left: 9em;

padding: 1em; }

DIV#categories { float: left; width: 8em; padding: .3em; }

Listing 7. A fragment of CSS code added to Site.css file.

After testing the developed application, it was deployed to Microsoft Azure Production

Environment. Deployment was executed through the right-click menu of Visual Studio.

After pressing the Publish option, a publishing form was opened and the user entered

the required data for publishing the application. See Figure 29.

49

Figure 29. Publishing the ASP.NET MVC application to production environment.

The final application can be seen and used from any web browser in the world. See

Figure 30.

Figure 30. Final application deployed to MS Azure virtual machine.

50

6.2 Further Development of the Application

In chapter 6.1 the development and deployment of first version of e-commerce

SecondHandStore application was presented. In the next versions the application will

be developed further and will include navigation and chart, shopping cart, an option

select and remove items into and from the shopping cart, enter shipping details and

checking out, and an area for administrating the application. The administrator of the

application will be provided with options to add and remove shopping items and exe-

cute other administrative tasks.

Development of the e-commerce application demands very controlled attention and

many lines of development code. In addition it demands extensive testing. In order to

gain on understanding of the development process and milestones, the reader is re-

quired to possess technical knowledge of modern development tools and processes.

To keep this final year project simple and understandable, I have decided not to include

further development of the application in this thesis.

51

7 Conclusion

The goal of this final year project was to study many modern technologies and inte-

grate them to develop a web application in the Microsoft Azure cloud service. The task

was challenging and interesting .Though I was familiar with some technologies used in

this paper, the majority of them still needed in-depth studying and examination.

The project started at the end of February 2015 and was finalized at the end of April

2015. I studied all the needed technologies and integrated them for developing the ap-

plication. The biggest challenge was Microsoft Azure cloud service and Windows Serv-

er environment, because I had almost non-existent experience with those technologies.

Also .NET library was challenging due to its vast number of different assemblies for

different kind of technologies.

During implementation of this project I learned that Microsoft Azure is a public cloud

and provides many services to the companies of different sizes. Especially small and

middle-size companies gain great benefits by avoiding on-premises solutions and sub-

scribing the service and using different kind of applications and environments. Mi-

crosoft Azure is deployed onto 19 datacenters across the globe and makes it possible

for companies to start with very low costs and rapidly gain customers.

Another useful skill learned was setting up a Windows Server environment in the virtual

machine of the Azure cloud service. Computers with a server operating system run

around the clock and provide the users across the globe to access the hosted applica-

tions. However in order to host an application, the sever computer contains an IIS

server application, which is the real host and configurator of a web application.

ASP.NET MVC technology was learned and used for developing the web application.

This technology is very powerful, is based on Microsoft’s .NET framework and is used

by the majority of the web application development community.

Altogether the project was successfully implemented and I acquired many useful skills

for my future career.

52

References

1. Freeman A. Pro ASP.NET MVC 4. USA: New York, Apress Media, 2012.

2. Fundamentals of Azure: Microsoft Azure Essentials. USA: Microsoft Corpora-

tion, 2015.

3. Windows Server Administration Fundamentals. Microsoft Official Academic

Course. USA: Hoboken, John Willey & Sons, 2011.

4. Schaefer K, Cochran J, Forsyth S. Professional Microsoft IIS 8. USA: Indianap-

olis, John Willy & Sons, 2013.

5. Simmons K, Carstarphen S. Pro SQL Server Administration. USA: New York,

Apress Media, 2012.

6. LeBlanc P. SQL Server Step by Step. USA: California, O’Reilly Media Inc.,

2013.

7. Overview of the .NET Framework [online].

URL: https://msdn.microsoft.com/en-us/library/zw4w595w.aspx.

Accessed: 10 April 2015.

8. Troelsen A. C# 2010 and the .NET 4 Platform. USA: New York, Apress Media,

2010.

9. Blankenship Ed, Woodward M, Holliday G, Keller B. Professional Team Foun-

dation Server. USA: Indianapolis, John Willy & Sons, 2013.

https://msdn.microsoft.com/en-us/library/zw4w595w.aspx

