
Mika Luoma-aho

JavaScript Web Cryptography API

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communications Technology

JavaScript Web Cryptography API

May 18, 2015



Tiivistelmä

Tekijät

Otsikko

Sivumäärä

Aika

Mika Luoma-aho

JavaScript Web Cryptography API

56 sivua + 3 liitettä

18.5.2015

Tutkinto insinööri (AMK)

Koulutusohjelma tieto- ja viestintätekniikka

Suuntautumisvaihtoehto ohjelmistotuotanto

Ohjaajat lehtori Olli Alm

Insinöörityön tavoitteena on analysoida kuinka uusi Web Cryptography API -
rajapintamääritys tulee mahdollistamaan tietoturvallisempien selainpohjaisten JavaScript
sovellusten toteuttamisen tulevaisuudessa.

Viimeaikaiset kansalaisten tietoturvaan liittyvät paljastukset (mm. Edward Snowdenin
paljastama Yhdysvaltain tiedustelupalvelun hyödyntämä laaja valvontakoneisto) sekä
viime aikoina tapahtuneet laajamittaiset tietomurrot ovat saaneet kansalaiset huolestu-
neeksi pilvipalveluihin tallettamansa tiedon tietoturvasta. Tämä asettaa uusia vaatimuksia
selainpohjaisen kryptografian ja web-alustan kehittymisen tukemaan uusien kryptografi-
aa hyödyntävien applikaatioiden tekemistä.

Insinöörityössä tutkittiin, miten uusi Web Cryptography API -rajapintamääritys tulee
muuttamaan sitä, kuinka kryptografiaa voidaan toteuttaa selainpohjaisissa sovelluksissa
ja kuinka se mahdollistaa uusien kryptografiaa hyödyntävien palveluiden ja sovellusten
rakentamisen suoraan JavaScript-ympäristössä.

Työn soveltavassa osassa toteutettiin tietoturvallinen, selainpohjainen sovellus salattu-
jen ja digitaalisesti allekirjoitettujen viestien jakamiseen. Sovelluksessa viestit kulkevat
lähettäjältä vastaanottajalle vahvasti salattuna hyödyntäen julkisen avaimen salauksen
kryptografiaa, paljastamatta selkokielistä viestiä tai salausavaimia palvelimelle.

Työ paljasti, että Web Cryptography API -spesifikaatio on tärkeä lisäys selainpohjaiselle
JavaScriptille ja käytettäessä yhdessä muiden www:n tietoturvaan liittyvien teknologioi-
den kanssa se mahdollistaa tietoturvallisten selainpohjaisten kryptografiaa hyödyntävien
sovelluksien tekemisen. Lisäksi selvisi, että kryptografian oikeanlainen ja tietoturvallinen
hyödyntäminen on vaikeaa ja täynnä ongelmakohtia. Ohjelmistokehittäjien tulee pereh-
tyä kryptografiaan liittyvään kirjallisuuteen ymmärtääkseen eri algoritmien ja protokollien
vahvuudet ja heikkoudet.

Avainsanat Kryptografia, JavaScript, WebCryptoAPI, IndexedDB



Abstract

Author(s)

Title

Number of Pages

Date

Mika Luoma-aho

JavaScript Web Cryptography API

56 pages + 3 appendices

May 18, 2015

Degree Bachelor of Engineering

Degree Programme Information and Communications Technology

Specialisation option Software Engineering

Instructor(s) Olli Alm, Senior Lecturer

The purpose of this study is to analyze how recent and upcoming improvements in
browser based web cryptography and more specifically the Web Cryptography API help
developers to create more secure web applications in the future.

Recently there has been a rise of interest in browser based cryptography, not only
because Edward Snowden’s revelations about pervasive surveillance by the National
Security Agency (NSA) and the United States government interest in the data stored on
the cloud services, but also because recent security breaches have made users con-
cerned about their online privacy and data security. All of this has set new requirements
for the client-side cryptography and for the web platform standards to evolve to support
creation of new (cryptography) applications.

This thesis investigates the challenges and security concerns that developers face
when dealing with cryptography on the client-side and the new Web Cryptography API,
which brings native cryptographic primitives already implemented in the browser to the
JavaScript run-time environment.

As a case study, a proof-of-concept end-to-end secure application for sharing encrypted
and digitally signed messages was implemented. The application uses public-key
cryptography as a means to encrypt and decrypt messages directly on a web browser,
without revealing the plain text message or the master key to the server.

In conclusion, the investigation revealed that the Web Cryptography API specification is
an important addition to browser JavaScript capabilities and when combined with other
upcoming web security related technologies, it is possible to create cryptographically se-
cure web applications. Finally, it was concluded that creating cryptographically correct
applications is hard, full of pitfalls and developers should be proficient with cryptography
to be able to understand strengths and weaknesses of algorithms and protocols.

Keywords Cryptography, JavaScript, WebCryptoAPI, IndexedDB



Acknowledgement

I dedicate this work to my beloved wife Aino whose unconditional encouragement and

support made it possible for me to complete this thesis.

I wish to express my heartfelt love to my daughter Frida for coping with the undue paternal

deprivation during the course of my study.

To my family, I love you all.

I would like to thank my supervisor, Olli Alm, for the valuable comments and instructions

on this work. I would also like to thank my previous employer SC5 Online and current

employer Vincit Helsinki Oy, for support and giving me time and flexibility to write this

thesis.

This thesis was written with LATEX document markup language using the “Metropolia The-

sis LATEX Template” (CC BY-SA). Thanks to Panu Leppäniemi and Patrik Luoto for keeping

the template up-to-date.

Tuusula, May 18, 2015

Mika Luoma-aho



Contents
Abbreviations and Acronyms

1 Introduction 1

2 Web Cryptography API 4

2.1 Background 4

2.1.1 History 5

2.1.2 About Web Cryptography Working Group 5

2.2 Brief Introduction to Cryptography 6

2.2.1 Public-Key Cryptography 7

2.2.2 Symmetric Cryptography 8

2.2.3 Digital Signature 8

2.2.4 Message Digest 10

2.3 Basic Usage of the Web Cryptography API 12

2.4 Execution Model 15

2.5 Example Scenarios 16

2.5.1 Encrypting and Decrypting a Message 16

2.5.2 Exporting Public-Key from CryptoKey Object 20

2.6 CryptoKey Objects 21

2.7 Browser Support 22

2.8 Polyfills 23

2.9 Related Specifications 24

2.10 Security Considerations and Caveats 25

3 Case Study 27

3.1 Introduction 27

3.2 Sending and Receiving Digitally Signed Messages 29

3.3 Usage 33

3.4 About the Source Code 47

4 Conclusion 48

References 50



Appendices

Appendix 1 List of Algorithms

Appendix 2 Source Code

Appendix 3 MIT License



Abbreviations and Acronyms

AES Advanced Encryption Standard

API Application Programming Interface

CORS Cross-Origin Resource Sharing

DOM Document Object Model

HMAC Hash-based Message Authentication Code

HTML5 HyperText Markup Language, Version 5

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

IETF Internet Engineering Task Force

JSON JavaScript Object Notation

JWK JSON Web Key

PGP Pretty Good Privacy

PKI Public Key Infrastructure

RSA Rivest-Shamir-Adleman Public-Key Cryptosystem

SHA Secure Hash Algorithm

SSL Secure Sockets Layer

TLS Transport Layer Security

W3C World Wide Web Consortium

WWW The World Wide Web

XSS Cross Site Scripting



1

1 Introduction

This is an exciting time to be using JavaScript [1], JavaScript having finally outgrown its

early reputation as a basic scripting language used to produce simple effects on web

pages. When Brendan Eich created the original version of JavaScript for Netscape1 in

1995, it was meant as a “silly little brother language” for Sun’s2 Java language [4] which

at that time was seen as the only viable way to build portable heavy weight applications

[5]. Gartner3 predicted in 2014 that improved JavaScript performance will begin to push

HTML5 [7] and the browser as a mainstream enterprise application development environ-

ment [8]. Today JavaScript is used extensively to produce complex rich app-like experi-

ences on browsers and mobile and embedded devices. Projects such as Node.js [9] and

IO.js [10] andmake it possible to run the same code on the server-side, making JavaScript

an even more powerful and more widely adopted language.

Recently there has been a raise of interest in browser based cryptography, not only be-

cause recent data breaches [11;12] and fake SSL certificates [13], but also because Ed-

ward Snowden’s revelations [14] about pervasive surveillance conducted by the NSA4

and governments [16]. According to a 2014 survey called “Public Perceptions of Privacy

and Security in the Post-Snowden Era” by Pew Research Center [17], 81% of Americans

do not feel secure when using social media sites for sharing private information with an-

other person or organization, and 68% feel insecure using chat or instant messages to

share private information [18]. Also the latest whitepapers about internet security threats

[19;20] from Symantec Corporation showed steep rise on data breaches in 2014, and

an ongoing trend for coming years, when people’s personal and financial information get

stolen from companies and online services [21].
1NetscapeCommunications, an American computer services company, founded in 1994, was a computer

services company best known for its Web browser, Navigator. In 1999, Netscape was acquired by AOL. [2]
2Sun Microsystems, Inc., an American company, founded in 1982, sold computers, computer compo-

nents, computer software, and information technology services. In 2010, Sun was acquired by Oracle Cor-
poration. [3]

3Gartner, Inc. is the world’s leading information technology research and advisory company. [6]
4National Security Agency is home to America’s codemakers and codebreakers. The National Security

Agency has provided timely information to U.S. decision makers and military leaders for more than half a
century [15]



2

Since an increasing number of web applications are storing confidential data on the web

and recent reports show that data breaches of service provider data storages is clearly

on the rise [20], there is a desperate need for a client-side cryptography and the web

platform standards to evolve to support creation of new type of cryptographically capa-

ble web applications. These new applications could utilize cryptography to enable the

users to protect their identities and private data, directly on the browser, before the data

is transmitted to service provider, mitigating most common data breaches since the ser-

vice provider then does not have to store passwords or encryption keys that could be used

to steal the data.

There is no reasonwhy cryptographic primitives cannot be programmed in plain JavaScript

[22], as proven by the Stanford JavaScript Crypto Library (SJCL) [23] and other li-

braries like CryptoJS [24] and Forge [25]. However, these implementations, programmed

in plain JavaScript are bound by the limitations of the JavaScript Virtual Machine (such

as V8 used by the Google Chrome browser [26]) and the run-time environment they are

running in, which have performance problems and cryptography related security gaps that

cannot be fixed in plain JavaScript. These include for example missing a cryptographically

secure pseudo-random number generator (CSPRNG), missing safe secure-key-storage

and non-predictive function execution performance, which makes the current implemen-

tations vulnerable to various attacks (see section 2.10 on page 25 for more information on

how developers can mitigate these issues) and unsafe to use in real world applications.

Furthermore the browser environment is hostile to cryptography [27] and if not correctly

secured, it could allow an attacker to compromise the security of the application by in-

jecting malicious code to extract decryption keys or hijack the private data before it is

encrypted. Even the authors of the SJCL library say that “Unfortunately, this is not as

great as in desktop applications because it is not feasible to completely protect against

code injection, malicious servers and side-channel attacks [28]”.



3

The Web Cryptography API5 specification is a new standard proposal from the Web

CryptographyWorkingGroup of theWorldWideWebConsortium (W3C) [29] that provides

a promising solution to the current situation by giving web developers ability to use the

native (low-level machine code) cryptographic primitives already implemented in the web

browser, for writing cryptographically secure applications in the JavaScript environment,

which was previously only feasible on the server-side environment.

At the time of writing this thesis (May, 2015), the Web Cryptography API specification was

in the Candidate Recommendation phase which means that the W3CWorking Group has

met their requirements satisfactorily for a new standard, and is now waiting for feedback

on whether the specification should become a W3C recommendation. Furthermore, for

the specification to advance to the next phase, there must be at least two independent,

interoperable implementations of each feature [30;31]. Changes to the specification are

possible, and developers should check the latest specification, recommendations and

usage instructions before starting to use the Web Cryptography API in web applications.

With the introduction of the newWeb Cryptography API standard proposal, web browsers

are starting to be capable of performing native cryptographic operations, which enables

creation of new kind of privacy centered applications and give more options for users

to protect their identity and resources online. This thesis aims to investigate why client-

side cryptography is needed, although a cryptographically secure channel between the

client and the server with HTTP over TLS (HTTPS) [32] already exists and why native

implementation of cryptography functions is needed, when cryptography can already be

performed using plain JavaScript implementations.

Chapter 2 introduces the Web Cryptography API specification and examines in detail how

the specification can be used, what the most common use cases are and what problems

it tries to solve. Chapter 3 presents a case study application which uses the new Web

Cryptography API specification to enable users to communicate securely without sharing

the sent plain text message or the cryptographic keys used to encrypt and decrypt the

message with the server. Chapter 4 presents the findings and gives conclusions.

5Application Programming Interface (API) defines a set of instructions and standards that developers can
use to build applications.



4

2 Web Cryptography API

2.1 Background

The Web Cryptography API6 is a candidate recommendation specification created by

the Web Cryptography Working Group of the World Wide Web Consortium (W3C) [29;33]

that describes a cross-platform JavaScript API for performing cryptographic operations in

web applications. The specification specifies asynchronous7 JavaScript API that takes

advantage of Web Workers [34] to perform expensive computations, which allows the

program flow of the JavaScript application to continue while waiting for the cryptographic

operations to be completed.

As the API is meant to be extensible, in order to keep up with future developments within

cryptography, the specification does not dictate what algorithms must be implemented by

the conforming user agents8. Instead it defines a common set of bindings that can be

used in an algorithm-independent manner [31].

The API provides a low-level interface for performing cryptographic operations. These

operations include encryption and decryption, digital signature generation and verification,

hashing and cryptographically secure random number generation. Additionally the API

includes operations to generate, manage, import and export key material that can be

used with the cryptographic operations.

The API focuses specifically on CryptoKey objects (see section 2.6 on page 21) which

provide an abstraction for the underlying raw cryptographic key material. This allows the

API to be generic enough to support versatile ways for user agents to expose and store

cryptographic key material, without requiring the web application to be aware of the nature

of the underlying key storage [31].
6Also known as WebCrypto API and Web Crypto API.
7In software development, an asynchronous operation means that a process operates independently of

other processes.
8In computing, a user agent is software (for example a web browser) that is acting on behalf of a user.



5

The use case scenarios for the API includes, but is not limited to, secure messaging, doc-

ument signing, data integrity protection, cloud storage, multi-factor authentication, pro-

tected document exchange, banking transactions, authenticated video services, and en-

crypted communications via webmail [31;35]. Secure messaging, such as Off-the-Record

Message Protocol (OTR) [36], makes it possible to exchange messages between two

parties without revealing the encryption keys or other metadata to the server while also

protecting previously sent messages properly with forward secrecy [37] by never storing

information that is required to decrypt the messages in the future. Cloud storage can be

made secure so that the service provider does not have any access to the stored files

by allowing the user to encrypt and decrypt files at the client-side before the files are

exchanged with the storage service provider.

2.1.1 History

Many JavaScript cryptographic libraries have emerged that give the web applications abil-

ity to perform cryptographic operations, such as the Stanford JavaScript Crypto Library

(SJCL) which is a project by the Stanford Computer Security Lab to build a secure, power-

ful, fast, small and easy-to-use cross-browser library for cryptography in JavaScript [23].

A whitepaper [38] about SJCL describes the library as an general purpose symmetric

crypto-library that is made in JavaScript and that exports a clean interface and is highly

optimized. Other libraries are for example Forge [25] and CryptoJS [24] which provide

versatile ways for performing cryptographic operations. These are competent libraries,

but being plain JavaScript libraries they can be attacked with a variety of different ways

as explained in chapter 1 on page 2. Before Web Cryptography API specification, the

most promising draft specification in this domain was the DomCrypt API [39] from the

Mozilla project. The W3C uses the DomCrypt API as a “straw-man”9 API.

2.1.2 About Web Cryptography Working Group

The Web Cryptography Working Group (WebCrypto WG) [29] was formed in April 2012

and is part of the Security Activity [41] collaborative effort at W3C. Its charter [42] is to
9In software development, straw-man means the initial proposal created to generate discussion and to

generate a better proposal [40, 293].



6

define a high-level API providing common cryptographic functionality to web applications.

The building blocks for the charter originates from 2011 when W3C organized an identity

in the Browser Workshop to bring active practitioners together to discuss web identity and

what can be done to increase security and privacy on the web. The workshop was a great

success, with over 80 representatives from various organizations attending the workshop,

including participants from the major browser vendors such as Google, Microsoft, Apple,

and Mozilla. Also companies such as Netflix, Paypal, and Yahoo! were present. Present

was also the security expertise group IETF and the security company RSA [43].

The Web Cryptography Working Group is part of the World Wide Web Consortium (W3C),

which is an international community where member organizations, a full-time staff, and

the public work together to develop web standards. The mission of W3C is to lead the

WorldWideWeb to its full potential by developing protocols and guidelines that ensure the

long-term growth of the Web [33]. W3C has a regional office in Finland which is located

at the Tampere University of Technology [44].

2.2 Brief Introduction to Cryptography

Cryptography10 is used everywhere and is a very important part of daily lives. Cryptog-

raphy is the science of using mathematics to transform clear text (also called as plain-

text) to gibberish, also known as ciphertext that only the intended recipient with a correct

unlock key can transform back to clear text. This process is also known as encrypt-

ing (transforming text to ciphertext) and decrypting (transforming ciphertext back to clear

text). Cryptography enables secure communication between two or more parties, mak-

ing banking transactions secure, communicating securely over wireless network (WIFI)

hotspots, sending files securely over Bluetooth11 connection, protecting sensitive docu-

ments, protecting content on DVD and Bluray, DRM12 systems and so on. The following

sections present the most common cryptographic building blocks in more detail.
10Cryptography comes from the Greek words kryptós, meaning hidden, and graphein, meaning writing;

hence cryptography implies hiding the actual message in a written text.
11Wireless communication standard used by mobile phones
12Digital Rights Management



7

2.2.1 Public-Key Cryptography

Public-key cryptography or also known as asymmetric cryptography is a cryptography

system in which a pair of keys, the public and private key, is used to encrypt and decrypt

a message respectively. The public and private keys are mathematically related, but it

is impossible to derive or deduce the private-key from the public-key [45]. Public-key

cryptography is used widely in the data communications and software used today. For

example,

• HTTP Secure (HTTPS) communications utilize TLS/SSL, which uses public-key

cryptography to establish secure communication between two parties.

• Certificates provide authenticity of web pages using public-key cryptography to es-

tablish trust between a web page and the certificate authority.

• Secure EMail protocol (S/MIME13) andPGP (Pretty Good Privacy [46]) uses asym-

metric cryptography to protect email messages that are sent between two people.

Given a key pair, data encrypted with the public-key can only be decrypted with its private-

key. Conversely, data encrypted with the private-key can only be decrypted with its public-

key [47]. This mechanism can be used to exchange data securely, without exposing the

decryption key (private-key) to anybody. Public-key can be safely shared with everyone.

Figure 1 shows example how a sender can send an encrypted message to Bob, using

Bob’s public-key which Bob had shared previously.

DecryptEncrypt
Torpedo 

recovery B
oat 

23 equippe
d 

with SSG

Torpedo 

recovery B
oat 

23 equippe
d 

with SSG

Clear text (plaintext) Ciphertext Clear text (plaintext)

LTWELQAZJX

TIRJLLISCSG

XSHEJFYNZQ
DNQ

Bob’s public-
key used for 
encryption

Bob’s private-key 
used for 

decryption

Figure 1: Encrypting and decrypting a clear text message with an public and private keys
(Copyright © 2015 Mika Luoma-aho)

13Secure Multipurpose Internet Mail Extensions



8

2.2.2 Symmetric Cryptography

Symmetric-key cryptography or also known as secret-key cryptography is a cryptography

system in which the same key is used for both encrypting and decrypting a message.

For sharing the secret-key online, asymmetric cryptography can be utilized. Symmetric

cryptography is useful for example,

• HTTP Secure (HTTPS) communications utilize TLS/SSL, which uses symmetric

cryptography to protect the information exchange.

• Encrypting large data sets since symmetric algorithms are fast and can be applied

to any data regardless of the data size.

• Sharing encrypted data with multiple people without creating a separate key for

everyone, since everyone can use the same shared secret-key.

• Protecting software assets with a secret-key that is fixed in the software package.

Figure 2 shows how a sender can send an encrypted message using the shared secret

key that the sender and recipient have agreed to use.

DecryptEncrypt
Torpedo 

recovery B
oat 

23 equippe
d 

with SSG

Torpedo 

recovery B
oat 

23 equippe
d 

with SSG

Clear text (plaintext) Ciphertext Clear text (plaintext)

LTWELQAZJX

TIRJLLISCSG

XSHEJFYNZQ
DNQ

Shared key

Figure 2: Encrypting and decrypting a clear text message with a shared secret (Copyright
© 2015 Mika Luoma-aho)

2.2.3 Digital Signature

Digital signature is a mathematical scheme, utilizing public-key cryptography for authen-

ticating messages and checking that the document has not been tampered with. A valid

digital signature provides a proof, or at least gives the receiver a reason to believe that

the message was created by a known sender (providing both authentication and non-

repudiation) and that the message has not been tampered with (providing integrity). This



9

is possible because only the sender has the signing-key that could have been used to

sign the message. The verifying-key can be attached to the message so that the receiver

can easily verify the used key and the digital signature [47]. Figure 3 shows example on

how to digitally sign plaintext message.

dc·72·65·88·0b·02·fb·ea·9a·80·ce·ec·cf·f8·f0·88  .re.............
d9·1b·b5·f8·49·33·24·b9·6c·77·f1·01·90·a5·e6·e1  ....I3..lw......
31·54·a0·fc·ff·44·f7·83·49·ae·a5·a2·36·c7·f9·8a  1T...D..I...6...
6d·4a·50·94·09·52·55·5d·a7·9f·5c·53·20·31·62·fb  mJP..RU....S.1b.
63·c3·0e·1c·c0·f4·b9·29·c1·94·c6·eb·f4·0f·83·ad  c...............
d5·3c·3e·e5·c4·ff·ed·3d·78·c4·7b·32·7f·a4·dc·46  ........x..2...F
73·fe·89·ee·d6·33·6f·95·1a·11·5b·9c·bb·ad·63·fb  s....3o.......c.
96·0f·a6·93·1f·03·c3·8d·ac·d9·c7·99·04·34·75·f7  .............4u.
88·4d·ac·3e·00·54·02·f0·75·32·1f·6e·a7·b5·a9·0e  .M...T..u2.n....
e1·1d·21·fe·40·71·e0·68·bb·dd·f3·30·f0·f2·4c·c3  .....q.h......L.
b0·d5·9c·5f·ed·b6·cc·88·87·63·e5·24·b3·bd·95·aa  .........c......
07·17·80·52·99·f4·c5·01·83·ee·c1·4c·91·46·88·1b  ...R.......L.F..
d1·ac·d7·1d·30·1c·ee·10·e7·42·07·80·99·65·0e·a3  .........B...e..
af·6d·a4·be·0b·f6·50·49·6c·b8·1b·5c·1b·72·02·f2  .m....PIl....r..
0e·dd·8b·63·b3·7b·0d·cd·80·43·fa·4c·4a·49·c8·50  ...c.....C.LJI.P
03·b6·fb·3b·8b·c9·24·61·ef·ba·12·24·d1·63·cd·d3  .......a.....c..

Signing Key

Sign the input data with 
the provided signing-

key

The plaintext
to be signed:

“Hello”

Digital Signature

Figure 3: Creating digital signature (Copyright © 2015 Mika Luoma-aho)

Figure 4 shows example on how to verify the digital signature.

dc·72·65·88·0b·02·fb·ea·9a·80·ce·ec·cf·f8·f0·88  .re.............
d9·1b·b5·f8·49·33·24·b9·6c·77·f1·01·90·a5·e6·e1  ....I3..lw......
31·54·a0·fc·ff·44·f7·83·49·ae·a5·a2·36·c7·f9·8a  1T...D..I...6...
6d·4a·50·94·09·52·55·5d·a7·9f·5c·53·20·31·62·fb  mJP..RU....S.1b.
63·c3·0e·1c·c0·f4·b9·29·c1·94·c6·eb·f4·0f·83·ad  c...............
d5·3c·3e·e5·c4·ff·ed·3d·78·c4·7b·32·7f·a4·dc·46  ........x..2...F
73·fe·89·ee·d6·33·6f·95·1a·11·5b·9c·bb·ad·63·fb  s....3o.......c.
96·0f·a6·93·1f·03·c3·8d·ac·d9·c7·99·04·34·75·f7  .............4u.
88·4d·ac·3e·00·54·02·f0·75·32·1f·6e·a7·b5·a9·0e  .M...T..u2.n....
e1·1d·21·fe·40·71·e0·68·bb·dd·f3·30·f0·f2·4c·c3  .....q.h......L.
b0·d5·9c·5f·ed·b6·cc·88·87·63·e5·24·b3·bd·95·aa  .........c......
07·17·80·52·99·f4·c5·01·83·ee·c1·4c·91·46·88·1b  ...R.......L.F..
d1·ac·d7·1d·30·1c·ee·10·e7·42·07·80·99·65·0e·a3  .........B...e..
af·6d·a4·be·0b·f6·50·49·6c·b8·1b·5c·1b·72·02·f2  .m....PIl....r..
0e·dd·8b·63·b3·7b·0d·cd·80·43·fa·4c·4a·49·c8·50  ...c.....C.LJI.P
03·b6·fb·3b·8b·c9·24·61·ef·ba·12·24·d1·63·cd·d3  .......a.....c..

Verifying Key

Verify the input data 
with the provided 

verifying-key

The plaintext
to be verified:

“Hello”

Digital Signature

Digital 
Signature
Verified √

Figure 4: Verifying digital signature (Copyright © 2015 Mika Luoma-aho)

When separate signing and encryption keys are used, the signing key can be revoked if it

is lost or compromised, making all future transactions invalid using the same signing key.

If the encryption-key is lost, a backup should be utilized. Signing keys should not never

be backed up or given to a third party for safe keeping since they could end up in wrong

hands.

In several countries, a digital signature has a similar legal status to a traditional signature

on a paper. In the European Union, countries have digital signature legislation [48]. Ba-



10

sically this means that anything digitally signed legally binds the signer to the terms and

conditions set forth in the signed document.

For reasons set forth above, it is a good idea to use separate key-pairs for signing and

encryption. The encryption-key can be used for encrypting normal communication without

legally signing every sent message and the signing-key should only be used when both

parties have come to an agreement and are ready to be legally binded to a document and

to the terms and conditions set forth in the signed document.

It should also be noted that the Web Cryptography API limits the usage of the public

and private keys so that it is not possible to generate a key that could be used for both

encrypting and signing, so separate signing and verifying keys must be generated (see

section 2.10 on page 25 for more information).

2.2.4 Message Digest

Amessage digest, also known as a digest or hash value, is a small unique representation

of the plaintext message. A Message digest is created using hashing algorithms (such

as MD5 [49], SHA-1, SHA-256, SHA-512 [50]), which are one-way encryption algorithms,

meaning that it is impossible to derive the original message from the digest. Given the

same input, the output of a hash algorithm is always the same.

Figure 5 on the following page shows example for creating a message digest using an

SHA-1 algorithm which outputs 160 bits (20 bytes) of message digest data. The input

string is on the left and output on the right side. Output is shown first with hexadecimal

display and then in ascii format. Even small change on the input string changes the output

drastically.



11

f7·ff·9e·8b·7b·b2·e0·9b·70·93  ........p.
5a·5d·78·5e·0c·c5·d9·d0·ab·f0  Z.x.......SHA-1Hello

0a·4d·55·a8·d7·78·e5·02·2f·ab  .MU..x....
70·19·77·c5·d8·40·bb·c4·86·d0  p.w.......Hello World SHA-1

hello world
2a·ae·6c·35·c9·4f·cf·b4·15·db  ..l5.O....
e9·5f·40·8b·9c·e9·1e·e8·46·ed  ........F.SHA-1

Hello world
7b·50·2c·3a·1f·48·c8·60·9a·e2  .P...H....
12·cd·fb·63·9d·ee·39·67·3f·5e  ...c..9g..SHA-1

Figure 5: Creating message digest with SHA-1 algorithm (Copyright © 2015 Mika Luoma-
aho)

Some of the older hashing algorithms that use a small number of bits to represent the

hash can be prone to collisions, where two different messages output exactly the same

message digest. To mitigate this vulnerability, modern hashing algorithms using 256 or

more bits, such as SHA-256 or SHA-512 (256 and 512bits respectively), should be se-

lected. In fact, old hashing algorithms, such as MD5 (128bits) and SHA-1 (160bits), are

usually only provided for backward compatibility but should not be used for creating new

message digests.

Message digests are useful for:

• Checking data integrity, even small change in data produces a drastically different

digest.

• Creating a unique identifier for data assets that can be used as a key when storing

the data in database.

Additionally a message digest has a small footprint (for SHA-256 algorithm, only 256 bits

or 32 bytes [50]) also it is very hard to find two different messages that would produce

the same message digest value and hashing algorithms are faster than any encryption

algorithm (asymetric or symmetric).



12

2.3 Basic Usage of the Web Cryptography API

The Crypto interface [51] represents the main interface of the Web Cryptography API

for performing general purpose cryptographic functionality. The interface is exposed to

window [52] and worker [53] objects as a crypto object (in the web browser run-time

environment) which means that the crypto object is globally accessible from JavaScript.

The crypto object contains methods for creating cryptographically secure pseudo-random

numbers and a subtle object which implements the SubtleCrypto [54] interface.

The SubtleCrypto interface provides access to common cryptographic primitives, such

as hashing, signing, encryption and decryption. The “SubtleCrypto” name reflects the fact

that many of supported algorithms have subtle usage requirements in order to provide the

required algorithmic security guarantees [31].

When browser vendors are in middle of implementing a new feature, such as Web Cryp-

tography API, which is not yet considered a common standard, a special vendor prefixing

is usually used. The format follows “vendor identifier” + “Name of the function or property”

scheme. Vendor identifiers are “ms” for Microsoft Explorer, “moz” for Mozilla Firefox and

“webkit” for WebKit based browsers such as Safari and Chrome. However in case of Web

Cryptography API, most of the browsers already expose the interfaces without vendor pre-

fixes, but Safari support is still experimental and thus exposes the SubtleCrypto interface

using a vendor prefixed webkitSubtle object. However most of the functionality is already

supported in Safari and can be used, but theSubtleCrypto interface needs to be remapped

so that existing code can be run without modifications. Listing 1 shows how the Subtle-

Crypto interface could be remapped at the start of the main JavaScript application, so that

the SubtleCrypto interface can be found at standard location (window.crypto.subtle).

1 // fix safari crypto namespace
2 if (window.crypto && !window.crypto.subtle && window.crypto.

webkitSubtle) {
3 window.crypto.subtle = window.crypto.webkitSubtle;
4 }

Listing 1: Fixing Safari crypto namespace



13

To detect if Web Cryptography API is available, it is enough to test that window.crypto and

window.crypto.subtle exist. The code in listing 2 defines a function isWebCryptoAPISup-

ported() which performs the detection and returns a Boolean value indicating success

(true) or failure (false).

1 /**
2 * Detect Web Cryptography API
3 * @return {Boolean} true, if success
4 */
5 function isWebCryptoAPISupported() {
6 return 'crypto' in window && 'subtle' in window.crypto;
7 }

Listing 2: Web Cryptography API feature detection

The Crypto interface defines the function getRandomValues that lets developers get

cryptographically random values. The function is synchronous, meaning that it will block

the control of the program flow until it has completed execution. The function takes one

argument, the Array, which can be any integer type (for example, Int8Array, Uint8Array,

Int16Array, Uint16Array, Int32Array, or Uint32Array), which is then filled with random val-

ues (random in its cryptographic meaning) [55]. To guarantee enough performance, web

browsers are not required to use a truly random number generator, but they can use a

pseudo-random number generator [56] (PRNG) seeded with a value with enough entropy.

The PRNG used differs from one browser to the other but is suitable for cryptographic us-

ages. Web browsers are also required to use a seed with enough entropy, such as a

system-level entropy source [55].

Listing 3 shows JavaScript code that can be used to generate random values.

1 // get 10 random numbers as unsigned 8-bit integers (value
range is 0-255)

2 var size = 10;
3 var array = new Uint8Array(size);
4 window.crypto.getRandomValues(array);
5
6 // print values to console
7 for (var i=0; i!==array.length; ++i) {
8 console.log(array[i]);
9 }

Listing 3: Generating random values



14

The SubtleCrypto interface defines common methods for performing cryptographic op-

erations. These methods include the following:

• Encrypt and decryptmethods for transforming plaintext to ciphertext and vise versa

using asymmetric14 and symmetric15 algorithms. The following algorithms are sup-

ported:

– RSA-OAEP [57] is a public-key (asymmetric cryptography) encryption scheme

combining the RSA algorithm [58] with the Optimal Asymmetric Encryption

Padding (OAEP) method [59].

– AES-CTR [60] is a symmetric-key encryption scheme using AES in the Counter

mode.

– AES-CBC [60] is a symmetric-key encryption scheme using AES in the Cipher

Block Chaining mode.

– AES-GCM [61] is a symmetric-key encryption scheme using AES in the Ga-

lois/Counter mode.

– AES-CFB [60] is a symmetric-key encryption scheme using AES in the Cipher

Feedback mode.

• Sign and verify methods for protecting documents and other assets with a digital

signature that can be used to verify authenticity and integrity. The following algo-

rithms are supported:

– RSASSA-PKCS1-v1.5 [57] is an RSA Signature Scheme with an appendix

based on PKCS #1 v1.5.

– RSA-PSS [57] is a RSA Signature Scheme with an appendix based on a Prob-

abilistic Signature Scheme.

– ECDSA [62] is an Elliptic Curve Digital Signature Algorithm.

– AES-CMAC [63] is a symmetric authentication algorithm based on Cipher-

based Message Authentication Code.

– HMAC [64] is a cryptographic hash algorithm.

• Digest method for calculating a short digital fingerprint of data that can be used

for checking data integrity or used as a unique identifier for assets. The following

algorithms are supported:

– SHA-1, SHA-256, SHA-384, SHA-512 [50]
14In asymmetric cryptography, a pair of keys, the public and private, is used to encrypt and decrypt mes-

sages respectively.
15In symmetric cryptography, a single, common key, is used to encrypt and decrypt messages.



15

• GenerateKeymethod for generating symmetric and asymmetricCryptoKey objects

(see section 2.6 on page 21) that can be used with operations that require keys, such

as encrypt or sign.

• DeriveKey and deriveBits methods for deriving a secret key or bits from a key

material or other information such as a password or passphrase using a pseudo-

random function.

• WrapKey and unwrapKey methods for protecting cryptographic key material with

another key for example when key material must be either transmitted over insecure

communication channels or stored within untrusted environments.

• ImportKey and exportKey methods for importing and exporting key material from

and to different formats.

2.4 Execution Model

All of the methods from SubtleCrypto interface return a Promise [65]. Promise is a

paradigm in JavaScript programming which can be used to replace nested callback func-

tion calls (nested callbacks are usually referred to as “Callback Hell” or “Pyramid of Doom”

[66;67]) making asynchronous programming more natural and JavaScript code much

readable. Promise is an upcoming feature from the next version of JavaScript (EC-

MAScript 6) [68]. Promises enable the application flow to continue asynchronously while

waiting for a promise of results to arrive. A promise can be in any of three states: pending,

fulfilled, or rejected. Promise is in a pending state while it is waiting for results and will

will trigger fullfilled or rejected state depending on the outcome of the execution. When

the promise comes to a fullfilled state (also called a “resolved” state), the promise will call

then() handler with the results. If the promise comes to a rejected state, the promise will

call the catch() handler with the information about why the promise was rejected, usually

returning the JavaScript Error object [69].

Figure 6 on the following page shows how promises work when calling SubtleCrypto in-

terface method or any other method that return a promise. The steps are specified below.

1. Method is called

2. Promise is returned in pending state (while the method is executing)

3. If method execution is successful, the promise changes state to fullfilled (resolved)



16

4. Result from the method execution is returned from the promise

5. If method execution fails for any reason, the promise changes state to rejected

6. Error is returned from the promise

promise
state:

pending
method

promise
state:

fullfilled (resolved)

promise
state:

rejected

results

Error

1. 2.

3.

5.

4.

6.

Figure 6: Calling method that return a promise

2.5 Example Scenarios

All of the example scenarios presented in this thesis utilize helper module, called utilities

module (utils.js) which was written for this project and provide helpful methods for handling

input and output data in a various formats that the SubtleCrypto interfacemethods require.

For example, in order to convert plain text into Uint8Array (Typed array that represents

an array of 8-bit unsigned integers) the utility module provides convertTextToUint8Array

method that can be utilized. A Complete copy of the utils.js module can be found in

appendix 2 and also in the GitHub repository [70].

2.5.1 Encrypting and Decrypting a Message

One of the most common use cases for cryptography is to transform clear text to cipher-

text. The following example application shows how to generate keys needed to perform

cryptographic operations and how to encrypt the plain text message to ciphertext and how

to decrypt the ciphertext back to plain text using asymmetric (public-key) cryptographic

algorithm.

In listing 4 on the next page, the application defines local variables, the message to be

encrypted (line 1), temporal storage for generated CryptoKey (key-pair) object (line 2),

temporal storage for encryption and decryption results (line 3-4), and the RSA-OAEP [57;



17

58] encryption scheme with 2048bit key-size as a algorithm to be used for cryptographic

operations in this example application (lines 5-12).

1 var message = 'Lorem ipsum dolor sit amet, consectetur
adipiscing elit.';

2 var cryptoKeyPair; // for storing the CryptoKey object
3 var ciphertext; // for storing the encryption result
4 var plaintext; // for storing the decryption result
5 var algorithm = {
6 name: "RSA-OAEP",
7 modulusLength: 2048, // 1024, 2048, 4096
8 publicExponent: new Uint8Array([0x01, 0x00, 0x01]),
9 hash: {
10 name: "SHA-256" // SHA-1, SHA-256, SHA-384, SHA-512
11 }
12 };

Listing 4: Defining variables

In listing 5, the application generates a new key-pair for encrypting and decrypting us-

ing crypto.subtle.generateKey method (lines 14-18). If the key generation succeeds the

resulting CryptoKey object is stored in cryptoKeyPair object (line 21).

13 // Generate keys
14 window.crypto.subtle.generateKey(
15 algorithm ,
16 false, // non-exportable
17 ["encrypt", "decrypt"] // usage
18 )
19 .then(function(result) {
20 // Store keys
21 cryptoKeyPair = result;
22 })

Listing 5: Generating keys

In listing 6, the application performs the encryption by converting the input text to Uint8Array

format (which is required format by subtle.encrypt method) and then encrypting the mes-

sage using the crypto.subtle.encrypt method with the public-key from the CryptoKey ob-

ject (lines 25-30). If the encrypt method succeeds the resulting ArrayBuffer formatted data

is converted to Uint8Array format and then stored in ciphertext variable (line 34).

23 .then(function() {
24 // Encrypt
25 var data = utils.convertTextToUint8Array(message);



18

26 return window.crypto.subtle.encrypt(
27 algorithm ,
28 cryptoKeyPair.publicKey ,
29 data
30 );
31 })
32 .then(function(result) {
33 // Store ciphertext
34 ciphertext = new Uint8Array(result);
35 })

Listing 6: Encrypting a message

In listing 7, the application displays the encrypted data in console. The convertUint8ArrayToHexView

helper method from utils module is used to format the ciphertext to hex format (lines 38-

40).

36 .then(function() {
37 // Output
38 console.log('Encrypted data:');
39 console.log(
40 utils.convertUint8ArrayToHexView(ciphertext , 16, ''));
41 })

Listing 7: Displaying the encrypted data in console

In listing 8, the application performs the decryption by using the crypto.subtle.decrypt

method with the private-key from the CryptoKey object (lines 44-48). If the decrypt method

succeeds the resulting ArrayBuffer formatted data is converted to Uint8Array format and

stored in plaintext variable (line 52).

42 .then(function() {
43 // Decrypt
44 return window.crypto.subtle.decrypt(
45 algorithm ,
46 cryptoKeyPair.privateKey ,
47 ciphertext
48 );
49 })
50 .then(function(result) {
51 // Store plaintext
52 plaintext = new Uint8Array(result);
53 })

Listing 8: Decrypting a message



19

In listing 9, the application displays the decrypted data in console. The convertUint8ArrayToText

helper method from utils module is used to format the Uint8Array data to text format (lines

56-57).

54 .then(function() {
55 // Output
56 console.log('Decrypted data:');
57 console.log(utils.convertUint8ArrayToText(plaintext));
58 })

Listing 9: Displaying the decrypted data in console

In listing 10, the application defines an error handler which displays error in the console

(lines 60-64). The error handler is called if promise is rejected by any of the previous

steps.

59 .catch(function(err) {
60 console.error(
61 'Error code:', err.code,
62 ', name:', err.name,
63 ', message:', err.message
64 );
65 });

Listing 10: Encrypt and decrypt (Catch errors)

Finally, in listing 11, the application outputs the results to the console. First the encrypted

data is displayed using hexadecimal format on the left side and plain text is displayed on

the right side and then below the decrypted data is displayed as a plain text.

1 Encrypted data:
2 [length: 256 bytes (2048 bits)]
3 ad56a26a1b1e09515a60832c724c88b2 .V.j...QZ...rL..
4 2d950f5b6f741670fe5149d3b683f7ff ....ot.p.QI.....
5 0a7ab6a608477cf7e76576ffe44647bb .z...G...ev..FG.
6 dfe863e843208f99b900152b415678d6 ..c.C.......AVx.
7 b96871f0c30cc046dea60d67fd4bbc64 .hq....F...g.K.d
8 0e09d310b52c85d48bcc7b01b56ea940 .............n..
9 32e834f65096f274f036af8b36a3caaa 2.4.P..t.6..6...
10 20638403a90207e05d00b8280bd3d2dd .c..............
11 4614f7ee22800c17f62a931613f724d4 F...............
12 d2f43a62e04f96fc649a98c8f0554f3b ...b.O..d....UO.
13 86360b43ff2d20ab8ca61c1c6101c9b6 .6.C........a...
14 52962e46e6a48fbae6f167fee3115eec R..F......g.....
15 a59f8fc8c8fa1fa759a2e386c7a54a85 ........Y.....J.
16 cbe6fba09ca20cfa77544533fc4c2bdc ........wTE3.L..



20

17 c5c5283f8d53d2d63e5b08013cead68f .....S..........
18 f5aa7495d7580de2e0821b007d6a98e6 ..t..X.......j..
19
20 Decrypted data:
21 Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Listing 11: Console output

2.5.2 Exporting Public-Key from CryptoKey Object

In cryptography it is useful to export the public-key or secret-key out of the application for

sharing it with other users or applications. The following example shows how to export

the public-key in the JSON WebKey (JWK) [71] format.

In listing 12, the application defines an variable for specifying algorithm and the settings

to be used (lines 1-8), generates a key-pair using RSA-OAEP algorithm (lines 10-14) and

then exports the public-key part of the CryptoKey object (lines 16-19) in JWK format and

then finally displays the resulting JSON object in the console (lines 22-23).

1 var algorithm = {
2 name: "RSA-OAEP",
3 modulusLength: 2048, // 1024, 2048, 4096
4 publicExponent: new Uint8Array([0x01, 0x00, 0x01]),
5 hash: {
6 name: "SHA-256" // "SHA-1", "SHA-256", "SHA-384", "SHA

-512"
7 }
8 };
9
10 window.crypto.subtle.generateKey(
11 algorithm ,
12 false, // non-exportable
13 ["encrypt", "decrypt"] // usage
14 )
15 .then(function(cryptoKey) {
16 return window.crypto.subtle.exportKey(
17 'jwk', // export format
18 cryptoKey.publicKey
19 );
20 })
21 .then(function(exportedKey) {
22 console.log('Exported key:');
23 console.log(JSON.stringify(exportedKey));
24 });

Listing 12: Exporting key



21

Listing 13 shows the complete output of the application. The output is displayed using

stringified JavaScript Object Notation (JSON) format.

1 Exported key:
2 {
3 "alg":"RSA-OAEP -256",
4 "e":"AQAB",
5 "ext":true,
6 "key_ops":["encrypt"],
7 "kty":"RSA",
8 "n":"rJfyCYI2uVa_IWviXTFljMPgO_iwZVSh -
9 ZoYtW9kUXmyAtcpaNBOlcHYVtqVe3wdRS
10 LE-SEO6m08QXU7v63d9m0vUoWzqnXaWzN
11 fJaP_2CfhcC_k2DWWprJxY6r0gykMsm6X
12 QkJldfmOO55CQ4U_vnv55xJUa_AppGFdg
13 2x-FsXBNYUb5krEw -TODQHSEcCzk6d_cz
14 iBM41WHuea2GROXPMeyi_jAHt -tDEdDBl
15 YQD1IW4tqXL7U9XYUC04JMlSuKlarNmju
16 2ygrgWUvpySVYEh50HSLTknX24GiBS48l
17 esc1pLK-NRTsSMA4KXYgnkBbBnkwUdGZH
18 HNmyLC1xRrow"
19 }

Listing 13: Exporting key

2.6 CryptoKey Objects

The CryptoKey object is used as a reference to the key material that is managed by

the user agent. CryptoKey objects may reference key material that has been generated

and imported by the user agent or key material that has been derived from other keys

by the user agent or made available to the user agent in some other ways. Also the

CryptoKey object does not necessary directly interact with the underlying key storage

mechanism, and may instead simply instruct the user agent how to obtain the key ma-

terial when needed, for example when performing a cryptographic operation. CryptoKey

object can hold reference to a asymmetric key, key-pair (public-key and/or private-key),

or symmetric key (secret-key). The CryptoKey object also contains information about the

algorithm and the settings that were used when generating the key(s).

The specification does not explicitly provide any new storage mechanisms for CryptoKey

objects. Instead it allows the CryptoKey objects to be used with any existing or future

web storage mechanism that supports storing structured clonable objects. It is expected



22

that in practice most developers will make use of the Indexed Database API (IndexedDB)

[72] which allows associative storage of key/value pairs, where the key can be used as

an identifier for the key object and the value for storing the CryptoKey object.

Indexed database allows storing and retrieving the CryptoKey objects, without ever expos-

ing the object to the application or to the JavaScript environment. Also since the Indexed

Database API uses same-origin access-policy, the application can only access the keys

that were previously stored by the same origin, thus securing the key usage [31] (for more

information about same-origin concept, see the section 2.10 on page 25).

CryptoKey objects can be stored in any storage that supports a structured clone algorithm

[7]. Indexed Database API supports the structured clone algorithm and can be used to

store CryptoKey objects. LocalStorage only supports storing simple objects and is not

suitable for storing CryptoKey objects.

Previously the main Web Cryptography API provided the KeyStorage interface for dis-

covering and storing pre-provisioned cryptographic keys, which are keys that have been

made available to the User-Agent by means other than the generation, derivation, import

and unwrapping functions of the Web Cryptography API, however a privacy issue of using

these kind of keys as “super-cookies” was identified and that caused the removal of the

functionality and creation of another new specification, the WebCrypto Key Discovery API

(see section 2.9 on page 24).

2.7 Browser Support

Now that the specification is in the Candidate Recommendation phase, all of the major

browser vendors are making the API available. Since the API does not mandate any

particular algorithms, it is possible that different browsers (user agents) support different

algorithms and some algorithms may be deprecated once they are deemed insecure.

Thus compatibility between different versions of browsers and the API implementation

cannot be guaranteed [31].



23

The latest information about WebCrypto API support can be found on browser vendor

support pages and from caniuse.com (“Can I use” web site) which provides up-to-date

browser feature support tables for desktop and mobile web browsers [73]. Figure 7 shows

the support available in different desktop web browsers (and browser versions) and cur-

rently the globally most used browser versions (marked with black border lines).

The figure contains the following notes,

1. Support in IE11 is based an older version of the specification.

2. Supported in Firefox behind the dom.webcrypto.enabled flag.

3. Supported in Safari using the crypto.webkitSubtle prefix.

IE Firefox Chrome Safari Opera

6

7

8

9

10

11
1

Edge

32
2

33
2

34

35

36

37

38

39

40

37

38

39

40

41

42

43

44

45

5.1

6

6.1

7

7.1
3

8
3

22

23

24

25

26

27

28

29

Not supported SupportedPartial support

Figure 7: Browser support (Source: caniuse.com by Alexis Deveria, used under CC BY-
NC 3.0 license [73]).

2.8 Polyfills

A polyfill term was first introduced by Remy Sharp [74] and has been since used with the

connection of libraries that try to fill in the missing parts from browser implementations

[75]. JavaScript Polyfills have existed for a number of years and enable developers to take

advantage of upcoming (or in most cases, current) APIs across browsers, old and new

by implementing similar behavior than the native implementation. Polyfills can roughly

be divided into two categories, extensions to the core Document Object Model (DOM)16

16The Document Object Model (DOM) is an application programming interface (API) for HTML and XML
documents



24

and Browser Object Model (BOM)17, or extensions to the core JavaScript language. In

the case of Web Cryptography API, the polyfill libraries were useful in the early days of

the specification, since there weren’t any native implementations available for developers

to try out. However, now that most major browser vendors are currently implementing

support for Web Cryptography API, the polyfill libraries are not needed anymore and most

of them have discontinued development.

The United States Department of Homeland Security and BBN Technologies created

PolyCrypt [76] polyfill that implemented the 2012 draft specification of the Web Cryp-

tography API which developers could use to get a feel for how they can use the API in

practice. PolyCrypt is no longer under active development now that Web Cryptography

API is in its final stages to be released.

Netflix created NfWebCrypto [77] polyfill as a native browser plugin. NfWebCrypto does

not implement the Web Cryptography API in its entirety, due to limitations of browser

plugin technology. NfWebCrypto focus is on the operations and algorithms most useful

to Netflix. However, the existing feature set supports many typical and common crypto

use cases targeted by the Web Cryptography API. The NfWebCrypto library is no longer

under active development now that the Web Cryptography API is in its final stages to be

released.

2.9 Related Specifications

WebCrypto Key Discovery18 is an upcoming specification created by the Web Cryp-

tography Working Group of the World Wide Web Consortium (W3C) [29;33], that defines

an API that allows discovering named, origin-specific pre-provisioned cryptographic keys

that can be used with the Web Cryptography API [31]. At the time of writing this thesis

the WebCrypto Key Discovery specification was in the working draft phase which means

that the document has been published for review by the community, including W3C mem-

bers, the public, and other technical organizations. Ongoing and most up-to-date work
17The Browser Object Model (BOM) is browser-specific convention to allow the JavaScript to interact with

the web browser
18Also known as Web Cryptography Key Discovery



25

can be found in the editor’s draft. The document is intended to eventually become a W3C

recommendation. The specification does not yet have any implementation available [78].

Web Cryptography API Use Cases is a Working Group Note19 published by the Web

Cryptography Working Group of the World Wide Web Consortium (W3C), which is a tech-

nical report that gives overview of the target use cases for a cryptographic API for the web.

The use cases are described as scenarios and they represent some of the expected func-

tionality that may be achieved by using the Web Cryptography API [31]. It presents the

primary use cases, showing what the working group hopes to achieve first [35].

2.10 Security Considerations and Caveats

TheWeb Cryptography API does not change the fundamental Web Security model, which

is based on the same-origin concept which restricts how a document or script loaded from

one origin can interact with a resource from another origin [79;80]. In web cryptography,

same-origin policy is used to limit the usage of (cryptography) keys to the same origin

where the keys were originally generated.

Developers must be familar with existing threats to a web application and the underlying

security model employed and take all possible steps for protecting the JavaScript run-

time environment from threats. The Web Security model includes various access-control

mechanisms, of which some are upcoming features that should be enabled for more se-

cure JavaScript run-time environment:

• HTTP Strict Transport Security standard (HSTS) [80] which lets websites an-

nounce to browsers that they can be accessed only via HTTP Secure connection.

• Content Security Policy (CSP) [81] which informs the browser about the sources

from which the application expects to load resources.

• HTTP Public Key Pinning (HPKP) [82] which allows web host operators to instruct

user agents to enforce the usage of specific cryptographic identities over a period

of time, effectively mitigating some form of Men-In-The-Middle attacks [83].

• Subresource integrity (SRI) [84] which allows the user agents to verify that a

fetched resource has been delivered without unexpected manipulation.
19The Working Group may publish material that is not a formal specification as a working group note [30]



26

The Web Cryptography API is an low-level library that does not provide any default usage

values. This is why usage of the Web Cryptography API requires that the developers are

proficient in cryptographic literature and in using cryptographic primitives, know how to

use them and know what weaknesses algorithms have if used inappropriately.

The mere use of cryptography does not automatically make a system secure and while

cryptography is certainly useful, the security of the whole system must be considered.

The most basic principle of security is that overall security of the system is no stronger

than its weakest part [85].

Developers should note the following caveats when using the Web Cryptography API:

• CryptoKey with “encrypt” usage cannot be used to decrypt and a key with “decrypt”

usage cannot be used to encrypt, as commonly used to perform digital signing of

data (see section 2.2.3 on page 8). Instead a separate key pair with signing and

verifying keys must be used to perform digital signing when using the API.

• Asymmetric cryptographic algorithms are not meant to be used to encrypt long mes-

sages. Usually the maximum message size is shorter than the key size used (for

example a RSA-OAEP algorithm with 2048bit key-size allows a maximum of 1704

bits (or 213 bytes) of a message to be encrypted because of padding that is added

to the message for security reasons).

• When the cryptographic keys are stored locally in the browser, an attacker could

manage to steal the keys by injecting a malicious script by exploiting XSS (Cross-

Site Scripting) [86] or other vulnerability in the application.



27

3 Case Study

3.1 Introduction

Keeping secrets truly secret is becoming harder each day [18]. When users want to store

or share information online, they have currently very limited options for protecting their

identity and the privacy of their confidential data. Each message sent using an instant

messaging service or file stored in an online service could end up in wrong hands, as the

service providers could be forced to give up the information by a court order or the data

could also be stolen by foreign spying agencies or hackers [87].

One way to mitigate these kinds of privacy intrusions is to protect the data before it leaves

the user’s computer by encrypting the data with a strong algorithm and making sure that

the plain text message or the secret keys are not transmitted to the service provider. If

these precautions are taken, even if the service provider wanted to, the service owners

could not decrypt and read the contents of the stored data [87].

For this thesis, as an case study, a proof-of-concept end-to-end secure example applica-

tion for sharing encrypted and digitally signed messages was implemented. The example

application is called SecretNotes and it utilizes the new Web Cryptography API for per-

forming cryptographic operations directly on the web browser. The example application

uses asymmetric public-key and symmetric secret-key cryptography as a means to pro-

tect the sent messages and also provides a digital signature that can be verified by the

receiver (if the sender chooses to share identity). Symmetric secret-key cryptography is

used to encrypt and decrypt the actual message payload, allowing it to be longer than the

maximum length that could be normally encrypted using asymmetric cryptography.

The application does not reveal the plain text message, the decryption keys or other meta-

data such as the sender identity or the receiver’s name to the server, so nothing can be

leaked or revealed since server does not contain anything that could be used to decrypt



28

the messages (traditionally instant messaging applications store the messages and de-

cryption keys on the server which means that if the server security is compromised all of

the messages and the decryption keys needed to decrypt the messages could be leaked).

The only metadata that the example application shares with the server is the fingerprint,

an SHA-1 message digest (hash) of the public-key which was used to encrypt the note

contents. The fingerprint is used to index the notes on the server so that the notes can

be retrieved by the user which have the correct decryption key for reading the notes. The

note creation date is managed by the server and the note is automatically expired after

24 hours have passed.

The example application utilizes two helper modules, called utility module (utils.js) and

cryptography module (cryptography.js) which were written for this project. The utility mod-

ule providemethods for handling input and output data in a various formats that theSubtle-

Crypto interface methods require. The cryptography module provide high-level methods

for performing cryptographic operations. For example, in order to encrypt and at the same

time digitally sign plain text message the cryptography module provides encryptAndSign

method that can be utilized. The complete source code for the example application, exam-

ple server implementation and the helper modules can be found in the GitHub repository

[70].

The example implementation use concept of identities and enable the user to create new

private identities and to import private or public identities. Identity can have two sides, the

private and the public side. When identity is imported from shared public identity the iden-

tity only contains the public side. Private identity contains the private cryptographic keys

needed to decrypt and digitally sign sent notes. Public identity contains the public cryp-

tographic keys needed to encrypt notes and verify digital signatures. The Public identity

can be shared freely but private identity should be kept secret.

The SecretNotes application implements and enables the following features:

• Managing of User Identity:

– Creation of identity, by allowing the user to generate a public and private key-

pair for encrypting and decrypting data, and signing and verifying a key-pair for

creation of a digital signature and verification.



29

– Sharing of user identity, by allowing the user to export the public-side of their

own identity and share it safely with other user using any unsecure or public

channel. Shared user identity enables other users to send messages to the

user which the shared identity belongs to.

– Backup of user identity, by allowing the user to export the private and public-

side of the identity for safe-keeping or moving to an other computer or device.

• Sending and Receiving Notes:

– Encryption of a message, by allowing the user to encrypt the sent message

using the recipient public-key, so that only the recipient can read the message.

– Decryption of a message, by allowing the user to decrypt the received mes-

sage using the personal private-key.

• Digital Signing:

– Signing the sent message with a digital signature, by allowing the user to cre-

ate digital signature using a personal signing-key.

– Verifying the identity of the sender, by allowing the user to verify the digital

signature and store, and manage verifying keys of the sender.

– Anonymous identity by choosing not to include sender’s user identity informa-

tion in the message.

3.2 Sending and Receiving Digitally Signed Messages

In this section, technical process of sending and receiving digitally signed messages is

presented.

Prerequisites:

• For the sender to be able to send message to the receiver, the sender needs to have

the receiver’s public-key for encrypting the message.

• For the receiver to be able to verify the sender’s digital signature embedded in the

message, the receiver needs to have the sender’s verify-key for verifying the digital

signature.

When the sender (lets call the sender Alice) sends an encrypted and digitally signed mes-

sage (called Note) to the receiver (lets call the receiver Bob), the following steps are re-

quired.



30

Figure 8 below shows the steps used to encrypt and sign the message before it is sent to

the receiver. The steps are specified below.

1. Alice writes a plaintext message.

2. The plaintext is signed with Alice’s signing-key.

3. Alice generates a random symmetric-key and

4. a random initialization vector (IV).

5. Encrypts them both with Bob’s public-key.

6. Encrypts the plaintext and the digital signature form (step 2) with the symmetric-key

and initialization vector (steps 3. and 4.) and

7. combines resulting ciphertexts into one data package that can be sent to the re-

ceiver.

LTWELQAZJXTI

RJLLISCSGXSHE

JFYNZQDNQ

Alice

Sign with
Alice’s Signing Key

ASignK

Digital Signature
[signature]

Generate Random 
Symmetric Key

[SymK]

Generate Random 
Initialization 
Vector (IV)

[SymIV]

Encrypt with
SymK and SymIV

Plaintext
[message]

Encrypt with
Bob’s public-key

BPuK

encrypted
[message+ 
signature]

encrypted
[SymK + 
SymIV]

+
Torpedo 

recovery B
oat 

23 equippe
d 

with SSG
2.

4.

7.

3.

6.

5.

1.

Figure 8: Encrypting and signing a message (Copyright © 2015 Mika Luoma-aho)

Figure 9 on the following page shows the steps used to decrypt and verify the digital

signature on the message when it is received from the sender. The steps are specified

below.

1. Bob splits the input data to its known components: encrypted symmetric-key and

the initization vector (IV) [SymK and SymIV], encrypted message [message] and

the digital signature [signature].

2. Bob decrypts the [SymK+SymIV] data with Bob’s private-key, revealing symmetric-

key and the initization vector (IV) to be used with the key.

3. Bob decrypts the [plaintext+digitalsignature] data with the symmetric-key and the

initialization vector (IV), revealing the plaintext and digital signature.



31

4. Bob verifies digitalsignature using the plaintext and Alice’s verify-key.

5. Bob can read the plaintext and can be sure that the sender was Alice because the

digital signature was verified (step 6).

Bob

Torpedo 

recovery B
oat 

23 equippe
d 

with SSG

Verify Digital 
Signature with

Alice’s Verify Key
AVerK

Digital 
Signature
Verified √

[SymK]

[SymIV]

Decrypt with
SymK and SymIV

encrypted
[message+ 
signature]

encrypted
[SymK + 
SymIV]LTWELQAZJXTI

RJLLISCSGXSHE

JFYNZQDNQ

Decrypt with
Bob’s private-key

BPrK

Plaintext
[message]

Digital Signature
[signature]

1.

2.

3.

4.

5.

6.

Figure 9: Decrypting and verifying a message (Copyright © 2015 Mika Luoma-aho)

In the case study example application, when the sender decides to share identity and digi-

tally sign the message, the sender public-key and verify-key is attached with the message

and encrypted with the receiver public-key. Figure 10 shows the final data package con-

tents used by the example application when the sender has digitally signed the message.

In the figure, the Message is the plaintext message to be sent, DigitalSignature contains

the output of the sign operation, APuK is the sender’s public-key, AVerK is the sender’s

verify-key, and the SymK is the symmetric key that is used to encrypt the previously men-

tioned information. Finally the SymK (symmetric-key) and the SymIV (initialization vector

for symmetric-key) are encrypted with the receiver’s public-key (BPuK).

[
Message+DigitalSignature+APuK +AV erK

]
SymK

+
[
SymK + SymIV

]
BPuK

Figure 10: Encrypted and digitally signed message.

The example implementation has some shortcomings like the fact that the same public-

key is used over and over again to encrypt messages. This means that an attacker could

record all of the messages over some extended period of time, and then if the private-key

is compromised at any point in the future, the attacker could decrypt all of the previously

sent messages too. Some new modern cryptographic protocols like OTR [36] remedy

this situation by using a short lived key exchange protocol like the Diffie–Hellman key



32

exchange [88] which allows two parties to securely share cryptographic keys over a public

channel [89]. Since these key exchanges are short lived and the keys are temporal,

recording the messages over time does not help the attacker, since there is no key that

could be compromised in the future. Also since the keys are not stored anywhere, the

messages can’t be opened even if the user device is stolen or otherwise compromised.

This property is often called Perfect Forward Secrecy [37].

Possible improvements that could be made to the application are listed below:

• To increase privacy, the server could store all of the notes without any metadata

at all, and the fingerprint used to identity the receiver could be replaced with some

random identifier, which would mean that clients would have to search through all of

the data in order to find notes that they can decrypt. Alternatively, the receiver and

sender could share a secret passphrase and the message digest of that passphrase

could be used as a index for the messages stored on the server.

• To increase privacy even more, the server and client could randomly store additional

random notes that cannot be decrypted by anybody, but are used to confuse and

slow possible attackers since the attackers do not know which messages contain

real data and which do not.

Possible issues with the implementation:

• It is possible that the database used for storing the CryptoKey objects could be

deleted or cleared, so developers should allow the user to export the public and

private identity for safe keeping.

• Keys have to be shared and managed manually.

• User identity do not have any master password, meaning that anybody using the

same browser and web application can access and utilize the keys freely.



33

3.3 Usage

In this section, a simple use case using the example application is presented. The use

case scenario is the following: Alice is going to send a digitally signed note to Bob. First,

Alice and Bob is going to generate identities on their own computers. Then Bob exports

public identity and shares it with Alice so that Alice can send note to Bob using Bob’s

public cryptographic key. Since Alice uses Bob’s public cryptographic key to encrypt the

sent note, only Bob can open and read the note. Alice is also going to digitally sign the

sent note and include Alice’s own public identity with the note so that Bob can reply to

Alice’s note and also verify that the digital signature is valid (providing both authentication

and non-repudiation) and the note has not been tampered with (providing integrity).

First, when Alice opens the application in a web browser, the view as seen in figure 11 is

shown. Since Alice has not created an identity, the application instructs to start by creating

a new identity.

Figure 11: Welcome view of the application (Screenshot of the example application)



34

Alice chooses to create a new identity as seen in figure 12. The figure contains the fol-

lowing notes,

1. Alice fills in the name which will be used internally for this identity. The name is not

shared and is only used for identifying this identity stored locally.

2. Alice decides not to make the identity exportable which means that Alice’s private

identity cannot be exported out of the application. This option gives a extra security

since Alice’s private key is not exportable from the JavaScript environment.

Figure 12: Creating a new identity (Screenshot of the example application)



35

Next, Bob creates an identity on his own computer as seen in figure 12 on the preceding

page. The figure contains the following notes,

1. Bob fills in the name which will be used internally for this identity. The name is not

shared and is only used for identifying this identity stored locally.

2. Bob decides to make the identity exportable which means that Bob can share his

private identity with other devices or computers that he also uses for sending notes.

Figure 13: Creating a new identity (Screenshot of the example application)



36

Bob exports the public identity as seen in figure 14. The figure contains the following note,

1. Bob selects and copies the public part of the identity for sharing it with Alice. Bob

can share the public identity using any public or private communication channel.

Figure 14: Exporting an identity (Screenshot of the example application)



37

Next, Alice has received Bob’s public identity by email, web page or any other public

communication channel and imports it as a known identity as seen in figure 15. The

figure contains the following notes,

1. Alice fills in the name which will be used internally for this identity.

2. Alice copies and pastes Bob’s public identity into the identity field.

Figure 15: Importing a identity (Screenshot of the example application)



38

Figure 16 shows how Alice can manage identities stored in the browser by using the

identities section of the application. The figure contains the following notes,

1. Your identities section contains the private identities and allows the user to create

new identity and import identities.

2. Usage section displays the usage information for identity. In this example Alice’s

own private identity can be used for encrypting, decrypting, signing and verifying.

3. Identities can be deleted with the trashcan icon and exported with the download

icon.

4. Known identities section contains the public identities that have been imported. In

this case Bob’s public identity is listed.

5. Usage section displays the usage information for identity. In this example Bob iden-

tity can be used for encrypting and verifying.

Figure 16: Managing identities (Screenshot of the example application)



39

Next, Alice decides to write a note to Bob as seen in figure 17. The figure contains the

following notes,

1. Alice selects Bob as the target identity from the drop down list.

2. Alice writes the note to be sent.

3. Alice decides to remain anonymous. Thus she will not reveal her true identity to the

receiver.

Figure 17: Creating a new note (Screenshot of the example application)



40

Bob receives the note as can be seen in figure 18. The figure contains the following note,

1. The only info about the received note that Bob can see is the note creation time,

when the note is going to expire and the ID which is message digest (hash) which

is calculated from the encrypted note.

Figure 18: Notes view (Screenshot of the example application)



41

Next, Bob decrypts the note sent by Alice as seen in figure 19. The figure contains the

following notes,

1. Since the received note was sent as anonymous there is no way of really knowing

who sent the message.

2. Encryption-key and Signing-key fingerprint values are empty since the note was

anonymously sent.

3. The note content is visible since it was successfully decrypted using Bob’s private-

key.

Bob can now call or meet Alice and ask if Alice really sent the note.

Figure 19: Decrypted note (Screenshot of the example application)



42

Next, Alice decides to write another note to Bob as seen in figure 20. This time Alice is

going to include public identity and also sign the note with a digital signature so that Bob

can verify that note really was sent by Alice. The figure contains the following notes,

1. Alice selects Bob as the target identity from the drop down list.

2. Alice writes the note to be sent.

3. Alice decides to share identity to the receiver.

4. Alice decides to sign the note with digital signature.

Figure 20: Creating a new note (Screenshot of the example application)



43

Bob receives another note, this time with Alice’s public identity and also Alice’s digi-

tally signature as seen in figure 21 but the sender is still shown as unknown because

Bob do not have Alice’s identity. Bob should now verify that the encryption-key finger-

print (e6:73:d7:b4:e2:07:ea:96:ce:cf:d3:b1:10:3c:5e:5e:db:21:67:9a) belongs to Alice. Af-

ter Bob have verified the fingerprint Bob can import the identity which was included with

the note.

Figure 21: Received note from unknown sender (Screenshot of the example application)



44

Bob imports Alice’s identity that he received with the previous note as seen in figure 22.

The figure contains the following notes,

1. Bob fills in the name which will be used internally for this known public identity. The

name is not shared and is only used for identifying this identity stored locally.

2. The public identity is automatically filled in from the received message.

Figure 22: Importing an identity (Screenshot of the example application)



45

Now Bob can be sure that the sender really is Alice and that the message has not been

tampered with since the digital signature also validates the message integrity as seen in

the figure 23. The figure contains the following notes,

1. The message was received from identity locally called Alice.

2. The encryption-key and the signing-key fingerprint is displayed.

3. The note sender is trusted.

4. The note is digitally signed and the signature is valid.

Figure 23: Decrypted note from trusted sender (Screenshot of the example application)

For advanced developers the example applications also contain a debug section as seen

in figure 24 on the next page. The debug section can be used to inspect cryptography

keys, the received notes, and perform different cryptographic operations manually. The

figure contains the following notes,

1. The debug section is accessible from the main navigator.



46

2. The key storage contains the CryptoKey objects that have been stored in the local

indexed database.

3. The note storage contains the messages that are found with the actived identity (2.).

4. The input panel displays the input data for cryptographic operation. The input panel

can also be used to input data manually.

5. The output panel displays the output data from cryptograhical operation.

6. The actions contain the following operations that can be performed: encrypt, de-

crypt, sign, verify, digest, generateIdentity, importIdentity, exportKey and expor-

tIdentity.

7. The console view shows the output from the operations.

Figure 24: Received note from Alice now with digital signature that has been verified
(Screenshot of the example application)



47

3.4 About the Source Code

The source code written for this project is open source software: developers are free to

redistribute and/or modify it under the terms of the MIT License. License is available in

appendix 3. The complete source code for the SecretNotes example application is avail-

able from the GitHub repository [70]. Additionally source code for the helper modules utils

(utils.js) and cryptography (cryptography.js) is included in appendix 2. Since any code that

uses the Web Cryptography API needs to be loaded over a HTTP Secure connection, it

is necessary to setup a server to serve the files securely. A simple server that accom-

plishes this can be found under the server folder, and usage instructions can be found in

the root folder of the GitHub repository in the README.md file. It is also possible to run

the example application (with simulated server functionality that stores all notes locally in

the web browser) directly [90] from GitHub which provides a web site hosting and secure

connection for free.

The example applicationSecretNotes uses the followingMIT licensedCSS and JavaScript

libraries: Bootstrap Framework, Awesome Bootstrap Checkbox, Font Awesome, jQuery,

lodash, Moment.js, Respond.js, and Mongoose.



48

4 Conclusion

This thesis studied how recent and upcoming improvements in browser based web cryp-

tography and more specifically the Web Cryptography API is going to change how de-

velopers can write web applications that utilize cryptographic operations directly on the

web browser. However, writing cryptographically correct applications is hard, even for

cryptographically experienced developers. Great care must be taken when implement-

ing cryptographic protocols since the Web Cryptography API provides only the building

blocks, cryptographic primitives, for performing low-level operations. Incorrect protocol

implementation could make a cryptographic protocol unsafe and leak information or the

key material. It is possible that in the future, a high-level Web Cryptography API is pro-

vided for performing common cryptographic operations using algorithms and settings that

are deemed to be safe to use. However in the end, it is the developer, who must know

which algorithms are safe now and in the near future and also keep track of cryptographic

developments, and keep ahead of the possible attack vectors.

The case study discussed in this thesis revealed that it is easy to write cryptographic

applications that use the new Web Cryptography API specification, but since the Web

Cryptography API does not provide any defaults, great care had to be taken when se-

lecting the appropriate algorithms and values for each operation. The case study also

revealed that the key management had to be implemented as part of the web application,

since web browsers do not provide common interface for managing keys. However, this

shortcoming makes even the most trivial web applications more complex to implement.

Also to be able to move or share user’s private key material outside of the browser to

another device, platform or web browser the keys must be created as exportable which

makes keys vulnerable for attacks targeted to the JavaScript environment.

Finally, the investigation revealed that Web Cryptography API specification is an impor-

tant addition to the web browser JavaScript capabilities, but in order for it to be successful

in enabling creation of cryptographically secure web applications, the JavaScript environ-

ment needs a support from other security related technologies like the Content Security



49

Policy and Subresource Integrity specification. Also key management in the Web Cryp-

tography API is currently limited to the browser environment and new technologies like

the upcoming WebCrypto Key Discovery specification and other related specifications for

managing key material outside browser environment should be investigated.



50

References

1 Ecma International. ECMAScript Language Specification [online]. Ecma
International; 2011. URL:
http://www.ecma-international.org/publications/standards/Ecma-262.htm.
Accessed April 21, 2015.

2 AOL. Netscape [online]. AOL; 2015. URL: http://netscape.aol.com. Accessed
January 04, 2015.

3 Oracle Corporation. Oracle and Sun Microsystems [online]. Oracle
Corporation; 2015. URL: http://www.oracle.com/us/sun/index.html. Accessed
January 04, 2015.

4 Oracle Corporation. Java Language and Virtual Machine Specifications
[online]. Oracle Corporation; 2015. URL:
https://docs.oracle.com/javase/specs/. Accessed April 17, 2015.

5 Severance C. JavaScript: Designing a Language in 10 Days [serial online].
Computer. 2012 feb;45(2):7–8. URL: http://dx.doi.org/10.1109/mc.2012.57.

6 Gartner, Inc . Technology Research [online]. Gartner, Inc.; 2015. URL:
http://www.gartner.com. Accessed January 04, 2015.

7 Ian Hickson, Robin Berjon, Steve Faulkner, Travis Leithead, Erika D Navara,
Edward O’Connor, et al.. HTML5 [online]. W3C; 2014. URL:
http://www.w3.org/TR/html5/. Accessed February 22, 2015.

8 Gartner, Inc . Gartner Identifies the Top 10 Strategic Technology Trends for
2014 [online]. Gartner, Inc.; 2014. URL:
http://www.gartner.com/newsroom/id/2603623. Accessed April 05, 2015.

9 Node js Foundation. Node.js [online]. Node.js Foundation; 2015. URL:
https://nodejs.org. Accessed January 04, 2015.

10 Node js Foundation. JavaScript I/O - io.js [online]. Node.js Foundation; 2015.
URL: https://iojs.org. Accessed January 04, 2015.

11 Forbes, Inc . Home Depot Credit Card Breach Could Prove To Be Larger Than
Target Breach [online]. Forbes, Inc.; 2014. URL:
http://www.forbes.com/sites/katevinton/2014/09/03/data-breach-bulletin-
home-depot-credit-card-breach-could-prove-to-be-larger-than-target-breach/.
Accessed April 05, 2015.

12 Brian Krebs. Krebs On Security: Data Breaches Post Category [online]. Krebs
on Security; 2015. URL: http://krebsonsecurity.com/category/data-breaches/.
Accessed March 20, 2015.

13 Ars Technica. In The Wild: Phony SSL Certificates Impersonating Google,
Facebook, and iTunes [online]. Condé Nast; 2014. URL:
http://arstechnica.com/security/2014/02/in-the-wild-phony-ssl-certificates-
impersonating-google-facebook-and-itunes/. Accessed March 20, 2015.

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://netscape.aol.com
http://www.oracle.com/us/sun/index.html
https://docs.oracle.com/javase/specs/
http://dx.doi.org/10.1109/mc.2012.57
http://www.gartner.com
http://www.w3.org/TR/html5/
http://www.gartner.com/newsroom/id/2603623
https://nodejs.org
https://iojs.org
http://www.forbes.com/sites/katevinton/2014/09/03/data-breach-bulletin-home-depot-credit-card-breach-could-prove-to-be-larger-than-target-breach/
http://www.forbes.com/sites/katevinton/2014/09/03/data-breach-bulletin-home-depot-credit-card-breach-could-prove-to-be-larger-than-target-breach/
http://krebsonsecurity.com/category/data-breaches/
http://arstechnica.com/security/2014/02/in-the-wild-phony-ssl-certificates-impersonating-google-facebook-and-itunes/
http://arstechnica.com/security/2014/02/in-the-wild-phony-ssl-certificates-impersonating-google-facebook-and-itunes/


51

14 Courage Foundation. Surveillance Programs [online]. Courage Foundation;
2015. URL: https://www.freesnowden.is/surveillance-programs. Accessed
March 20, 2015.

15 National Security Agency. Welcome to the National Security Agency [online].
National Security Agency; 2015. URL: https://www.nsa.gov/. Accessed
January 04, 2015.

16 Landau S. Making Sense from Snowden: What’s Significant in the NSA
Surveillance Revelations. Security Privacy, IEEE. 2013 July;11(4):54–63.

17 Pew Research Center. About Pew Research Center [online]. 2015;URL:
http://www.pewresearch.org/about/. Accessed April 05, 2015.

18 Pew Research Center. Public Perceptions of Privacy and Security in the
Post-Snowden Era [online]. 2014;URL: http://www.pewinternet.org/files/2014/
11/PI_PublicPerceptionsofPrivacy_111214.pdf. Accessed March 15, 2015.

19 Symantec Corporation. Symantec Intelligence Report, January 2015 [online].
Symantec Corporation; 2015. URL:
http://www.symantec.com/content/en/us/enterprise/other_resources/b-
intelligence-report-01-2015-en-us.pdf. Accessed April 15, 2015.

20 Symantec Corporation. 2015 Internet Security Threat Report, Volume 20
[online]. Symantec Corporation; 2015. URL:
http://www.symantec.com/security_response/publications/threatreport.jsp.
Accessed April 15, 2015.

21 Symantec Corporation. Press release: Deceptive New Tactics Give Advanced
Attackers Free Reign Over Corporate Networks [online]. Symantec
Corporation; 2015. URL:
http://www.symantec.com/about/news/release/article.jsp?prid=20150414_01.
Accessed May 15, 2015.

22 Halpin H. The W3C Web Cryptography API: Motivation and Overview [serial
online]. In: Proceedings of the Companion Publication of the 23rd International
Conference on World Wide Web Companion. WWW Companion ’14. Republic
and Canton of Geneva, Switzerland: International World Wide Web
Conferences Steering Committee; 2014. p. 959–964. URL:
http://dx.doi.org/10.1145/2567948.2579224.

23 Stanford University. Stanford Javascript Crypto Library [online]. Stanford
University; 2009. URL: http://bitwiseshiftleft.github.io/sjcl/. Accessed March 02,
2015.

24 Jeff Mott. CryptoJS: JavaScript Implementations of Standard and Secure
Cryptographic Algorithms [online]. Jeff Mott; 2013. URL:
https://code.google.com/p/crypto-js/. Accessed April 10, 2015.

25 Forge: A Native Implementation of TLS (And Various Other Cryptographic
Tools) in JavaScript [online]. Digital Bazaar; 2015. URL:
https://github.com/digitalbazaar/forge/. Accessed April 10, 2015.

26 Google, Inc . V8 JavaScript Engine [online]. Google, Inc.; 2015. URL:
https://code.google.com/p/v8/. Accessed April 17, 2015.

https://www.freesnowden.is/surveillance-programs
https://www.nsa.gov/
http://www.pewresearch.org/about/
http://www.pewinternet.org/files/2014/11/PI_PublicPerceptionsofPrivacy_111214.pdf
http://www.pewinternet.org/files/2014/11/PI_PublicPerceptionsofPrivacy_111214.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-intelligence-report-01-2015-en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-intelligence-report-01-2015-en-us.pdf
http://www.symantec.com/security_response/publications/threatreport.jsp
http://www.symantec.com/about/news/release/article.jsp?prid=20150414_01
http://dx.doi.org/10.1145/2567948.2579224
http://bitwiseshiftleft.github.io/sjcl/
https://code.google.com/p/crypto-js/
https://github.com/digitalbazaar/forge/
https://code.google.com/p/v8/


52

27 Matasano Security. Javascript Cryptography Considered Harmful [online].
Matasano Security; 2014. URL:
http://matasano.com/articles/javascript-cryptography. Accessed March 01,
2015.

28 Lawson N. Side-Channel Attacks on Cryptographic Software [serial online].
IEEE Security & Privacy Magazine. 2009 nov;7(6):65–68. URL:
http://dx.doi.org/10.1109/msp.2009.165.

29 W3C. W3C Web Cryptography Working Group [online]. W3C; 2014. URL:
http://www.w3.org/2012/webcrypto/. Accessed January 04, 2015.

30 W3C. World Wide Web Consortium Process Document [online]. W3C; 2014.
URL: http://www.w3.org/2014/Process-20140801/. Accessed April 15, 2015.

31 W3C. Web Cryptography API [online]. W3C; 2014. URL:
http://www.w3.org/TR/2014/CR-WebCryptoAPI-20141211/. Accessed
February 22, 2015.

32 Rescorla E. HTTP Over TLS [online]. RFC Editor; 2000. 2818. URL:
http://www.rfc-editor.org/rfc/rfc2818.txt.

33 W3C. About W3C [online]. W3C; 2015. URL: http://www.w3.org/Consortium/.
Accessed January 04, 2015.

34 Mozilla Foundation. Web Workers API [online]. Mozilla Foundation; 2015.
URL: https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API.
Accessed April 17, 2015.

35 Arun Ranganathan. Web Cryptography API Use Cases [online]. W3C; 2013.
URL: http://www.w3.org/TR/webcrypto-usecases/. Accessed February 28,
2015.

36 Ian Goldberg. Off-The-Record Messaging Protocol Version 3 [online].
Cypherpunks Canada; 2008. URL:
https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html. Accessed February 22,
2015.

37 Scott Helme. Perfect Forward Secrecy [online]. Scott Helme; 2014. URL:
https://scotthelme.co.uk/perfect-forward-secrecy/. Accessed February 18,
2015.

38 Stark E, Hamburg M, Boneh D. Symmetric Cryptography in Javascript [serial
online]. 2009 dec;URL: http://dx.doi.org/10.1109/acsac.2009.42.

39 Mozilla Foundation. DOMCryptAPISpec [online]. Mozilla Foundation; 2011.
URL: https://wiki.mozilla.org/Privacy/Features/DOMCryptAPISpec/Latest.
Accessed April 17, 2015.

40 Folsom, W Davis. Understanding American Business Jargon: A Dictionary.
Greenwood Publishing Group; 2005.

41 W3C. Security Activity Statement [online]. W3C; 2015. URL:
http://www.w3.org/Security/Activity. Accessed April 17, 2015.

http://matasano.com/articles/javascript-cryptography
http://dx.doi.org/10.1109/msp.2009.165
http://www.w3.org/2012/webcrypto/
http://www.w3.org/2014/Process-20140801/
http://www.w3.org/TR/2014/CR-WebCryptoAPI-20141211/
http://www.rfc-editor.org/rfc/rfc2818.txt
http://www.w3.org/Consortium/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
http://www.w3.org/TR/webcrypto-usecases/
https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
https://scotthelme.co.uk/perfect-forward-secrecy/
http://dx.doi.org/10.1109/acsac.2009.42
https://wiki.mozilla.org/Privacy/Features/DOMCryptAPISpec/Latest
http://www.w3.org/Security/Activity


53

42 W3C. Web Cryptography Working Group Charter [online]. W3C; 2014. URL:
http://www.w3.org/2011/11/webcryptography-charter.html. Accessed
January 04, 2015.

43 W3C. Identity in the Browser Workshop [online]. W3C; 2011. URL:
http://www.w3.org/2011/identity-ws/report.html. Accessed January 15, 2015.

44 W3C. Suomen Toimisto [online]. W3C; 2015. URL: http://www.w3c.tut.fi/.
Accessed Januarytho 04, 2015.

45 IEEE Standard Specifications for Public-Key Cryptography. IEEE Std
1363-2000. 2000 Aug;p. 1–228.

46 Garfinkel, Simson. PGP: Pretty Good Privacy. 1st ed. Russell, Deborah, editor.
Sebastopol, CA, USA: O’Reilly & Associates, Inc.; 1996.

47 CGI, Inc . Public Key Encryption and Digital Signature: How Do They Work?
[online]. CGI, Inc.; 2004. URL:
http://www.cgi.com/files/white-papers/cgi_whpr_35_pki_e.pdf. Accessed
February 25, 2015.

48 European Parliament. Directive 1999/93/EC [online]. Brussels: EUR-Lex;
1999. URL:
http://eur-lex.europa.eu/legal-content/EN/LSU/?uri=CELEX:31999L0093.
Accessed May 05, 2015.

49 Rivest RL. The MD5 Message-Digest Algorithm [online]. RFC Editor; 1992.
1321. URL: http://www.rfc-editor.org/rfc/rfc1321.txt.

50 FIPS PUB 180-4: Secure Hash Standard (SHS) [online]. Gaithersburg, MD,
United States; 2012. URL:
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf.

51 Mozilla Foundation. Crypto Interface [online]. Mozilla Foundation; 2015. URL:
https://developer.mozilla.org/en-US/docs/Web/API/Crypto. Accessed
February 23, 2015.

52 Mozilla Foundation. Window [online]. Mozilla Foundation; 2015. URL:
https://developer.mozilla.org/en-US/docs/Web/API/Window. Accessed
February 23, 2015.

53 Mozilla Foundation. Worker [online]. Mozilla Foundation; 2015. URL:
https://developer.mozilla.org/en-US/docs/Web/API/Worker. Accessed
February 23, 2015.

54 Mozilla Foundation. SubtleCrypto Interface [online]. Mozilla Foundation; 2015.
URL: https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto.
Accessed February 23, 2015.

55 Mozilla Foundation. GetRandomValues Function [online]. Mozilla Foundation;
2015. URL: https://developer.mozilla.org/en-
US/docs/Web/API/RandomSource/getRandomValues. Accessed February 23,
2015.

56 Eastlake D, Schiller J, Crocker S. Randomness Requirements for Security
[online]. RFC Editor; 2005. 106. URL: http://www.rfc-editor.org/rfc/rfc4086.txt.

http://www.w3.org/2011/11/webcryptography-charter.html
http://www.w3.org/2011/identity-ws/report.html
http://www.w3c.tut.fi/
http://www.cgi.com/files/white-papers/cgi_whpr_35_pki_e.pdf
http://eur-lex.europa.eu/legal-content/EN/LSU/?uri=CELEX:31999L0093
http://www.rfc-editor.org/rfc/rfc1321.txt
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://developer.mozilla.org/en-US/docs/Web/API/Crypto
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Worker
https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto
https://developer.mozilla.org/en-US/docs/Web/API/RandomSource/getRandomValues
https://developer.mozilla.org/en-US/docs/Web/API/RandomSource/getRandomValues
http://www.rfc-editor.org/rfc/rfc4086.txt


54

57 Jonsson J, Kaliski B. Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1 [online]. RFC Editor; 2003. 3447.
URL: http://www.rfc-editor.org/rfc/rfc3447.txt.

58 Rivest RL, Shamir A, Adleman L. A Method for Obtaining Digital Signatures
and Public-key Cryptosystems [serial online]. Commun ACM. 1978
Feb;21(2):120–126. URL: http://doi.acm.org/10.1145/359340.359342.

59 RSA Laboratories. RSA Algorithm [online]. EMC Corporation; 2015. URL:
http://www.emc.com/emc-plus/rsa-labs/historical/rsa-algorithm.htm. Accessed
April 10, 2015.

60 Dworkin MJ. SP 800-38A 2001 Edition. Recommendation for Block Cipher
Modes of Operation: Methods and Techniques [online]. Gaithersburg, MD,
United States; 2001. URL:
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf.

61 Dworkin MJ. SP 800-38D. Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC [online]. Gaithersburg,
MD, United States; 2007. URL:
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf.

62 ANSI A. X9. 62: 2005: Public Key Cryptography for the Financial Services
Industry. The elliptic curve digital signature algorithm (ECDSA). 2005;.

63 Dworkin MJ. SP 800-38B. Recommendation for Block Cipher Modes of
Operation: The CMAC Mode for Authentication [online]. Gaithersburg, MD,
United States; 2005. URL:
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf.

64 FIPS PUB 198-1: The Keyed-Hash Message Authentication Code (HMAC)
[online]. Gaithersburg, MD, United States; 2008. URL:
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf.

65 Mozilla Foundation. Promise Object [online]. Mozilla Foundation; 2015. URL:
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Promise. Accessed
April 17, 2015.

66 Colin Toh. Staying Sane With Asynchronous Programming: Promises and
Generators [online]. Colin Toh; 2014. URL: http://colintoh.com/blog/staying-
sane-with-asynchronous-programming-promises-and-generators. Accessed
April 17, 2015.

67 Pyramid of Doom [online]. SurviveJS; 2014. URL:
http://survivejs.com/common_problems/pyramid.html. Accessed April 17,
2015.

68 Mozilla Foundation. ECMAScript 6 Draft [online]. Mozilla Foundation; 2015.
URL: http://wiki.ecmascript.org/doku.php?id=harmony:
specification_drafts#draft_specification_for_es.next_ecma-262_edition_6.
Accessed April 17„ 2015.

http://www.rfc-editor.org/rfc/rfc3447.txt
http://doi.acm.org/10.1145/359340.359342
http://www.emc.com/emc-plus/rsa-labs/historical/rsa-algorithm.htm
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
http://colintoh.com/blog/staying-sane-with-asynchronous-programming-promises-and-generators
http://colintoh.com/blog/staying-sane-with-asynchronous-programming-promises-and-generators
http://survivejs.com/common_problems/pyramid.html
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts#draft_specification_for_es.next_ecma-262_edition_6
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts#draft_specification_for_es.next_ecma-262_edition_6


55

69 Mozilla Foundation. Error Object [online]. Mozilla Foundation; 2015. URL:
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Error. Accessed April 17,
2015.

70 Mika Luoma-aho. SecretNote Source Code in GitHub Repository [online];
2015. URL: https://github.com/webcryptoapiex/secretnote. Accessed April 20,
2015.

71 Jones M. JSON Web Key (JWK) [online]. IETF Secretariat; 2015.
draft-ietf-jose-json-web-key-41. URL:
http://www.ietf.org/internet-drafts/draft-ietf-jose-json-web-key-41.txt.

72 W3C. Indexed Database API [online]. W3C; 2015. URL:
http://www.w3.org/TR/IndexedDB/. Accessed February 22, 2015.

73 Alexis Deveria. Browser Support for WebCryptoAPI [online]. Alexis Deveria;
2015. URL: http://caniuse.com/#feat=cryptography. Accessed April 08, 2015.

74 Remy Sharp. About [online]; 2015. URL: https://remysharp.com/about/.
Accessed January 04, 2015.

75 Remy Sharp. What is a Polyfill [online]. Remy Sharp; 2010. URL:
https://remysharp.com/2010/10/08/what-is-a-polyfill/. Accessed February 25,
2015.

76 Raytheon BBN Technologies Corp . PolyCrypt: Web Cryptography API Polyfill
[online]. Raytheon BBN Technologies Corp.; 2015. URL: http://polycrypt.net.
Accessed February 25, 2015.

77 Netflix, Inc . NfWebCrypto: Web Cryptography API Polyfill [online]. Netflix, Inc.;
2014. URL: https://github.com/Netflix/nfwebcrypto/. Accessed April 17, 2015.

78 Mark Watson. WebCrypto Key Discovery API [online]. W3C; 2014. URL:
http://dvcs.w3.org/hg/webcrypto-keydiscovery/raw-file/tip/Overview.html.
Accessed February 22, 2015.

79 Mozilla Foundation. Same-Origin Policy [online]. Mozilla Foundation; 2015.
URL:
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy.
Accessed February 23, 2015.

80 Barth A. The Web Origin Concept [online]. RFC Editor; 2011. 6454. URL:
http://www.rfc-editor.org/rfc/rfc6454.txt.

81 W3C. Content Security Policy Level 2 [online]. W3C; 2015. URL:
http://www.w3.org/TR/CSP2/. Accessed January 18, 2015.

82 Evans C, Palmer C, Sleevi R. Public Key Pinning Extension for HTTP [online].
RFC Editor; 2015. 7469. URL: http://www.rfc-editor.org/rfc/rfc7469.txt.

83 OWASP Foundation. Man-In-The-Middle Attack [online]. OWASP Foundation;
2014. URL: https://www.owasp.org/index.php/Man-in-the-middle_attack.
Accessed April 20, 2015.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error
https://github.com/webcryptoapiex/secretnote
http://www.ietf.org/internet-drafts/draft-ietf-jose-json-web-key-41.txt
http://www.w3.org/TR/IndexedDB/
http://caniuse.com/#feat=cryptography
https://remysharp.com/about/
https://remysharp.com/2010/10/08/what-is-a-polyfill/
http://polycrypt.net
https://github.com/Netflix/nfwebcrypto/
http://dvcs.w3.org/hg/webcrypto-keydiscovery/raw-file/tip/Overview.html
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
http://www.rfc-editor.org/rfc/rfc6454.txt
http://www.w3.org/TR/CSP2/
http://www.rfc-editor.org/rfc/rfc7469.txt
https://www.owasp.org/index.php/Man-in-the-middle_attack


56

84 W3C. Subresource Integrity [online]. W3C; 2015. URL:
http://www.w3.org/TR/SRI/. Accessed April 20, 2015.

85 Arce I. The Weakest Link Revisited [serial online]. IEEE Security & Privacy
Magazine. 2003 mar;1(2):72–76. URL:
http://dx.doi.org/10.1109/msecp.2003.1193216.

86 CGISecurity. The Cross-Site Scripting (XSS) FAQ [online]. CGISecurity; 2015.
URL: http://www.cgisecurity.com/xss-faq.html. Accessed May 09, 2015.

87 Lee M. Encryption Works: How to Protect Your Privacy in the Age of NSA
Surveillance [online]. 2013 jul;URL: https://freedom.press/encryption-works.

88 Eric Rescorla. Diffie-Hellman Key Agreement Method [online]. RFC Editor;
1999. 2631. URL: http://www.rfc-editor.org/rfc/rfc2631.txt.

89 Diffie, W , Hellman, M E . New Directions in Cryptography. Information Theory,
IEEE Transactions on. 1976 Nov;22(6):644–654.

90 Mika Luoma-aho. SecretNote Live Demo (Standalone Version) [online]; 2015.
URL: http://webcryptoapiex.github.io/secretnote/. Accessed April 20, 2015.

http://www.w3.org/TR/SRI/
http://dx.doi.org/10.1109/msecp.2003.1193216
http://www.cgisecurity.com/xss-faq.html
https://freedom.press/encryption-works
http://www.rfc-editor.org/rfc/rfc2631.txt
http://webcryptoapiex.github.io/secretnote/


Appendix 1
1 (1)

1 List of Algorithms

Algorithm name encrypt decrypt sign verify digest
generate

key
derive

key
derive

bits
import

key
export

key
wrap
key

unwrap
key

RSASSA-PKCS1
-v1_5 ✔ ✔ ✔ ✔ ✔

RSA-PSS ✔ ✔ ✔ ✔ ✔

RSA-OAEP ✔ ✔ ✔ ✔ ✔ ✔ ✔

ECDSA ✔ ✔ ✔ ✔ ✔

ECDH ✔ ✔ ✔ ✔ ✔

AES-CTR ✔ ✔ ✔ ✔ ✔ ✔ ✔

AES-CBC ✔ ✔ ✔ ✔ ✔ ✔ ✔

AES-CMAC ✔ ✔ ✔ ✔ ✔

AES-GCM ✔ ✔ ✔ ✔ ✔ ✔ ✔

AES-CFB ✔ ✔ ✔ ✔ ✔ ✔ ✔

AES-KW ✔ ✔ ✔ ✔ ✔

HMAC ✔ ✔ ✔ ✔ ✔

DH ✔ ✔ ✔ ✔ ✔

SHA-1 ✔

SHA-256 ✔

SHA-384 ✔

SHA-512 ✔

CONCAT ✔ ✔ ✔

HKDF-CTR ✔ ✔ ✔

PBKDF2 ✔ ✔ ✔ ✔



Appendix 2
1 (16)

2 Source Code

The complete source code for the example application, example server implementation

and the helper modules can be found in the GitHub repository [70]. The source code for

the utilities and cryptography helper modules can also be found in this appendix.

Listing 14 includes the complete JavaScript source code for the utilities helper module

(utils.js).

1 // Copyright 2015 Mika "Fincodr" Luoma-aho
2 // Provided under the MIT license. See LICENSE file for

details.
3 (function(parent){
4 "use strict";
5
6 // The main application module
7 var app = parent.app = parent.app || {};
8
9 // utils module
10 app.utils = (function(){
11
12 var self = this;
13
14 var module = {
15
16 stringPadRight: function(str, len, ch) {
17 var chx = ch || ' ';
18 while(str.length < len) {
19 str += chx;
20 }
21 return str;
22 },
23
24 stringPadLeft: function(s, len, ch) {
25 var str = '', chx = ch || ' ';
26 while(str.length + s.length < len) {
27 str += chx;
28 }
29 str += s;
30 return str;
31 },
32



Appendix 2
2 (16)

33 compareTwoUint8Arrays: function(a,b) {
34 if (a.length===b.length) {
35 for (var i=0, len=a.length; i!==len; ++i) {
36 if (a[i]!==b[i]) {
37 return false;
38 }
39 }
40 return true;
41 }
42 return false;
43 },
44
45 convertTextToUint8Array: function(s) {
46 var data = new Uint8Array(s.length);
47 for (var i=0, len=s.length; i!==len; ++i) {
48 data[i] = s.charCodeAt(i);
49 }
50 return data;
51 },
52
53 convertTextToArrayBuffer: function(s) {
54 var buf = new ArrayBuffer(s.length);
55 var view = new Uint8Array(buf);
56 for (var i=0, len=s.length; i!==len; ++i) {
57 view[i] = s.charCodeAt(i);
58 }
59 return buf;
60 },
61
62 packUint8Arrays: function() {
63 // generate big enough new array z
64 var i, len, ptr, count = arguments.length,

totalLength = 0;
65 for (i=0; i!==count; ++i) {
66 if (arguments[i]) {
67 totalLength += arguments[i].length;
68 }
69 }
70 var z = new Uint8Array(totalLength + count*2);
71 // copy data
72 for (i=0, ptr=0; i!==count; ++i) {
73 if (arguments[i]) {
74 len = arguments[i].length;
75 z.set(arguments[i], ptr + 2);
76 } else {
77 len = 0;
78 }
79 var datalen = new Uint16Array(2);
80 datalen[0] = len >> 8;
81 datalen[1] = len - (datalen[0]*256);



Appendix 2
3 (16)

82 if (len > 65535) {
83 throw new Error('packUint8Arrays supports max

length of 65535 bytes of data per packed
component');

84 }
85 z.set(datalen, ptr);
86 ptr += len + 2;
87 }
88 return z;
89 },
90
91 unpackUint8Arrays: function(data) {
92 var i = 0, len, ptr = 0, totalLength = data.length;
93 var z = [];
94 // copy data
95 while (ptr < totalLength) {
96 len = data[ptr] * 256 + data[ptr+1];
97 if (ptr+2+len > totalLength) {
98 throw new Error('unpackUint8Arrays out of bounds

!');
99 }
100 z.push(data.subarray(ptr + 2, ptr + 2 + len));
101 ptr += len + 2;
102 ++i;
103 }
104 return z;
105 },
106
107 concatUint8Arrays: function() {
108 // generate big enough new array z
109 var i, ptr = 0, totalLength = 0;
110 for (i=0; i!==arguments.length; ++i) {
111 totalLength += arguments[i].length;
112 }
113 var z = new Uint8Array(totalLength);
114 // copy data
115 for (i=0; i!==arguments.length; ++i) {
116 z.set(arguments[i], ptr);
117 ptr += arguments[i].length;
118 }
119 return z;
120 },
121
122 convertBase64ToUint8Array: function(data) {
123 var binary = window.atob(data);
124 var len = binary.length;
125 var buf = new ArrayBuffer(len);
126 var view = new Uint8Array(buf);
127 for (var i=0; i!==len; ++i) {
128 view[i] = binary.charCodeAt(i);



Appendix 2
4 (16)

129 }
130 return view;
131 },
132
133 convertUint8ArrayToBase64: function(data) {
134 var s = module.convertUint8ArrayToText(data);
135 return window.btoa(s);
136 },
137
138 convertUint8ArrayToText: function(data) {
139 var s = '';
140 for (var i=0, len=data.length; i!==len; ++i) {
141 s += String.fromCharCode(data[i]);
142 }
143 return s;
144 },
145
146 convertArrayBufferToText: function(data) {
147 var s = '';
148 for (var i=0, len=data.byteLength; i!==len; ++i) {
149 s += String.fromCharCode(data[i]);
150 }
151 return s;
152 },
153
154 convertArrayBufferToUint8Array: function(data) {
155 var a = new Uint8Array(data.byteLength);
156 for (var i=0, len=data.byteLength; i!==len; ++i) {
157 a[i] = data[i];
158 }
159 return a;
160 },
161
162 convertUint8ArrayToArrayBuffer: function(data) {
163 var a = new ArrayBuffer(data.length);
164 for (var i=0, len=data.length; i!==len; ++i) {
165 a[i] = data[i];
166 }
167 return a;
168 },
169
170 convertUint8ArrayToHex: function(data, sep) {
171 var a, h = '';
172 var ch = sep?sep:'';
173 for (var i=0, len=data.length; i!==len; ++i) {
174 a = data[i];
175 h += i>0?ch:'';
176 h += a<16?'0':'';
177 h += a.toString(16);
178 }



Appendix 2
5 (16)

179 return h;
180 },
181
182 convertHexToUint8Array: function(data) {
183 var len = data.length;
184 var a = new Uint8Array(len/2);
185 for (var i=0, j=0; i!==len; i+=2) {
186 a[j++] = parseInt(data.substr(i, 2), 16);
187 }
188 return a;
189 },
190
191 convertUint8ArrayToHexView: function(data, width, sep)

{
192 var a, h = '', s = '';
193 var ch = sep===undefined?' ':sep;
194 var n = 0;
195 h = '[length: ' + data.length + ' bytes (' + data.

length * 8 + ' bits)]\n';
196 for (var i=0, len=data.length; i!==len; ++i) {
197 a = data[i];
198 h += n>0?ch:'';
199 h += a<16?'0':'';
200 h += a.toString(16);
201 n++;
202 s += ((a>=97 && a<=122)|(a>=65 && a<=90)|(a>48 &&

a<=57))?String.fromCharCode(a):'.';
203 if (n===width) {
204 h += ' ' + s;
205 h += '\n';
206 n=0;
207 s='';
208 }
209 }
210 if (n!==0) {
211 h += ' ' + module.stringPadLeft('', (width-n)*3)

+ s;
212 }
213 return h;
214 }
215
216 };
217
218 return module;
219
220 })();
221
222 })(this); // this = window

Listing 14: Utility JavaScript module (utils.js)



Appendix 2
6 (16)

Listing 15 includes the complete JavaScript source code for the cryptography helper mod-

ule (cryptography.js).

1 // Copyright 2015 Mika "Fincodr" Luoma-aho
2 // Provided under the MIT license. See LICENSE file for

details.
3 (function(parent){
4 "use strict";
5
6 // The main application module
7 var app = parent.app = parent.app || {};
8
9 // fix safari crypto namespace
10 //
11 if (window.crypto && !window.crypto.subtle && window.

crypto.webkitSubtle) {
12 window.crypto.subtle = window.crypto.webkitSubtle;
13 }
14
15 /**
16 * Detect Web Cryptography API
17 * @return {Boolean} true, if success
18 */
19 function isWebCryptoAPISupported() {
20 return 'crypto' in window && 'subtle' in window.crypto;
21 }
22
23 // crypto module
24 app.cryptography = (function(){
25
26 var self = this;
27
28 var module = {
29
30 isSupported: function() {
31 // check that we have Crypto interface
32 if ("crypto" in window) {
33 // check that we have SubtleCryto interface
34 if ("subtle" in window.crypto) {
35 return true;
36 }
37 }
38 return false;
39 },
40
41 returnResolve: function(value) {
42 return new Promise(function(resolve, reject) {
43 resolve(value);
44 });
45 },



Appendix 2
7 (16)

46
47 digest: function(alg, data) {
48 return window.crypto.subtle.digest(
49 alg,
50 data
51 );
52 },
53
54 generateKeys: function(alg, exportable , usage) {
55 return window.crypto.subtle.generateKey(
56 alg, // algorithm
57 exportable , // non-exportable
58 usage // usage
59 );
60 },
61
62 importKey: function(key, alg, format, exportable ,

usage) {
63 return window.crypto.subtle.importKey(
64 format, // raw format
65 key, // key to import
66 alg, // algorithm
67 exportable , // exportable
68 usage // key usages
69 );
70 },
71
72 exportKey: function(key, format) {
73 return window.crypto.subtle.exportKey(
74 format, // raw format
75 key // key to export
76 );
77 },
78
79 encryptData: function(alg, key, inputData) {
80 return window.crypto.subtle.encrypt(
81 alg, // algorithm
82 key, // key to use for encryption
83 inputData // input data
84 );
85 },
86
87 decryptData: function(alg, key, inputData) {
88 return window.crypto.subtle.decrypt(
89 alg, // algorithm
90 key, // key to use for decryption
91 inputData // input data
92 );
93 },
94



Appendix 2
8 (16)

95 signData: function(alg, key, inputData) {
96 return window.crypto.subtle.sign(
97 alg, // algorithm
98 key, // key to use for signing
99 inputData // input data
100 );
101 },
102
103 exportIdentity: function(publicKey , privateKey ,

signingKey , verifyKey) {
104 return new Promise(function(resolve, reject) {
105 var exported = {};
106
107 function exportKeyOrContinue(key, format, c, k) {
108 return new Promise(function(done, fail) {
109 // Try to export publicKey
110 module.exportKey(key, format)
111 .then(function(result) {
112 c[k] = new Uint8Array(result);
113 done();
114 })
115 .catch(function(err) { done(); });
116 });
117 }
118
119 exportKeyOrContinue(publicKey , 'spki', exported , '

publicKeyData')
120 .then(function(result) {
121 return exportKeyOrContinue(privateKey , 'pkcs8',

exported , 'privateKeyData');
122 })
123 .then(function(result) {
124 return exportKeyOrContinue(verifyKey , 'spki',

exported , 'verifyKeyData');
125 })
126 .then(function(result) {
127 return exportKeyOrContinue(signingKey , 'pkcs8',

exported , 'signingKeyData');
128 })
129 .then(function(){
130 // Concat arrays
131 if (!exported.verifyKeyData) {
132 exported.publicIdentityData = app.utils.

packUint8Arrays(
133 exported.publicKeyData
134 );
135 } else {
136 exported.publicIdentityData = app.utils.

packUint8Arrays(
137 exported.publicKeyData ,



Appendix 2
9 (16)

138 exported.verifyKeyData
139 );
140 }
141 if (!exported.signingKeyData) {
142 exported.privateIdentityData = app.utils.

packUint8Arrays(
143 exported.privateKeyData
144 );
145 } else {
146 exported.privateIdentityData = app.utils.

packUint8Arrays(
147 exported.privateKeyData ,
148 exported.signingKeyData
149 );
150 }
151 resolve(exported);
152 })
153 .catch(function(err){
154 reject(err);
155 });
156 });
157 },
158
159 importIdentity: function(asymAlg, signingAlg ,

publicIdentityData , privateIdentityData ,
exportablePrivateIdentity) {

160 return new Promise(function(resolve, reject) {
161 var imported = {};
162
163 function importKeyOrContinue(key, alg, format,

exportable , usage) {
164 return new Promise(function(done, fail) {
165 if (key) {
166 // Try to import key
167 module.importKey(key, alg, format,

exportable , usage)
168 .then(function(result) { done(result); })
169 .catch(function(err) { done(); });
170 } else {
171 // Fail but continue
172 done();
173 }
174 });
175 }
176
177 var publicIdentity = app.utils.unpackUint8Arrays(

publicIdentityData);
178 var privateIdentity = app.utils.unpackUint8Arrays(

privateIdentityData);
179



Appendix 2
10 (16)

180 imported = {
181 publicKeyData: publicIdentity[0],
182 verifyKeyData: publicIdentity[1],
183 privateKeyData: privateIdentity[0],
184 signingKeyData: privateIdentity[1]
185 };
186
187 importKeyOrContinue(imported.publicKeyData ,

asymAlg, 'spki', true, ['encrypt'])
188 .then(function(result) {
189 imported.publicKey = result;
190 return importKeyOrContinue(imported.

verifyKeyData , signingAlg , 'spki', true, ['
verify']);

191 })
192 .then(function(result) {
193 imported.verifyKey = result;
194 return importKeyOrContinue(imported.

privateKeyData , asymAlg, 'pkcs8',
exportablePrivateIdentity , ['decrypt']);

195 })
196 .then(function(result) {
197 imported.privateKey = result;
198 return importKeyOrContinue(imported.

signingKeyData , signingAlg , 'pkcs8',
exportablePrivateIdentity , ['sign']);

199 })
200 .then(function(result) {
201 imported.signingKey = result;
202 resolve(imported);
203 });
204 });
205 },
206
207 verifyData: function(alg, key, digitalSignature ,

inputData) {
208 return window.crypto.subtle.verify(
209 alg, // algorithm
210 key, // key to use for signing
211 digitalSignature ,
212 inputData // input data
213 );
214 },
215
216 encryptAndSign: function(asymAlg, symAlg, signingAlg ,

plaintext , encryptionKey , signingKey , verifyKey ,
publicKey) {

217 return new Promise(function(resolve, reject) {
218
219 var state = {};



Appendix 2
11 (16)

220 state.plaintextUint8Array = app.utils.
convertTextToUint8Array(plaintext);

221
222 state.signed = signingKey?true:false;
223 state.hasSignature = state.signed?true:false;
224 state.hasPublicKey = publicKey?true:false;
225
226 // generate IV for symmetric encryption (

symmetricIV)
227 state.symmetricIV = window.crypto.getRandomValues(

new Uint8Array(16));
228
229 // generate symmetric key (symmetricKey)
230 module.generateKeys(symAlg, true, ['encrypt', '

decrypt'])
231 .then(function(symmetricKey) {
232 state.symmetricKey = symmetricKey;
233 // export generated key
234 return module.exportKey(state.symmetricKey , 'raw

');
235 })
236 .then(function(exportedSymmetricKey) {
237 state.exportedSymmetricKey = new Uint8Array(

exportedSymmetricKey);
238 if (state.signed && verifyKey) {
239 // if verify-key is provided , export the key
240 return module.exportKey(verifyKey , 'spki');
241 } else {
242 // if verify-key is not provided , continue to

next step
243 return module.returnResolve(false);
244 }
245 })
246 .then(function(exportedVerifyKey) {
247 if (state.signed && verifyKey) {
248 state.exportedVerifyKey = new Uint8Array(

exportedVerifyKey);
249 // if signing-key was provided , sign the

plaintext
250 return module.signData(signingAlg , signingKey ,

state.plaintextUint8Array);
251 } else {
252 // if signing-key was not provided , continue

to next step
253 state.exportedVerifyKey = new Uint8Array();
254 return module.returnResolve();
255 }
256 })
257 .then(function(digitalSignature) {
258 state.digitalSignature = new Uint8Array(



Appendix 2
12 (16)

digitalSignature);
259 if (state.hasPublicKey) {
260 // if public-key was provided , export the key
261 return module.exportKey(publicKey , 'spki');
262 } else {
263 // if public-key was not provided , continue to

next step
264 return module.returnResolve();
265 }
266 })
267 .then(function(exportedPublicKey) {
268 if (state.hasPublicKey) {
269 state.exportedPublicKey = new Uint8Array(

exportedPublicKey);
270 }
271 if (state.signed) {
272 // if signing, create package from: [

plaintext , digitalsignature , verifyKey , (
optional)publicKey ]

273 state.dataToEncrypt = app.utils.
packUint8Arrays(

274 new Uint8Array([1, state.hasPublicKey?1:0]),
275 state.plaintextUint8Array ,
276 state.digitalSignature ,
277 state.exportedVerifyKey ,
278 state.exportedPublicKey
279 );
280 } else {
281 // if not signing, create package from: [

plaintext , (optional)publicKey ]
282 state.dataToEncrypt = app.utils.

packUint8Arrays(
283 new Uint8Array([0, state.hasPublicKey?1:0]),
284 state.plaintextUint8Array ,
285 state.exportedPublicKey
286 );
287 }
288 symAlg.iv = state.symmetricIV;
289 // encrypt the package that was created on

previous step
290 return module.encryptData(symAlg, state.

symmetricKey , state.dataToEncrypt);
291 })
292 .then(function(encryptedDataArray) {
293 state.

encryptedPlaintextAndDigitalSignatureAndVerifyKey
= new Uint8Array(encryptedDataArray);

294 // create package from: [ symmetricKey ,
symmetricIV ]

295 state.symmetricKeyAndIVpack = app.utils.



Appendix 2
13 (16)

packUint8Arrays(
296 state.exportedSymmetricKey ,
297 state.symmetricIV
298 );
299 // encrypt the package that was created on the

previous step
300 return module.encryptData(encryptionKey.

algorithm , encryptionKey , state.
symmetricKeyAndIVpack);

301 })
302 .then(function(encryptedSymmetricKeyAndIVArray) {
303 state.encryptedSymmetricKeyAndIV = new

Uint8Array(encryptedSymmetricKeyAndIVArray);
304 // create output package from: [ [plaintext+((

optional)digitalsignature+verifykey)+(
optionally)publickey] + [symK+symIV] ]

305 state.packedCipher = app.utils.packUint8Arrays(
306 state.

encryptedPlaintextAndDigitalSignatureAndVerifyKey
,

307 state.encryptedSymmetricKeyAndIV
308 );
309 resolve(state);
310 })
311 .catch(function(err) {
312 // if rejected in any point of the process,

report the error
313 reject(err);
314 });
315 });
316 },
317
318 decryptAndVerify: function(asymAlg, symAlg, signingAlg

, digestAlg , packedCipher , decryptionKey) {
319 return new Promise(function(resolve, reject) {
320 var state = {
321 signed: false
322 };
323
324 var unpackedCipher = app.utils.unpackUint8Arrays(

packedCipher);
325
326 state.

encryptedPlaintextAndDigitalSignatureAndVerifyKey
= unpackedCipher[0];

327 state.encryptedSymmetricKeyAndIV = unpackedCipher
[1];

328
329 module.decryptData(decryptionKey.algorithm ,

decryptionKey , state.encryptedSymmetricKeyAndIV



Appendix 2
14 (16)

)
330 .then(function(result) {
331 var symmetricKeyAndIV = app.utils.

unpackUint8Arrays(new Uint8Array(result));
332 state.symmetricKeyData = symmetricKeyAndIV[0];
333 state.symmetricIV = symmetricKeyAndIV[1];
334 return module.importKey(state.symmetricKeyData ,

symAlg, 'raw', false, ['decrypt']);
335 })
336 .then(function(result) {
337 state.symmetricKey = result;
338 symAlg.iv = state.symmetricIV;
339 return module.decryptData(symAlg, state.

symmetricKey , state.
encryptedPlaintextAndDigitalSignatureAndVerifyKey
);

340 })
341 .then(function(result) {
342 var plaintextAndDigitalSignatureAndVerifyKey =

app.utils.unpackUint8Arrays(new Uint8Array(
result));

343 state.hasSignature =
plaintextAndDigitalSignatureAndVerifyKey
[0][0];

344 state.hasPublicKey =
plaintextAndDigitalSignatureAndVerifyKey
[0][1];

345 state.plaintextUint8Array =
plaintextAndDigitalSignatureAndVerifyKey[1];

346 if (state.hasSignature) {
347 // Is digitally signed
348 state.signed = true;
349 state.digitalSignature =

plaintextAndDigitalSignatureAndVerifyKey
[2];

350 state.verifyKeyData =
plaintextAndDigitalSignatureAndVerifyKey
[3];

351 state.publicKeyData = state.hasPublicKey?
plaintextAndDigitalSignatureAndVerifyKey
[4]:undefined;

352 return module.digest(digestAlg , state.
verifyKeyData);

353 } else {
354 // Not digitally signed
355 state.publicKeyData = state.hasPublicKey?

plaintextAndDigitalSignatureAndVerifyKey
[2]:undefined;

356 return module.returnResolve();
357 }



Appendix 2
15 (16)

358 })
359 .then(function(hash) {
360 if (state.signed) {
361 state.verifyKeyFingerprint = new Uint8Array(

hash);
362 return module.importKey(state.verifyKeyData ,

signingAlg , 'spki', true, ['verify']);
363 } else {
364 return module.returnResolve();
365 }
366 })
367 .then(function(result) {
368 if (state.signed) {
369 state.verifyKey = result;
370 }
371 if (state.publicKeyData) {
372 return module.importKey(state.publicKeyData ,

asymAlg, 'spki', true, ['encrypt']);
373 } else {
374 return module.returnResolve();
375 }
376 })
377 .then(function(publicKey) {
378 state.publicKey = publicKey;
379 if (state.publicKeyData) {
380 return module.digest(digestAlg , state.

publicKeyData);
381 } else {
382 return module.returnResolve();
383 }
384 })
385 .then(function(hash) {
386 if (state.publicKeyData) {
387 state.publicKeyFingerprint = new Uint8Array(

hash);
388 }
389 if (state.signed) {
390 return module.verifyData(signingAlg , state.

verifyKey , state.digitalSignature , state.
plaintextUint8Array);

391 } else {
392 return module.returnResolve(false);
393 }
394 })
395 .then(function(result) {
396 state.digitalSignatureValid = result;
397 resolve(state);
398 })
399 .catch(function(err){
400 reject(err);



Appendix 2
16 (16)

401 });
402 });
403 }
404
405 };
406
407 return module;
408
409 })();
410
411 })(this); // this = window

Listing 15: Cryptography JavaScript module (cryptography.js)



Appendix 3
1 (1)

3 MIT License

The MIT License (MIT)

Copyright (c) 2015 Mika Luoma-aho

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-

ware and associated documentation files (the ”Software”), to deal in the Software without

restriction, including without limitation the rights to use, copy, modify, merge, publish, dis-

tribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the

Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EX-

PRESSOR IMPLIED, INCLUDING BUT NOT LIMITED TO THEWARRANTIESOFMER-

CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE ANDNONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR

ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-

TRACT, TORTOROTHERWISE, ARISING FROM, OUT OFOR IN CONNECTIONWITH

THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.


	Introduction
	Web Cryptography API
	Background
	History
	About Web Cryptography Working Group

	Brief Introduction to Cryptography
	Public-Key Cryptography
	Symmetric Cryptography
	Digital Signature
	Message Digest

	Basic Usage of the Web Cryptography API
	Execution Model
	Example Scenarios
	Encrypting and Decrypting a Message
	Exporting Public-Key from CryptoKey Object

	CryptoKey Objects
	Browser Support
	Polyfills
	Related Specifications
	Security Considerations and Caveats

	Case Study
	Introduction
	Sending and Receiving Digitally Signed Messages
	Usage
	About the Source Code

	Conclusion
	References
	Appendices
	List of Algorithms
	Source Code
	MIT License

