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Terms and Abbreviations 

Biomass Refers to the biodegradable fraction of products, waste and residues from 

forestry related industries, agriculture and also municipal and industrial 

waste. 

CFB Circulating fluidized bed is a type of boiler for biomass or other ardent ma-

terial combustion, where the fuel is circulated in the combustion chamber. 

BFB Bubbling fluidized bed is a boiler type for biomass or other flammable ma-

terial combustion where the fuel is burned on a bed of limestone, sand or 

such and high pressure air is blown from beneath, making the sand act as 

a fluid. 

MW Megawatt. 

kWh Kilowatt-hour. 

ODT Oven dry ton, the unit to express the dried weight of organic material. 

Green ton 1000 kilograms of undried biomass material. 

CHP Combined heat and power. 

DH District heating. 

EJ Exajoule, amount of energy. Equals 1018 Joules. 

IBT Improved biomass technologies. 

MBT Modern biomass technologies. 

GHG Greenhouse gas. 

DC District cooling. 

DHC District heating and cooling. 



 

  

DHN District heating network. 

ESCO Energy service company. 

DPS District piping system 

BD Bulk density. The weight of a unit volume of a slack material to the same 

volume of water. 
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1 Introduction 

This chapter presents the aim and goals of the research and introduces the research 

question. It provides the background information, the reason of the research, and the 

expected outcomes.  

1.1 Background 

This research directly supports the pre-feasibility study of the potential of using forest-

biomass as an energy source for a district heating (DH) system in the Town of Marathon 

in northern Ontario, Canada. The study is conducted by the Nipissing University’s Bio-

mass Innovation Center (BIC). 

The district heating project, in Marathon, ON, is a pilot project which is part of a larger 

bio-economy strategy concerning the communities of northern Ontario. Small rural com-

munities are dependent on fossil fuels, which results in big costs and small beneficial 

impact, such as employment, within the community. In addition, this type of energy 

source emits greenhouse gases, causing the quality of air to reduce. In a higher level, 

the goal of the strategy is to activate the small communities in taking action towards 

creating a greener and cleaner community. 

The pre-feasibility study covers Marathon’s public buildings, such as the City Hall, mall, 

hospital and recreation complex. A detailed list of the buildings is provided in chapter 5. 

The district heating system will be a small-scale district heating system, providing heat 

to 15 or so buildings. Residential buildings can be connected afterwards if there is 

enough interest among the town residents. 

At the present moment the residents and the public buildings of the Town of Marathon 

are warmed primarily by fossil fuels, such as diesel and propane (Marathon.ca, n.d.). 

There is a need for a renewable and locally sourced form of energy, since the cost of 

fossil fuel is high. Residents have individual furnaces in their apartments, which turns the 

fuel into heat. 
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When warming houses with fossil fuels, the money spent does not stay in the community, 

it does not create or maintain jobs and it pollutes and creates more greenhouse gases 

compared to renewable energy options. 

1.2 Scope of the Study 

The scope of the study includes gathering information, assessing the viability of energy 

production using forest biomass and giving recommendations for further actions, esti-

mating whether to embark on a full scale feasibility study. The study also presents best 

practices for biomass district heating systems. 

1.3 Business Problem, Research Question, Objectives and Output 

The business problem is to prove the benefits, economic profitability and long-term sus-

tainability of a district heating network for the policy-makers. Policy-makers, such as town 

majors, economic development leaders and also politicians on the provincial level are 

the driving force behind getting the project initiated and most importantly - funded. The 

goal of this evaluation is to assess the viability of taking the project a step further to 

proceed with a full-scale feasibility study. 

 

The objectives of this research are to provide information and data to support the dis-

cussion of a pre-feasibility study. The secondary objective is to compile the best practices 

and lessons learned from global case studies in forest-biomass fueled district-heating 

projects. 

The output will be a report compiling facts, benefits and drawbacks, best practices, and 

lessons learned from global case studies. The report will provide information in a con-

centrated form. Also the viability of continuing a feasibility study will be analyzed and 

recommendations for further actions will be given. 

Is it viable to embark on a full scale feasibility study of a biomass fueled 

district heating system in the Town of Marathon? 
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This thesis is significant for the Town of Marathon, since there is a need for helping hands 

in this particular project, which is conducted by the BIC. Without this thesis opportunity, 

there would have been no one to gather the data itself for the feasibility study and the 

information about the various methods, costs and best practices. With this thesis, the 

workload of the BIC project team is facilitated and the project team can use their time in 

tasks which demand more experience. 

1.4 Process and Method 

For the theoretical part of this study, internet research, books and articles are used to 

gain knowledge of the subject at hand. For the practical part there is an on ground source 

to obtain more specific information. 

The research is mainly done by gathering information by using the internet, science and 

energy-related databases, books, journals and articles. More specific information, such 

as distances between buildings, the volumes of buildings, heated space and heat me-

dium used, are gathered by contacting an on ground source, who will contact the persons 

directly who have the information. Figure 1 illustrates the research progress. 

 

Figure 1. Study research progress. 
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The process of the research is straight forward. It starts off with clarifying the problem at 

hand. The research design is developed accordingly to the research problem, so that it 

gives the best outcome possible. The research design includes the gathering, analyzing 

and compressing of information in to the theoretical base, which will support the second 

part – collecting the more detailed data for the analysis. The more detailed information 

is gathered with the help of an on ground source and via email in other cases. The col-

lected data is compared to the theory base and reviewed if they support one another. 

The data is then analyzed and put into a form of the output, which is a report-like docu-

ment for use in the pre-feasibility study. 

 

1.5 Summary of Chapter 1 

 This thesis supports the pre-feasibility study of the possibility of using biomass 

as a fuel in a small-scale district heating scheme in the town on Marathon, north-

ern Ontario. 

 Key function of the study is information gathering, analysis and further recom-

mendations for action. 
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2 Biomass as a Source of Energy 

This chapter sheds light on the use of biomass as a form of energy and discusses the 

different forms in which biomass can appear. The chapter presents different ways of 

using biomass and talks about the advantages and disadvantages of this energy source. 

2.1 Introduction to Biomass 

Biomass refers to all plant-based organic materials and which, in its purest form, is the 

Sun’s energy collected and stored in to plants through photosynthesis (Seveda, M.S. 

et.al. 2011). The various types of biomass are:  

 Agricultural biomass. 

 Forest biomass. 

 Marine biomass. 

 Energy plantation. 

 Biomass from animal waste. 

 Municipal waste. 

Biomass can come in many forms and shapes, but is mostly used in solid forms. For 

example, these solid forms are forest and agricultural residue, wood waste from indus-

tries and forestry, municipal solid waste, and crops dedicated to be used as a source of 

energy. Biomass can also come in the form of gas. Such gases are landfill gases and 

wastewater treatment gases (IEA, 2011). This research will focus on forest biomass, 

since it would be the form used in the Town of Marathon. 

Biomass has been used since the beginning of mankind and currently it is estimated that, 

within the worlds energy supply, biomass contributes 10 to 14%, and is the fourth largest 

energy source after coal, petroleum and natural gas (McKendry, 2002). The world’s re-

newable energy supply mostly consists of biomass, which counts for 77.4% (Seveda, 

M.S. et.al. 2011). Although biomass is a renewable energy source, it also can be used 

un-renewably. The use of biomass is unsustainable when the rate of use exceeds the 

amount of biomass that can be produced, thus leaving behind a deficit (McKendry, P. 

2002). 
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2.2 Biomass used in the Modern Energy Industry 

The interest towards the use of biomass as an energy source is continually growing. New 

and more efficient ways are being studied and discovered, making the use of biomass 

all the more attractive as combustion technologies become more efficient, thus lowering 

costs of using biomass (McKendry, P. 2002). 

Biomass will continue to gain foothold and grow its share on the world’s energy market. 

The reasons why biomass is of interest as a source of energy are many. First of all, 

biomass can be produced at a low cost, meaning it can already compete with the price 

of fossil-fuel energy. In addition, the conversion efficiencies continue to improve, making 

biomass an even more attractive choice of fuel (McKendry, 2002). Using forest biomass 

is also beneficial to the health of forests, since forest management is improved. Forest 

residues are retrieved, which helps prevent forest fires, reduces insect threats and dis-

eases (USDA, 2014). Apart from that, the ash produced from forest biomass combustion 

can be re-used to fertilize the forests. 

As can be seen from Figure 2 below, biomass contributed for a total of 52EJ, or 10.2%, 

to the world’s energy consumption in 2009. From this amount, heat and electricity pro-

duction added up to 7EJ as a whole (Vakkilainen, E. et.al. 2013). 

 

Figure 2. World energy consumption 2009. Total energy supply was 509EJ. (Vakkilainen, E., 
et.al. 2013). 
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In the developed countries the use of biomass varies from 9 to 13 percent. In the devel-

oping countries the share of biomass can be as high as 50% and reaching 90% in some 

parts of the world. Generally the amount of biomass used is seen to be around 20-33% 

in the developing countries (Faaij, A. 2006). 

In the future, the world’s energy demand could be satisfied with the use of renewable 

energies only. Energy farming could be the solution for the possible future energy prob-

lems. It is estimated that energy crops, with projected technological progress, could be 

able to contribute by over 800EJ of energy. And this could be achieved without endan-

gering the world’s food supply (Faaij, A. 2006). 

2.3 Technology Overview 

There are many different ways of converting biomass into energy. The most conventional 

being the combustion of biomass. Energy conversion technologies can roughly be di-

vided into three main groups. These are 

1. Thermochemical conversion. 

2. Biochemical conversion and. 

3. Extraction, which concerns only oilseeds. 

Nowadays, new technologies are usually referred to with the abbreviations IBT and MBT, 

which stand for Improved Biomass Technologies and Modern Biomass Technologies 

(Karekezi, S. et.al. 2006). In this research we are going to focus on the thermochemical 

conversion technologies and more specifically combustion and gasification, since those 

are the ones used the most in converting forest biomass to energy. 

Combustion 

Combustion technologies can be used for producing just heat or heat and power, usually 

referred to as Combined Heat and Power (CHP). Basically a combustion system works 

by burning biomass in excess air which then is channeled through a heat exchanger, 

finally producing steam, hot air or hot water. Power is generated by channeling the hot 
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content, usually steam, to a turbine which runs a generator, thus creating electricity. 

Conventional ovens and furnaces represent the most basic concept of a biomass com-

bustion system. A furnace uses direct combustion to create heat. A number of variations 

of this conventional design exist throughout the world and new ones are created to find 

more efficient ways of converting biomass into energy (Zafar, S. 2014). 

The most common type of biomass boiler is a grate stoker. The fuel is supported by a 

grate in the combustion chamber, to which air is then directed in a controlled manner. 

The grate moves towards a fuel bed where the biomass is burned. Because of this there 

can be three phases in more developed systems; fuel drying, ignition and combustion of 

flammable components and finally burning out the char (Zafar, S. 2014). 

Fluidized bed boilers come in two different designs; Circulating Fluidized Bed (CFB) and 

Bubbling Fluidized Bed (BFB). A fluidized bed boiler consists of a bed of limestone, sand 

or some other static material. Air is blown underneath with enough pressure making the 

material behave similar to a fluid. The material is then heated to a temperature high 

enough to ignite biomass, or other ardent material. The fuel, biomass in this case, is then 

channeled to the combustion chamber where it burns and generates heat. A fluidized 

bed boiler can be used only in larger scale to achieve an efficient rate of use. Usually 

nominal boiler capacity has to be greater than 10MWth. CFB and BFB technologies pro-

vide advantages such as high fuel flexibility, lower specific investment costs and a high 

efficiency (Faaji, A. 2006). 

The efficiencies of combustion systems vary hugely depending on the fuel quality. With 

conventional furnaces the rates of efficiency can be as low as 10%. But with improved 

systems and by using biomass pellets, efficiency rates can be as high as 70-90%. In 

larger systems with a capacity of 50-80MWe the efficiency is usually around 30-40% 

(Faaij, A., 2006). 

Gasification 

Gasification uses solid fuels in converting biomass into heat and power. Small scale 

gasification ranges start from the tenths of kW and go up to 1MWth (Faaij, A. 2006). The 

working principle of a gasification system is in converting solid biomass into fuel gas, 

which can then be combusted. The organic material is heated to 700Co and higher, where 

the material will convert into carbon monoxide, hydrogen and carbon dioxide. This fuel 
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gas mixture (also called syngas) can then be combusted and turned into heat and power 

(Rajvanshi, A. 1986). 

Different kinds of gasification systems can be divided to three different groups; updraft, 

downdraft and crossdraft. There is a number of variations from these basic designs, for 

example fluidized bed systems and entrained bed systems (Rajvanshi, A., 1986). 

Co-firing 

Co-firing means combusting biomass with another combustible material at the same 

time. Usually the material burned along with biomass is coal. Although coal is a fossil 

fuel, there are many advantages compared to only-biomass fired plants. It has a higher 

efficiency than combusting biomass only, reaching rates of 40%. There is also low in-

vestment costs when high quality fuels are used, and GHG emissions are reduced com-

pared to only coal-fired plant. These systems are proven efficient in plants of larger scale, 

with capacities usually being around 50-700MWe.  (IRENA, 2013). 

2.4 Benefits and Drawbacks of Using Forest Biomass as an Energy Source 

It is evident that there are a number of benefits from using forest biomass. Foremost is 

the fact that biomass is a renewable energy source and thus has limited detrimental and 

potentially harmful impacts on the environment. Table 1 sums up both the benefits and 

disadvantages of using biomass as an energy source. 
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Benefits Drawbacks 

More local jobs which fuels the local economy Inefficient if compared to fossil fuels 

Better air quality Expensive to use – the energy production costs 

when using forest biomass are higher due to 

expensive logistics, handling and harvest. 

Use of energy easier to predict Soil loses fertility and living habitat for different 

species changes 

Increased flexibility and reliability of energy Easy access to wood source is crucial – longer 

hauling distances mean bigger fuel expenses 

Support of local economies will contribute to overall fiscal 

health of the community 

There can be a lack of energy wood, if the har-

vest cycle is not long enough 

No harmful emissions – Forest biomass does not contribute 

to GHG emissions since the carbon dioxide released when 

burned had been absorbed when the plant grew.  

 

Forest biomass is a renewable energy source  

 

 Using forest biomass as an energy source - Benefits and Drawbacks (Barnes, K. 

& Ashton, S., n.d.) 
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2.5 Summary of Chapter 2 

 Most commonly biomass is used in solid forms. 

 Biomass has been gaining traction in the world’s energy markets and will con-

tinue to do so, as technology develops and efficiency rates increase. 

 Combustion is the most used way to turn biomass into heat and power. 

3 Small Scale District Heating Systems and CHP power production 

This chapter talks about district heating systems, weighs the benefits and drawbacks 

and presents the different systems and technologies available for district heating and 

introduces best practices. 

3.1 District Heating Systems Used in the Modern Energy Industry 

District Heating (DH) is a system which centrally distributes heat (in some cases also 

cooling, DC) to apartments, industrial and commercial buildings and so forth. A network 

of insulated pipeline delivers heated water, air, steam or other medium of heat to the 

customers that are connected to the grid. Usually hot water is used in DH systems, but 

industrial customers might need steam in their processes. The pipeline between custom-

ers and the power plant form a District Heating Network (DHN). In a smaller scale, District 

Heating is called Community Heating. 

The heat is produced in a centralized power plant, in this case fueled by biomass but 

also natural gas or coal would also suffice. In DH systems the heat production can be 

connected to electricity production since the efficiency of the system can be greater this 

way. The heated medium is delivered to the customers at a temperature between 65-

95oC and it returns to the power plant warmer than the ambient environment where it is 

re-heated (Pan, Bouchlaghem, Eames, Young, Gill, 2012). 
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The components which determine the feasibility of a district heating network are many. 

Building a district heating network is a big investment and a long term project, and most 

times it is not that profitable (Andrews et. al, 2012). The following aspects contribute to 

the feasibility of a DH network: 

 Heat density of network – Is the amount of heat sold to customers compared to 

the length of the pipeline. It basically describes the rate of use of the network. It 

is considered that there should be 1MWh per meter of pipeline (Hirvonen, 2014). 

 Capacity factor – The time to produce the amount of energy in a year with boilers 

nominal output compared to actual production figures is described with boilers 

capacity factor. Basically it is the workload of a boiler. For example, if a 500kW 

boiler would produce 2000MWh of heat, its capacity factor would be 4000h/a. In 

theory, this means that the boiler would be running on nominal power to produce 

the yearly energy. The capacity should be above 4000 hours a year in order to 

decrease investment payback time (Hirvonen, 2014). 

 Network heat losses – Even though the pipeline which distributes the heat is 

insulated, there are always heat losses. In bigger systems the heat losses are 

usually smaller, roughly around 10% and under. In smaller systems heat losses 

can be as high as 20%. Network heat losses are in close relation to the heat 

density of network. When customers are closer to each other, there is less ex-

posed pipeline and less heat loss. Heat loss is due to soil properties, length of 

network, insulation properties and temperature. In pre-feasibility studies the 

amount of heat loss can be usually estimated to be 15-25 W/m depending on the 

size of the network (Hirvonen, 2014). 

 Heat production profile – The need for heat varies a lot depending on the time 

of the year, heat losses, and consumption. If these attributes are known, a heat 

production profile can be create to estimate the fluctuations of heat demand and 

therefore provide better service (Hirvonen, 2014). 

In the modern energy industry DH systems are used in large extents. Especially in Scan-

dinavia and European countries. Sweden and Denmark are good examples of efficient 

district heating networks. In Copenhagen the city is primarily heated with a district heat-

ing network that has 160 kilometers of pipeline (2012) and 97% of heat demand is CHP 
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produced. The CHP power plant is mostly powered by waste and renewable energy 

sources which in total stand for 60% of total heat production and all in all the DHN serves 

275 000 households (CTR, n.d.) & (Andrews et.al, 2012). 

The city of Helsinki in Finland has an extensive combined heat and power district heating 

and cooling system. The cooling system is Europe’s 3rd largest and the CHP/DHC sys-

tems’ market share is over 90% with an overall efficiency of more than 90%. The DHC 

system has been economically successful and new connections are continuously made 

to the district heating network (Riipinen, 2013). 

Modern district heating CHP power plants can be fueled with a variety of different mate-

rials which offer flexibility, thus providing secure energy output. Fuels used in many new 

district heating networks tend to be from renewable energy sources, and biomass has 

been the choice in many heating projects in Europe and Canada (BERC, 2015). But in 

small communities, a CHP plant might not be viable since a CHP boiler under 10-20MW 

is not considered economic. Nevertheless, a biomass fueled heat-only district heating 

system is environmentally friendly and with a heating output capacity of e.g. 1MW it pro-

vides heat for 250 single family units (Andrews, et.al. 2012).  

The work principle of a district heating system is simple. A medium in a pipe obtains heat 

which is derived from a fuel that is combusted. The heated medium (usually steam or 

water) then circulates to customers’ accommodation and provides space heating and hot 

water (Andrews et.al, 2012). The technology lies in the way the water is heated. A mod-

ern CHP power plant is efficient since the waste heat coming from the power production 
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unit is used to heat the water inside the DH pipes. Beneath Figure 3 shows the working 

principle of a basic CHP-DH system. 

Figure 3. District heating CHP power plant working principle (BIC, 2013). 

The main conversion technologies that are used in CHP-DH are combustion and gasifi-

cation. Combustion technologies such as grate systems and fluidized bed combustion 

have been mentioned earlier on in the report. The customers connected to the district 

heating network can be connected by indirect or a direct connection. In a direct connec-

tion, the same heated water circulates in the network pipeline and in the building pipes, 

radiators etc. In an indirect system, the connected apartments are equipped with a heat 

exchanger, which separates the actual network water from the water circulating in the 

building pipes (Kuitto, n.d.). 
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3.2 Employment 

One of the benefits of building a district heating system in a small community is that it 

provides employment. Throughout the biomass lifecycle (from harvest to combustion and 

to ash disposal) there are jobs created. 

Long term employment include jobs in connection with harvesting and operating the 

power plant, also management level jobs if a district heating enterprise is formed.  

Short term employment includes jobs related to constructing the district heating network 

and power plant. Although these jobs might be temporary, it is possible that there is a 

need for similar jobs in the future if the network continues to grow. 

The number of jobs varies case by case and depends on the scale of the energy project. 

There are some careful estimates on employment per produced energy. The following 

Figure 4 provides an estimate of the amount of person years 1000 Megawatt-hours of 

produced energy employs. Tuupovaara is a small-scale DH plant and Outokumpu a me-

dium scaled one in Northern Karelia, Finland (McCallum, 1997) & (Kolström et.al., 2011). 

Figure 4.  Employment of person years in relation to thousands of Megawatt-hours, (Kolström et 
al., 2011). 

For Marathon, an employment estimation of 1.305 person years could be obtained with 

a biomass district heating system. This is calculated by multiplying the estimation of re-

quired output heating capacity, which is 250kWth. This is then multiplied by an estimation 

of 6,000 running hours. The result is divided by 1,000,000 (kWh) and multiplied by 0.87. 
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Concrete numbers of employment created by district heating are hard to find since most 

case studies do not include these figures. Despite this, concrete figures can be found in 

connection with bigger district heating projects from news articles for instance. In a pre-

study conducted in Europe it was estimated that every million (€) invested creates 17 

jobs (Connolly et.al. 2013). 

The city of Stoke-on-Trent embarked on a large district heating project recently. It was 

reported that the 45 GWh/a deep geothermal heat district heating system would create 

more than 200 jobs directly. This includes 180 construction phase jobs and 30 permanent 

jobs with an indirect contribution to 1350 local jobs. Additionally almost 4000 apprentice-

ships and 1100 traineeships will be created (Deputy Prime Minister’s Office, 2014). 

The following table 2 shows the rate of employment found in an analysis of the Russian 

Kaliningrad region district heating schemes. 

Municipal-

ity 

System size Network Connections Employees 

Svetlogorsk 48 MW 72 houses 70 

Baltiysk 21,5MW + 

10MW 

13 housing co-ops & indus-

tries 

Winter: 120 Summer: 

90 

Ozoyrsk 3MW - Winter: 16+28 Sum-

mer: 16 

 Concrete employment numbers of DH schemes in the Kaliningrad Region (Lars-

son, 2013). 
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3.3 Summary of Chapter 3 

 In a District Heating (DH), District Cooling (DC) or a combined District Heating 

and Cooling (DHC) system heat is produced centrally and then channeled to cus-

tomers through an insulated pipeline, called the district heating network (DHN). 

 The closer customers are to each other, the more viable a DHN is. 

 DH systems are used in large scales in Scandinavia and Denmark especially has 

embraced the concept. 

 A district heating system creates long and short term employment, varying de-

pending on the system at hand. 

 

4 The Costs and Logistics of Forest Biomass 

One large expense in using biomass as an energy source is the transportation, storing 

and processing costs. The challenges in forest biomass logistics are due to the nature 

of the material and the fact that every aspect of the supply chain are tied to one another, 

meaning that decisions made upstream affect the supply chain downstream and may 

cause problems in some situations. This is why forest biomass logistics calls for total 

supply chain management (Klein, Jang, Tan & Shumacher, 2011) and (Allen, Browne, 

Hunter, Boyd & Palmer, 1998). 

The challenge also lies fundamentally in the fact that it requires land to provide forest 

biomass, which in return takes land from growing food. In countries which are rich with 

usable land and have an abundant food supply this is not a problem. But in countries 

with fewer resources, this issue might arise opposition. More practical challenges are the 

uncertainty of supply of fuel, seasonal variations in supply but continuous demand of 

fuel, variations of quality and possible lack of infrastructure (Klein, Jang, Tan & Shu-

macher, 2011). 
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4.1 Characteristics of Logistics 

Forest biomass logistics consist of the following phases: 

 harvesting 

 handling/processing 

 storage 

 in-forest transport 

 road transport 

 utilization of the fuel. 

The order of the logistic functions can vary, the handling might take place at a different 

site than on the site of harvest. These decisions affect the downstream logistics; for ex-

ample, the way of transport has to be different when transporting logs than when trans-

porting woodchips. Also, storage has to be different. Storing wood in a way that it does 

not decompose is crucial for the quality of wood fuel when it reaches the energy plant. 

Whole wood logs are less sensitive to weather changes and decomposition than wood-

chips (Allen, Browne, Hunter, Boyd & Palmer, 1998). 

4.1.1 Harvesting 

The harvesting of wood can be executed in different ways and time periods. It depends 

greatly also on the type of wood at issue since different wood types grow at different 

rates. Some harvesting methods are presented here. 

Short-rotation forestry is a method used to gain benefit of even-aged forests that are 

not being harvested for timber and wood. In this method whole-tree removal is used, 

meaning that also the stump and slash are taken to use as biomass. New trees are then 

planted, re-grown and harvested in a cycle of 25 years. 

Stump removal is a method where stumps are collected for use as biomass. The stumps 

are left behind by timber harvest operations. The stumps can be removed in for instance 

in short-rotation, which usually is between 8 to 25 years depending on the tree type. 
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Slash removal is a method where the residue left behind of logging is collected. Residue 

includes branches, leaves and treetops. Slash is usually removed at the same time as 

trees are harvested. 

Forest thinning means the removal of small trees in young and growing forests. Usually 

this is done to mitigate or prevent the risk of forest fire and the cut trees are left on the 

ground. However these trees can be used as an energy source, although the cost of 

thinning based biomass might not be economically viable. Forest thinning leaves behind 

better-quality merchantable timber (Baral & Malins, 2014). 

4.1.2 Transport 

The transportation of biomass from harvest site to end-storage is a function of the total 

biomass supply-chain that has to be carefully considered in order to maintain the quality 

of wood fuel as well as target for the most cost-efficient manner possible. Transportation 

usually takes place by road but can also be done by using rail or waterways, if seen 

viable (Rentizelas, Tolis & Tatsiopoulos, 2008). 

 

The viable transport distance of forest fuel depends heavily on the quality of the har-

vested forest biomass and the fuel costs for the transport vehicles. Other factors are 

transport vehicle fuel consumption, hourly wages and travel time. In some case studies 

on one hand, a transport distance of over 100 kilometers is seen viable, whereas on the 

other hand it has been as low as 40 km in some cases. Therefore there is no point of 

estimating an across-the-board viable transport distance (Rentizelas, Tolis & Tatsiopou-

los, 2008) & (Parent, Graziano & Yang, 2014). 

The components influencing the choice of transportation method are: 

 Bulk density – Weight and volume of the biomass. 

 Existing infrastructure – Utilizing the existing infrastructure for most effective 

transport. 

 Absolute scale – The total quantity of biomass when collected from possible dif-

ferent supply sources. The absolute scale of material can make some transport 

options viable and more cost effective. For example via rail or water.  

 Transport costs – finding the cheapest transport method. 
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 Seasonality – the harvest period might be over a narrow timeframe which in turn 

has an effect on transportation and storage because of a high need. 

 Distance from the power plant – Choice of transportation has to be chosen ac-

cording to the distance. 

 Form of biomass – Handling and storage requirements differ from one another 

depending on the form of material. Figure 5 illustrates the difference between 

dried and wet biomass transportation. 

(Allen, Browne, Hunter, Boyd & Palmer, 1998). 

 

 

 

Figure 5. Moisture affecting load capacity (BERC, 2010) 

4.1.3 Storage 

The right kind of storage is crucial in order to form an efficient method of operation and 

smoothing the supply chain and the use of the fuel. Fuel quality is strongly connected to 

the way the fuel is stored. An improper way of storage may cause fuel quality to decrease 

if there is too high of a moisture content, decomposition, fungus or spores formation 

(Rentizelas, Tolis & Tatsiopoulos, 2008). 

The functions of a storage facility for biomass fuel include: 

 Storing the fuel in an efficient way, making maximum use of space. 



21 

 

  

 Improving the quality of fuel by reducing moisture levels and preventing health 

and safety risks. 

 Smoothening the supply chain by efficient and flexible handling of material due 

to adequate storage. 

Storage can be implemented in multiple phases: using storage on-site of harvest, inter-

mediate storages and an end storage by the power plant. Usually there is not enough 

space to store a longer term supply of fuel to the power plant facility premises. This 

requires bigger storage to be located at an intermediate site and a smaller amount stor-

age at the power plant. Usually the amount of fuel at the power plant should be enough 

for at least a couple of days in order to have a bumper if a failure occurs. Because the 

stream of supply has to be continuous to the power plant and usually is transported by 

road, it can cause environmental harm, traffic harm and the public image of the energy 

production can get a negative turn if it is not designed accordingly to the circumstances 

(Allen et.al, 1998). 

Storage methods vary from low cost non-covered storage to expensive warehouse stor-

age. Also the location of the storage gives more variation to what kind of a storage it can 

be. The lower cost storage methods most likely do not provide as efficient drying as more 

expensive warehouse ones. Also if the warehouse storage is in immediacy of the power 

plant, excess heat can be used to speed up drying. In between these two there is a 

shelter-type of storage where the material is stored under a roof (Badger, P.C., 2002). 

A lower cost storage method is attractive due to the low investment required. But a low 

investment can cause higher costs in the conversion phase due to lower quality material. 

Higher moisture content can effect fuel efficiency since the energy content is lower. Also 

with a high moisture content, there is a risk that fungus and spores infect the material. 

The more expensive methods contribute to higher quality fuel by reducing moisture con-

tent due to more efficient drying (Rentizelas et.al, 2008) & (Gallis, C., 2003). 

4.2 Costs 

As stated earlier, the major cost components for forest biomass are transporting and 

handling, which can account for as much as 50% of the total costs of delivered fuel. This 

is why costs should be cut to minimum on these functions, since the total costs of forest 
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biomass are sensitive to changes in these parts. To enable effective transport, the den-

sity of the material should be as high as possible. If the fuel is “packed” in a smaller 

volume, the costs to transport the same amount are smaller because one trip contains a 

larger amount of fuel. This means that the material has to be processed on-site. As seen 

from Figure 5, the amount of moisture the wood contains has a great effect on transport 

effectivity (Allen, Browne, Hunter, Boyd & Palmer, 1998). 

In Figure 6 and Figure 7 the bulk density and energy density of different forms of biomass 

are compared to coal and fuel oil. As we can see from the figures, the density of biomass 

is far smaller than it is in fuel oils or coal. In Table 3, the comparison is made really 

visible. When we look at the energy densities we can see that different forms of wood 

vary a great deal from one another. Wood pellets seem to be the most economic trans-

portation form without taking into account the costs of processing. Interestingly, Allen 

et.al (1998) discovered a process, where if the forest fuel is chipped at the time of har-

vesting, it would produce higher delivery costs. This was because of storing the material 

in two stages; one at roadside near the harvesting point and at a secondary storage 

before being transported to the power station by road. This is why all functions of the 

supply chain should be considered as a whole in order to find the most cost-effective 

supply chain. Delivery costs for wood vary from $30 to $60/m3 (Maure, J. 2013). 

 

 Fuel qualities & energy densities. (Francescato, V., 2008), (Loo, S.V. & Koppejan, 

J., 2012) and (NEB, 2015). 

 

MJ kWh liter of oil

1 stacked m³ 15 445 6797 1888 189

1 stacked m³ 30 495 6018 1672 167

1 stacked m³ 15 304 4753 1320 132

1 stacked m³ 30 349 4339 1205 121

Soft Wood (Spruce) 1 bulk m³ 15 194 3032 842 84

Soft Wood (Spruce) 1 bulk m³ 30 223 2768 769 77

Hard Wood (Beech) 1 bulk m³ 15 295 4505 1251 125

Hard Wood (Beech) 1 bulk m³ 30 328 3987 1107 111

1 bulk m³ 8 650 11115 3088 309

1 bulk m³ 50 240 1920 533 53

27.60 MJ/kg 7.67 kWh/kg

38.60 MJ/l (41.5 MJ/kg) 10.70 kWh/l (11.50 kWh/kg)

36.00 MJ/m³ 10.00 kWh/m³

25.53 GJ/m³ 7091.6 kWh/m³

Sawdust

Propane

Coal

Heating Oil

Natural Gas

Wood Pellets

Wood Chips

Soft Wood (Spruce)

Energy Density

Quantity Mass kg

Hard Wood (Beech)

Moisture M%Fuel type

Hard Wood (Beech)

Soft Wood (Spruce)



23 

 

  

Table 3 introduces the features of different wood types and biomass. The energy densi-

ties of fossil fuels are for reference. 

 

Figure 6. Energy density comparison, (Giollarnáth, R.M., n.d.) 

Figure 6 presents the energy densities of different biomass fuels compared to fuel oil 

and coal. It can be seen that fuel oil has a greatly larger energy density than biomass. 

Figure 7 presents the bulk density, meaning the actual weight of the fuel by cubic meter. 

We can see that the best energy-to-weight ratio seems to be for the industrial softwood 

chips. Closing in to the energy density of pellets, by eye the softwood chips weigh three 

times less than pellets. 
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Figure 7. Bulk density comparison, Giollarnáth, R.M. (n.d) 

 

4.2.1 Cost of Harvesting 

Beneath Table 4 presents the costs of harvesting from tree felling to the phase when 

possible chipping of the wood takes place. The costs are relative to a cubic meter of 

material. 
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Biomass 

Costs  

($/m3) 

Stumpage 

& forest 

future 

charges 

Forest 

Renewal 

Charge 

Felling Skid-

ding 

De-

limb-

ing 

Slash-

ing 

Processor Forwarder Chip-

ping 

TOTAL 

$/m3 

Whole 

tree 

4.74 3.84 3.5-

4.5 

3.25 3.25-

4.25 

4-5 -   - - 22.58-

25.58 

Cut to 

length 

4.74 3.84 4-5 - - - 4.5-5.25 4.5-5.25 - 21.58-

24.08 

 

 Harvesting costs for whole wood, (Marinescu, M., 2012), (MNR, 2014) & (Maure, 

J., 2013). 

The costs of harvest also include costs derived from loading, workforce and supervision, 

as shown in Table 5.  

 

Biomass type 

($/m3) 

Commute Supervi-

sion 

Roads OH & Allow Loading TOTAL 

$/m3 

Wood 0.75-1 0.75-1 2-3 0.75-1 1.5-2.5 5.75-8.5 

 

 Cost of collecting & loading harvest, (Maure, J., 2013). 

Total harvesting costs can be estimated by adding the total costs of felling with the total 

costs of loading and such.  

 Whole tree:  28.33-34.08 $/m3. 

 Cut-to-length: 27.33-32.58 $/m3. 

4.2.2 Cost of Transportation 

The transportation costs for a tractor-trailer truck are estimates of information gathered 

from two different sources, presented in Table 6. 
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Function Cost 

Cost per running vehicle km $3.117 

Cost per vehicle working hour (driver, variable & 

fixed costs included) 

$50.30 

Average carry per load 48.5 m3 

Example of 100km haul 50.30 × 1.885 +  3.117 × 100 

=  406.51 

406.51 ÷ 48.5 =  8.38 

TOTAL 8.38 $/m3 per 100km 

 Cost of transportation (Ray Barton & Associates, 2006) and (Maure, J., 2013). 

 

Thus the estimated cost of transport for a cubic meter of forest biomass for 100 kilome-

ters is approximately 8.38 $/m3 (Ray Barton & Associates, 2006) and (Maure, J., 2013). 

 

Cost sensitiveness of transportation relative to the haul distance can be assessed by a 

simple calculation. Let us see how the cost changes when the haul distance is 50km and 

150km. 

50.30 × 1.885 +  3.117 × 50 = 250.66  

250.66 ÷ 48.5 = 5.17 

 

The transport cost for a haul distance of 50 kilometers is 5.17 $/m3. 

50.30 × 1.885 +  3.117 × 150 = 562.37 

562.37 ÷ 48.5 = 11.60 

 

The transport cost for a haul distance of 150 kilometers is 11.60 $/m3. 

4.2.3 Cost of Storage 

The effect on the total final costs of the supply chain that storage has is relatively large. 

Total final costs represent the cost of a unit of forest biomass at the end of its supply 

chain life, when it enters the processing location. The mill yard storage, which is the final 
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storage location, can have an effect of 53.81% to the total final costs. For roadside stor-

age the amount can be as high as 19.9%. The forest site storage contributes to felling 

costs by 6.30% (Gallis, C., 2003). 

The actual cost for storage is hard to estimate since there is a large amount of variables, 

such as renting or buying land, construction costs and so on. Despite that, a careful 

estimation of the price range can be conducted by reviewing case studies of forest bio-

mass power plants. Table 7 presents the costs of storage in different case studies with 

different system capacities. 

Type of storage Miscellaneous Type of Bio-

mass 

System 

Size, MW 

Cost of 

Storage 

Reference 

Open pile with concrete pad - Woodchips 1 $28,338 Badger, 

P.C., 2002 

Metal building with concrete 

pad, 1-side open 

- Woodchips 1 $62,000 Badger, 

P.C., 2002 

Metal Silos 4 x 850m3 Woodchips 1 $1,276,000 Badger, 

P.C., 2002 

Pellet storage, Silo 8 DHN connec-

tions 

Wood Pellets 0.05 $56,000 AEA, 2010 
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Pellet Storage, Silo 10 DHN connec-

tions 

Wood Pellets 0.07 $126,000 AEA, 2010 

 Cost of biomass storage in different DH-schemes (Badger, 2002) & (AEA, 2010). 

4.2.4 Cost of Technology 

Some estimations of the cost of the biomass boiler can be made by studying power plant 

provider websites and small-scale district heating case studies. In this case combustion 

CHP power plant costs are presented since CHP plants, with efficiency rates close to 

70% in some cases, are usually more efficient than power plants producing only power 

or heat (Martin, J.R., 2008). Generally investment costs of biomass CHP power plants, 

with a capacity under 50MW, are 3000-6000 $/kWe. Operation and maintenance costs 

are somewhere around 100 $/kWe. The investment costs for biomass CHP depend inter 

alia on fuel type used (wood, straw, etc.), boiler technology and capacity of the plant (IEA 

ETSAP, 2010). 

Location Output capacity Plant Unit Cost Reference 

Greenfield, Massa-

chusetts 

9671 kWh $3,437,500 BERC, (2010) 

Lienz, Austria 1100 kWe / 4900 

kWth 

€2,974,000  BIOS, (2004) 

- 250 kWth / 35kWe €184,000 Obernberger, I. & 

Thek, G., (2008) 
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- 500 kWth / 70kWe €320,000 Obernberger, I. & 

Thek, G., (2008) 

 Biomass Plant Unit Cost Examples, (BERC, 2010), (BIOS, 2004) & (Obernberger, 

I. & Thek, G., 2008). 

 

4.3 Summary of Chapter 4 

 A big part, as high as 50% of total costs of forest biomass energy derives from 

logistics and storage. 

 Increasing the density of the material can have a huge impact in transport effec-

tiveness. 

 The estimated cost of harvesting a whole tree without processing is roughly $28-

34/m3. 

 A rough estimate of the cost of transporting is 8.38 $/m3 per 100 km. 

 The way of storing the material can greatly contribute to the quality. 
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5 Best Practices 

Best practices for a district heating network can be challenging to identify for all aspects, 

since the conditions and legal environment differ from country to country. Nevertheless 

there are best practices when thinking of fuel supply, the heating network, security, con-

tractors and financing. 

These best practices mentioned below are based on reviewing case studies, feasibility 

studies and other best practice guides. These best practice topics turned out to be the 

ones to which should be paid attention the most, since the outcome of the project de-

pends heavily on these topics. 

5.1 Initiating a District Heating System Project 

Before building a district heating system, there has to be extensive enough background 

work done to make sure that a DH system: 

1. Is within municipal budget and is economically feasible. 

2. Is valuable for potential customers. 

3. Supports and does not conflict city planning. 

4. Supports environmental development and long term plans of the municipality. 

5. Enables new connections and enlargement of system with reasonable price in-

creases. 

Usually a feasibility study is conducted to evaluate the possibility of building a DH net-

work to a municipality or a city. There should be a pre-feasibility study preceding the 

feasibility study, which determines whether or not it is plausible to carry on with an in-

depth feasibility study. A feasibility study looks into the economics, advantages, draw-

backs and opportunities of a district heating system, and also weighs the potential of 

other systems. A district heating network is considered reasonable when the heat load 

density of the network exceeds 0.5MWh/m (Energy Charter Secretariat, 2005). 
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There are always multiple stakeholders in a DHN project. In most cases the municipality, 

city or state is the owner of the power plant, and runs the district heating enterprise 

(DHE). Apart from that there are possible finance providers, such as private investors 

and banks, and of course the customers of the network and sometimes a contractor for 

the building phase. There might also be a number of outsourced engineers, consultants 

and lawyers providing help on the purchase of a power plant, the building phase, regu-

latory issues concerning contracts between parties and the state regulations on building 

a DH system (Energy Charter Secretariat, 2005). 

5.2 Heating Load Analysis 

The purpose of a heat load analysis is to get an estimate of the heat expenditure in order 

to adapt to heat demand, caused by the buildings in the DH network and to review the 

current heat load. Local demographics and industries should be taken under considera-

tion and questions like industry lifetime, migration rate, possible new customers and risk 

of losing customers should be answered (Energy Charter Secretariat, 2005). 

5.3 Form of Ownership of the Energy Company 

The district heating enterprise can be owned by the consumers themselves, either via 

the municipality indirectly or directly as a consumer co-operative. Either way it is a smart 

choice since the consumers are the ones paying for the energy. 

Basically the ownership can be divided to three main categories. These are public own-

ership, private ownership and combination ownership. The differences of these are pre-

sented in Table 9. 
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Ownership 

Form 

Energy 

Prices 

Costs of Pro-

duction 

Profitability Total Costs 

Public Low High Low Mediocre 

Private High Low High Low 

Combination Low Very low Low Very low 

 Comparison of ownership forms, (Hansson, J., 2009). 

Legend:  = High = Mediocre = Low = Very low 

There are several options in terms of what type of company the DHE can be managed 

as. Some forms are presented below. 

Limited Liability Company 

As a limited liability company, the DHE would be a limited stock company with the re-

sponsibilities and rights of one. It would still be owned by the municipality. There would 

be more incentive to run the company with the aim of being successful, since the DHE 

would be responsible for business operations in all aspects. Also a number of people 

would get paid for the jobs. The profit made from billing customers would have to be 

large enough to cover costs, salaries and funds for possible development of the network 

(Energy Charter Secretariat, 2005). 

Municipal Utility Holding Company 
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A municipal utility holding company is a form of ownership where assets are gathered 

under one organization in order to achieve higher level corporate governance practices 

regarding the management of the DHE or other public utilities (City of Guelph, 2010). 

Leasing DH operations to private sector 

The leasing of the district heating operations works like any other leasing contract. The 

municipality leases the operation of district heating with the full responsibilities concern-

ing the network, heat production and so on. The private company would therefore be 

also in charge of maintaining the DHN and developing it. A leasing contract is usually 

valid for a certain amount of years, after which the municipality has the options to con-

tinue the contract, find a new company to run the business or take over the DHE. 

Some terms that should be agreed on in the contract include customer rights, service 

quality, company operation regulations, addressing problems (for example penalty 

charges etc.), information sharing and how the termination of the agreement is treated 

(Energy Charter Secretariat, 2005). 

Selling DH operations 

The municipality has the option to sell the district heating enterprise to a private owner-

ship. For the municipality it is an attractive alternative since there would be an experi-

enced company running the business and it would be a chance to grow the municipal 

treasury. This also frees municipality resources to be used in e.g. health care (Energy 

Charter Secretariat, 2005) & (Okkonen & Suhonen, 2010). 

Collaboration between municipalities or municipal enterprises in energy 

A collaboration between multiple municipalities can be viable if there is enough custom-

ers connected to the network since the length of the network can be long and losses can 

be high. The Danish district heating network in Copenhagen is a co-operation between 

municipalities and consumer co-operatives (Energy Charter Secretariat, 2005) & (Gron-

heit & Mortensen, 2003). 
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Another option is that municipal energy enterprises get together to combine their 

strengths and therefore be better able to develop the network and business (Energy 

Charter Secretariat, 2005). 

Public-private collaboration 

A partnership between a municipality and a local industry or industries can be imple-

mented in a couple of different ways. One way is that the municipality and industry can 

form a separate heating enterprise together, which would then be managed by both 

shareholders. The fixed costs would be divided depending on owner-shares and variable 

costs depending on energy usage. Fixed costs include capital and maintenance costs 

and variable costs include energy costs. 

Both the municipality and the industry would get an advantage in operations and invest-

ment costs. Also the residue and waste that the industry produces could be used as fuel, 

such potential industries could be for example: 

 Oil refining. 

 Chemical industry. 

 Food industry. 

 Paper industry. 

 Glass and ceramic industry. 

(Energy Charter Secretariat, 2005) & (Gronheit & Mortensen, 2003). 

5.4 Energy Production Regulations in Ontario 

The regulations section will be looking into the regulations affecting energy enterprises 

in Ontario since the Town of Marathon is located in this province. In Denmark, and es-

pecially Copenhagen, there is strong support from the central authorities to use regula-

tions to promote clean energy and district heating. For instance, the zoning of district 

heating and other means of heating is strictly monitored, fossil fuel heating is under high 

taxation and there is investment subsidies for consumers who connect to district heating 

(Dyrelund & Steffensen, 1999). 
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Ontario’s energy industry was closed until 2002, when the province decided to open 

competition for the electricity market. The electricity market is regulated by the Electricity 

Act, which came into effect in 1998. The Energy Competition Act was the legislative 

authority at that time of reforming the electricity industry (Fyfe & McLean, 2002). 

 

Figure 8. Ontario Legislative Framework, (AREN, 2015). 

The Ontario Ministry of Energy is the decision-making body for the electricity sector in 

Ontario. It has legislative responsibility to the agencies seen in Figure 8. The OMEs goals 

are to develop energy generation, transmission and secure reliable energy supply (OME, 

2014). 

The electricity and natural gas sectors are regulated by the Ontario Energy Board, OEB. 

The tasks that the OEB are involved in include, inter alia, setting price and rates for 

natural gas and electricity, oversee the financial and operating performance of energy 

utilities and protecting customers’ interests. There are three statutes, which define the 

power that OEB has. These statutes are 

 The Ontario Energy Board Act 1998. 

 The Electricity Act, 1998. 

 The Energy Consumer Protection Act, 2010 (OEB, n.d.). 

The Independent Electricity System Operator, which also now encompasses the Ontario 

Power Authority, is the body which controls energy output in Ontario and secures suffi-

cient energy supply for the current energy demand. It also plans future energy supply by 
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planning long-term energy needs and securing renewable energy sources which meet 

those needs. It also monitors the electricity wholesale market and promotes energy con-

servation through according programs (IESO, n.d.). 

Municipalities have broad powers to provide their residents with services such as heat-

ing, sewage and so forth, which are commonly called public utilities. It is stated in the 

Ontario Municipal Act that:  

“A single-tier municipality may provide any service or thing that the municipality considers 

necessary or desirable for the public” (Municipal Act, 2001). 

Therefore a municipality is eligible to initiate a district heating project if it is seen as de-

sirable by the public of the municipality. Despite the powers given to municipalities, there 

are steps that a municipality has to take before being able to proceed with a heating 

project. For a form of energy which is from renewable sources, a municipality needs a 

Renewable Energy Approval (REA), which is defined in the Renewable Energy Approval 

Regulation (Ministry of Environmental and Climate Change, 2015). Other approvals that 

a renewable energy project might require are: 

 Approvals and permits under the Ministry of Natural Resources  

 Ministry of Transportation approval 

 OEB approvals 

 Municipal permits and requirements 

 Federal requirements (Ontario Ministry of Energy, 2014). 

5.5 Financing the Project 

A municipality can finance its district heating project for example with the help of the 

province, which offers some incentives and infrastructure funding programs, private in-

vestors, sponsors and loans. Some of these are briefly presented below which also con-

cern the Town of Marathon. 
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Public funding 

The Municipal Energy Plan encourages municipalities to re-think their energy use and 

possible conservation and development opportunities. The Municipal Energy Plan Pro-

gram (MEP Program) has two funding streams, which support municipalities in designing 

a new municipal energy plan or in enhancing an existing one. 

For a new plan the MEP program grants funds to successful applicants for 50% of eligible 

costs and up to a maximum of $90,000. For an existing plan the program grants 50% of 

eligible costs and up to $25,000. Applications for the program are on an ongoing basis 

and municipalities eligible should have a population under 50,000 (Ontario’s Municipal 

Energy Plan Program, 2015). 

The Green Municipal Fund is geared towards funding innovative municipal sustainable 

development initiatives. The lessons learned in these projects are shared with other mu-

nicipalities through training and other activities. One requirement stated by the GMF is 

that initiatives which get funded should have the potential to be replicated by other mu-

nicipalities. 

Initiatives that get funded are plans, projects and studies which means mainly feasibility 

studies or field tests. The Green Municipal Fund grants funding to all municipality gov-

ernments and the partners of municipal governments. Municipal governments are for 

instance cities, regions, villages, towns and counties. For eligible applicants the amount 

of grants are the following: 

 For plans and studies 50% of costs where applicable and up to $175 000. 

 Projects can get loans up to 80% of eligible costs and to a maximum of $10 million 

(Federation of Canadian Municipalities, 2014). 

The Community Energy Partnership Program, similar to the GMF, helps municipali-

ties in projects related to community power. Funding is granted to co-operative corpora-

tions based in Ontario that are embarking on renewable energy generation projects. 

These projects include for example background work, legal services, consultation fees 
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and regulatory approvals. The project has to meet certain requirements to be eligible for 

funding. The project is eligible for funding, if the projects power generation capacity is 

greater than 10kW, powered with a renewable energy source, located in Ontario and has 

or is going to apply for a Feed-In-Tariff contract (CEPP, 2010). 

Private funding 

For private funding there are various ways in which a municipality can embark. A munic-

ipality can form a joint venture with a private company. In a joint venture the equity is 

shared between the involved parties and therefore the risk is also shared. Usually the 

municipality or DHE offers land and buildings to secure their share while the private part-

ner offers the system hardware and technology (Energy Charter Secretariat, 2005). 

Another option is to establish a municipality-owned Energy Service Company, ESCO. 

The idea behind an ESCO is that it is an energy performance-based contract meaning 

that compensation is linked to the amount of energy saved by the project. The ESCO is 

paid by the customer based on the amount of energy saved. Ideally the ESCO would be 

owned by a private operator and there would also other ESCO’s in order to ensure 

healthy competition leading to lowered prices for customers (Ellis, J., 2010). 

Loans 

A municipality can apply for a loan to finance its efforts in building a district heating sys-

tem. Private Banks grant loans but usually there is also loans granted by government 

programs and organizations. These loans might be more affordable than the ones that 

the private sector is offering. For example the Infrastructure Ontario loan program pro-

vides long term loans for municipalities to infrastructure related development projects. 

The rates for loans that IO offers are affordable and without fees or commission. All 

public sector clients are eligible for a loan (Infrastructure Ontario, 2015). 

5.6 Least Cost Analysis 

The least cost analysis is used to discover the most affordable solution for district heat-

ing, depending on customers and different areas in the town using the following param-

eters: 
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 Heat load density. 

 Availability and cost of fuels. 

 Availability and cost of waste heat. 

 Affordability for customers. 

 Existing DH networks. 

 Feasibility of new CHP or renewing an existing one. 

(Energy Charter Secretariat, 2005), (Dotzauer, E., 2002). 

Some estimated values for the cost of fuels can be found from chapter 4.2.1. 

5.7 Construction 

To contribute to the wellbeing of the community, local workforce and local construction 

companies should be used in the construction phase. This way, funds stays in the com-

munity and the experience, insights and knowledge gained in construction will also main-

tain within the community. Costs are more likely to be lower with local workforce since 

an external contractor does not have to use time and money in getting to the building 

site. Even though local contractors would not have district heating related experience, it 

is still a viable option since outside support can be hired to help (RETScreen Interna-

tional, 2004). 

Before starting to dig up trenches for the district heating pipes, the excavation plan has 

to be communicated and approved by Ontario One Call (ON1CALL). The Ontario Under-

ground Infrastructure Notification System Act, set in 2012, made it mandatory to contact 

ON1CALL if any excavation work is carried out. ON1CALL makes sure that there is no 

infrastructure in the way, such as gas lines or telephone lines (Ontario One Call, 2015). 
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5.8 Lessons learned 

From the various district heating project case studies, here is a compilation of lessons 

learned. The case studies are about projects similar to Marathon, in size as well in re-

moteness of location. 

 Advantages of the DH system has to be communicated to building owners. 

 Underestimating costs in start-up, transportation logistics, regulatory impacts and 

commission completion can result in project cost overruns. 

 High reliability of the system is a key factor in attracting new customers. 

 Profitability of the system can fall dramatically if a big customer decides not to 

connect. 

 Uncertainty of renewable energy sources can increase capital cost because of 

requirements for secondary fuel. 

 Fuel moisture and size issues should be addressed in the early stages of the 

project, preferably in the project design stage. 

 Engaging the community early enough helps in project acceptance, increases 

community support and commitment, and can help in financing the project. 

 An experienced and integrated project development team can reduce develop-

ment risks and cost overruns. 

 The biomass handling system has to be able to handle contaminated fuel. 

 Use of local workforce has to be maximized to build competence and reduce 

installation costs and time. If there is not experienced enough workforce, an out-

side consult/project leader can be hired to smoothen and guide construction. 

 Constant troubleshooting by experienced engineers during construction phase 

helps iron flaws out quickly and efficiently. 

 For northern communities, planning in construction is crucial since construction 

seasons are relatively short. 

 The construction of the community should be planned to avoid empty lots. 
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 Supply chain should be kept short so that local level forest management can be 

facilitated.  

(BERC, City of Revelstoke, 2009), (BERC, Village of Oujé-Bougomou, 2009), (RET-

Screen, 2004) & (Lopez et.al, 2014). 

5.9 Case Studies 

Better ways of using biomass and more effective ways of functioning are found by trial 

and error. These suggestions of practicing biomass energy production are created by 

current energy producers. Some results and practices, in connection with the following 

Table 10 case studies, are presented here. 

In Växjö, Sweden, the nutrient cycle of harvesting and combusting trees is closed by 

returning the combustion by-product ash back to the forests. This returns a part of the 

nutrients back to the soil, fertilizing the trees (bioenarea, 2011). 

Green energy projects can lead to good publicity, as in the case for the small village of 

Kronoberg or the hotel Lagorai in Italy. For the Hotel, biomass energy gives a new factor 

for marketing (bioenarea, 2011). 

Table 10 presents carbon reductions and energy cost savings resulting from switching 

energy production to biomass.  
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Location System Size Fuel Dis-

placed 

Carbon Reduc-

tions (CO2 / year) 

Cost Savings Initial In-

vestment 

Italy, Provincia Au-

tonoma Trento 

300kW + 2x 

256kW 

Methane 87,678 kg 26,500 €/a N/A 

Italy, Magnifica Co-

munità di Fiemme 

400kW Diesel N/A 40,000€/a 300,000€ 

Italy, Autonomous 

Province of Trento 

2x 4MW Fuel Oil 8,750,000 kg N/A N/A 

Estonia, Voru 10MW & 

7MW 

N/A 13,000,000 kg N/A N/A 

Estonia, Vastseliina 1.5 MW N/A 450,000 kg N/A N/A 

Spain, León 2x 100kWt 

(pellets) 

Coal N/A ~4,000€/a 240,000€ 

Sweden, Borgholm 5MW, 

2.5MW & 

2MW 

Fuel Oil 8,100,000 kg N/A N/A 

United Kingdom, 

Barnsley 

320kW + 

150kW 

Coal 1,300,000 kg 40% heating 

cost savings 

N/A 

Canada,Revelstoke 440kW Diesel 3,700,000 kg N/A $6.6M 
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 Case study carbon reductions & cost savings, (Bioenarea, 2011), (EU2020, n.d.), 

(BERC, 2009) & (RFKL, 2007). 

5.10 Pre-feasibility Study of a District Heating Network 

Before embarking on a full scale feasibility study it might be useful to do a pre-feasibility 

(PF) study first. A PF study’s goal is to assess if it is reasonable to embark on a full scale 

feasibility study. 

The PF study includes such aspects as assessing the plant site, availability of fuel and 

costs included, different technologies for combustion and a preliminary financial analysis. 

Preliminary financial analysis can be included to get an idea of whether to continue or 

not to continue with the full scale feasibility study. The financial analysis in the PF study 

is usually limited to budgeting exercises and might include some cash flow. Things such 

as capital costs, operating costs and incentives available are included in the study (CBCL 

Limited, 2010). 

Capital Costs 

Capital costs include items, buildings, equipment, training and project expenses. For in-

stance, storage facilities, power plant facilities and energy production units go under cap-

ital costs. 

Operating Costs 

Operating costs can be divided in fixed costs and variable costs. Fixed costs include 

things such as possible power plant operator, administrative costs (insurance, energy 

billing etc.), and maintenance and general supplies. Variable costs consists mainly of 

fuel. 

Some factors which should be considered in a pre-feasibility study are: 
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Factors to be considered in a pre-feasibility study 

Included in 

this study 

Key drivers affecting the project, for example: 

 Replacing/refurbishing possible existing plant 

 Proposing new development 

 

Define objectives for the development, for example: 

 Carbon reduction 

 Improving heating efficiency and security of supply 

 

Collecting key information of environment, buildings, existing supply 
and consumption of heat and electricity, site conditions 

 

  

Combine collected information   

Based on the data collected there should be an initial DH technology 
study executed 

 

Assessing other viable options to fulfill the same task as a DH system  

Ways to finance the project – initiatives and funding streams   

Carry out feasibility study with consideration of developing existing 
buildings, layout, scale, heat network, stakeholder engagement. 

 

 

 Factors to be considered in a pre-feasibility study and factors included in this study 

(Stockport, n.d.). 

5.11 Summary of Chapter 5 

 Extensive enough background work has to be gone through in order to estimate 

if a DH project is viable. 

 Finding funding for a project can be hard if the public is not supporting it. 

 Project financing can be obtained from government programs and public funding 

streams, private funding, loans and partnerships. 

 Construction of the DHN should be carried out with local workers. 

 The Ontario Ministry of Energy is the legislative authority for energy concerns in 

the province of Ontario. 
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6 Data Collection Process 

This chapter introduces the information that had to be gathered in order to conduct an 

analysis and estimation of the viability of a DH system. The chapter also discusses the 

process and steps behind obtaining the necessary information for the analysis. 

6.1 Collection of information 

The collection of energy consumption information of the buildings of Marathon was con-

ducted with the help of the Economic Development Officer in Marathon. To make the 

collection easier, the plan was that the local source would have been the one providing 

the data. Because a large part of the buildings are not owned by the municipality, the 

energy usage information is not available. This calls for interviewing the building owners. 

It was expected, that energy consumption information would have been collected from 

all of the buildings included in the possible district heating network plan, which counts for 

14 different buildings. But due to lack of time, this afore mentioned plan did not succeed. 

Instead, the information was collected from the municipality’s billing information from 

their HydroOne online account and an Excel workbook, where amounts of delivered pro-

pane liters were logged, starting from year 2009. The energy use information found from 

the HydroOne account starts from the end of year 2012. The HydroOne online account 

and Excel worksheet were provided by the Economic Development Officer. The reason 

for these two different sources is that the Town Hall is heated with Hydropower electricity, 

while most of the municipality owned buildings are heated with propane, although these 

buildings also use hydropower for lighting and other electricity. 

The quantity of data remained less than what was expected. Initially, data of 14 different 

buildings was expected, but this changed to an amount of four buildings. The reason for 

this was that the local information source did not have time to conduct the interviews for 

the private building owners. The data collected from these four buildings are all munici-

pality owned, so the data was easily available.  
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6.2 Information Required 

Based on the earlier mentioned pre-feasibility study factors in Table 11 in Chapter 5.10, 

information that is needed is basic information about the building heating features. The 

following information factors are included: 

 Collecting key information of environment, buildings, existing supply and con-

sumption of heat and electricity, site conditions. 

 Combine collected information. 

 Ways to finance the project – initiatives and funding streams. 

 
 
The analysis of the information has to answer the following questions: 
 

 What are the current costs for heating the buildings? 

 How have the heating costs changed in time? 

 How do the costs change in relation to the fuel used? 

 Is it cheaper or more expensive to heat the buildings with biomass? 

 In what time would the investments required for biomass heating pay themselves 

back, in other words, when does the break-even point occur? 

 Therefore, the following information will be gathered in this study: 

 Current energy consumption, kWh/month. 

 Energy consumption statistics from the last 5 years, showing seasonal changes 

(with some restrictions). 

 Current form of energy used. 

 Current heating method. 

 Annual cost of heating. 
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Information that is needed in the full-scale feasibility study is at least the following in 

addition to what is needed in the pre-feasibility study: 

 Heated volume, m2. 

 Heated space, m3. 

 Owner of the property. 

 Age and expected lifetime of the building. 

 Age of existing heat equipment. 

 Potential sites for DH plants. 

 Technical aspect. 

o District heating network details. 

o Form of combustion. 

o Site options. 

 Logistics details 

o Distance to feedstock. 

o Transport method. 

o Storage method. 

o Fuel supply. 

 Form of district heating enterprise. 

 Financing models. 

 Full benefits and drawbacks. 

 Analyzing risk and mitigation strategies. 

 Legislative drivers. 

(Linger, R., 2009). 

See chapter 4.2 for basic information and cost estimation of transportation and storage 

and chapter 5 for best practices in legislative concerns and financing a DH project. 
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6.3 Validity and Reliability 

Without inside knowledge it is hard to say if the information is truly valid and reliable. 

Nevertheless, the information gathered is straight from the root, which gives it creditabil-

ity and presumably there is no incentive for the source to provide false information. 

6.4 Data analysis method 

The data that was analyzed in this thesis was gathered based on the factors mentioned 

in chapter 5.10. Table 12 below shows the factors that are included in this study. 

 

Factors to be considered in a pre-feasibility study 

Included in 

this study 

Key drivers affecting the project, for example: 

 Replacing/refurbishing possible existing plant 

 Proposing new development 

 

Define objectives for the development, for example: 

 Carbon reduction 

 Improving heating efficiency and security of supply 

 

Collecting key information of environment, buildings, existing supply 
and consumption of heat and electricity, site conditions 

 

X 

Combine collected information X 

Based on the data collected there should be an initial DH technology 
study executed 

 

Assessing other viable options to fulfill the same task as a DH system  

Ways to finance the project – initiatives and funding streams X 

Carry out feasibility study with consideration of developing existing 
buildings, layout, scale, heat network, stakeholder engagement. 

 

 

 Factors to be considered in a pre-feasibility study and factors included in this study 

(Stockport, n.d.). 
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The gathered data was first organized and the visualized to better understand and grasp 

the bigger picture of the fluctuating energy use in a year. The total energy usage for all 

buildings was calculated and the total current costs was estimated. The current costs 

were then compared to an estimation of costs derived from the same energy usage 

amount but by using forest biomass. The difference of costs was then calculated. With 

the cost savings from the use of biomass, a hypothetical situation of investment payback 

time was created. The sensitivity of this investment situation was also analyzed in three 

different grant-scenarios. 
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7 Results 

This chapter includes the results of the information gathering process and the analysis 

based on this information. 

Table 13 presents costs of different fuel types and price changes from different years for 

propane and furnace oil. These prices are used in the analysis further on. There are two 

types of woodchips, both with a moisture content of 30%. Two types of woodchips were 

used for the sake of comparison. Although the typical moisture content of woodchips is 

42% (BERC, 2011), the 30% moisture content used here was because of adequate sta-

tistics. 

Fuel type ($/l) 2015 2012 2010 Reference 

 

Furnace oil (37.7 MJ/L) 

($/L) 1.129 1.293 1.076 NRCAN, 2015 

($/MJ) 0.029 0.034 0.028 

 

Propane (25.3 MJ/L) 

($/L) 0.869 0.949 0.799 NRCAN, 2015 

($/MJ) 0.034 0.037 0.031 

(MC30*) Hard Wood-

chips (12412.6 MJ/t) 

($/MJ) 0.0140 (2015) FOEX, 2015 

(MC30) Soft Woodchips 

(12155.487 MJ/t) 

($/MJ) 0.0145 (2015) 
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 Price comparison ($/MJ) for different heating fuels. *MC30 = moisture content 

30%, see Appendix 1 for calculations, (NRCAN, 2015) & (FOEX, 2015). 

Table 14 shows the same fuel types with the prices calculated per kWh. This makes it 

easier to compare the different fuel types, since the propane and oil are in liters and the 

woodchips in tons. 

Costs per kWh   2015 2012 2010 

Furnace Oil $/kWh 0,1044 0,1224 0,1008 

Propane $/kWh 0,1224 0,1332 0,1116 

MC30 Hard woodchips $/kWh 0,0504 

MC30 soft woodchips $/kWh 0,0522 

Hydro One average price $/kWh 0,0906 

 Price comparison of energy forms in kWh. 

The information of the municipality’s propane contract price was received from Economic 

Development Officer of Marathon. The municipality has a propane contract with Superior 

Propane, with propane priced to 46.7 cents per liter until August 2015. This price is used 

as a benchmark in comparison with other prices. 

Marathon propane price 

$/L 0,467 

$/MJ 0,0184 

$/kWh 0,0664 

 Propane price for the Town of Marathon 

 



52 

 

  

As an outcome of the information gathering progress, specifications of four different 

buildings were found. As seen on the map, information of buildings number 1, 6, 7 and 

10 were collected. These are the Town Hall, Marathon Arena/Theatre/Porthole Pool, 

Marathon family practice/library and Fire Hall & Opp station. 

Figure 9. Map of Marathon with buildings planned to be connected to the DHN. 

The buildings that are possibly to be connected to the district heating network are high-

lighted in red in the above map. The building number 8, highlighted in yellow, is a sup-

portive housing complex which is still in the planning phase but should be considered to 

be connected. Table 16 indicates estimated distances between buildings and the total 

length of the possible network. The distances are straight distances from building to 

building without considering any restricting infrastructure underground. The distances 

were measured with Google Maps measuring tool. 
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# on 
map Distance (m) Cumulative (m) 

14-13 142 142 

13-12 102 244 

12-11 37 281 

11-11 64 345 

11-10 155 500 

10-1 58 558 

1-2 150 708 

2-8 104 812 

8-3 78 890 

3-4 69 959 

4-15 115 1074 

15-7 77 1151 

7-5 55 1206 

5-6 48 1254 

6-9 89 1343 

  TOTAL 1343 

 Estimation of District Heating Network distance. 

Table 17 presents the current energy usage of the four separate buildings with the sea-

sonal changes of the temperature. The information of this energy usage was collected 

from the HydroOne online account for the Town Hall and from the delivered liters of 

propane excel worksheet for the rest of the buildings. The propane liters were converted 

into kilowatt-hours. The changes in temperature were provided by the HydrOne online 

account. 

The zero values indicate that the previous propane delivery was sufficient for the time 

period of zero values. It can be seen that in the summertime there is much less propane 

delivered than in the winter. 
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 2013-2014 Current energy use for heating per building and combined. 

Figure 10 visualizes the combined energy consumption of the buildings with the monthly 

changes of the temperature. 

 

Town Hall

Marathon 

Arena/Theatre/Po

ol Library

Fire Hall & Opp 

Station

Buildings 

Combined

2013-1 30 752      95 661                 31 410   26 694                 184 517       

2013-2 30 240      36 791                 -         -                       67 031         

0 2013-3 23 684      83 463                 26 623   15 544                 149 314       

3 2013-4 11 445      83 695                 5 703     -                       100 843       

10 2013-5 7 642        33 108                 1 433     11 462                 53 644         

14 2013-6 4 380        29 202                 -         -                       33 582         

17 2013-7 4 526        21 710                 -         -                       26 236         

18 2013-8 4 883        33 391                 -         -                       38 274         

11 2013-9 5 070        31 511                 -         -                       36 581         

8 2013-10 8 649        43 133                 -         -                       51 782         

-5 2013-11 19 170      69 191                 3 955     -                       92 316         

-21 2013-12 31 806      84 348                 15 875   30 437                 162 466       

2013 TOTAL 182 246    645 205               85 000   84 137                 996 587       

-18 2014-1 37 960      136 062               21 431   -                       195 452       

-17 2014-2 25 200      89 077                 19 136   -                       133 413       

-12 2014-3 29 636      83 040                 19 998   34 880                 167 554       

-2 2014-4 16 020      46 747                 5 262     -                       68 029         

14 2014-5 13 904      -                        -         -                       13 904         

15 2014-6 8 490        -                        -         22 427                 30 917         

19 2014-7 5 286        -                        -         -                       5 286           

16 2014-8 4 418        41 435                 -         -                       45 852         

12 2014-9 5 985        32 393                 3 253     -                       41 632         

4 2014-10 9 827        44 050                 -         -                       53 877         

-7 2014-11 19 125      94 475                 12 811   -                       126 411       

-11 2014-12 23 839      45 840                 -         -                       69 679         

2014 TOTAL 199 688    613 119               81 892   57 306                 952 006       

#10#7

Energy Use, 

kWh/month

Average Monthly 

Temperature, C˚ YYYY-MM #1 #6
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Figure 10. 2013-2014 Current combined energy use for heating and average monthly tem-
perature 

The cost of heating is presented in Table 18. The monthly costs for the Town Hall are 

estimates calculated from the billing information found from the HydroOne online ac-

count. The billing periods were from the middle of a month to the middle of the next 

month. The bills included energy consumption information but were in kWh/day. This 

required an average value to be calculated for the month. The average value of kWh/day 

was then multiplied by the number of days in the specific month. See Appendix 3 for an 

example of the calculation method. 

The monthly costs for the buildings heated with propane were easier to get. The excel 

sheet provided monthly information of delivered propane, which was then multiplied with 

the Marathon propane contract price, 46.7 cents/liter. 
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Costs, 
$/month 

Town 
Hall 

Marathon 
Arena/Theatre/Pool Library 

Fire Hall 
& Opp 
Station 

Buildings 
Combined 

YYYY-MM #1 #6 #7 #10   

2013-1 2 788 6 357 2 087 1 774 13 006 

2013-2 2 742 2 445 0 0 5 186 

2013-3 2 147 5 546 1 769 1 033 10 495 

2013-4 1 038 5 562 379 0 6 978 

2013-5 693 2 200 95 762 3 750 

2013-6 397 1 940 0 0 2 338 

2013-7 410 1 443 0 0 1 853 

2013-8 443 2 219 0 0 2 662 

2013-9 460 2 094 0 0 2 554 

2013-10 784 2 866 0 0 3 650 

2013-11 1 738 4 598 263 0 6 599 

2013-12 2 884 5 605 1 055 2 023 11 566 

2013 
TOTAL 16 523 42 874 5 648 5 591 70 636 

2014-1 3 442 9 041 1 424 0 13 907 

2014-2 2 285 5 919 1 272 0 9 476 

2014-3 2 687 5 518 1 329 2 318 11 852 

2014-4 1 452 3 106 350 0 4 908 

2014-5 1 261 0 0 0 1 261 

2014-6 770 0 0 1 490 2 260 

2014-7 479 0 0 0 479 

2014-8 401 2 753 0 0 3 154 

2014-9 543 2 153 216 0 2 911 

2014-10 891 2 927 0 0 3 818 

2014-11 1 734 6 278 851 0 8 863 

2014-12 2 161 3 046 0 0 5 207 

2014 
TOTAL 18 105 40 742 5 442 3 808 68 096 

 2013-2014 Current monthly heating costs per building and combined. 

Figure 11 shows Table 18 values in a form easier to read. 
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Figure 11. Current heating costs per building. 

Figure 12 introduces heating costs for the four buildings combined in a graph. Here the 

costs were changed to represent different fuel types to compare different heating meth-

ods. The average price for Hydro kilowatt-hours, which can be seen in Table 12, was 

estimated from the Town Hall heating cost data. We can see that the costs of heating 

the buildings with wood chips seems to be less expensive than with other forms of en-

ergy. Although both qualities of woodchips present roughly the same costs, the wood-

chips with hard quality wood equals lowest costs. 
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Figure 12. 2013-2014 Energy source cost comparison for combined heating costs. 

Since data of the propane heated buildings is more extensive, it was interesting to see 

the heat demand changes from year to year. These changes can be seen in Figure 13, 

which presents the energy consumption of the propane heated buildings from year 2010 

to the end of 2014. The heat demand profile is relatively consistent from year to year 

although there are quite big changes in energy consumption. Statistics of monthly tem-

perature changes would presumably explain the large differences in heat demand from 

year to year. 
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Figure 13. 2010-2014 Energy consumption for buildings heated with propane. 
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8 Analysis 

The before mentioned differences between the current costs of heating and the possible 

alternative of using biomass are analyzed in this chapter. It has to be stated, that be-

cause of the unfortunately small quantity of data which was available, the analysis is to 

large extent, a rough and limited estimate of costs and savings related to this kind of a 

biomass district heating system. 

The aspects that are included in this analysis are: 

 Costs of fuel.  

 Cost of storage structure. 

 Cost of biomass boiler. 

 Variations of financing with debt, grants and municipality equity. 

 

The aspects that this thesis does not take under consideration are, for instance: 

 The cost of the district heating network itself. 

 The cost of power plant, storage or other required buildings and structures. 

 Cost of designing and engineering. 

The steps ruled out from this analysis should therefore be taken in the possible follow-

up project. 

The moisture content of the woodchips used in this analysis is 30%, although commonly 

the moisture content of woodchips is 42%, as mentioned earlier in chapter 7. 

 If we look at Table 19, which roughly presents the difference in using hardwood chips 

instead of the current method, which is hydropower and propane, we can see that the 

balance is positive and creates savings for each month. Hardwood chips with a moisture 

content of 30%, which has been used earlier on in comparison, was used in the analysis 

since it proved to be a less expensive alternative than the softwood chips. The total sav-

ings of year 2013 and the cumulative total savings of years 2013 and 2014 are high-

lighted in orange. 
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YYYY-
MM 

kWh 
Current Costs, 
$CAD 

Costs, 
$CAD 

Savings per 
month 

Cumula-
tive 

Buildings com-
bined 

Buildings Com-
bined 

MC30 
HARD 

Current costs vs 
MC30 

2013-1 184517 13006 9300 3706 3706 

2013-2 67031 5186 3378 1808 5514 

2013-3 149314 10495 7525 2970 8484 

2013-4 100843 6978 5083 1896 10380 

2013-5 53644 3750 2704 1046 11426 

2013-6 33582 2338 1693 645 12071 

2013-7 26236 1853 1322 531 12602 

2013-8 38274 2662 1929 733 13334 

2013-9 36581 2554 1844 710 14044 

2013-10 51782 3650 2610 1041 15085 

2013-11 92316 6599 4653 1946 17030 

2013-12 162466 11566 8188 3378 20408 

2014-1 195452 13907 9851 4056 24464 

2014-2 133413 9476 6724 2751 27216 

2014-3 167554 11852 8445 3407 30623 

2014-4 68029 4908 3429 1480 32102 

2014-5 13904 1261 701 560 32662 

2014-6 30917 2260 1558 702 33364 

2014-7 5286 479 266 213 33577 

2014-8 45852 3154 2311 843 34420 

2014-9 41632 2911 2098 813 35233 

2014-10 53877 3818 2715 1103 36336 

2014-11 126411 8863 6371 2492 38828 

2014-12 69679 5207 3512 1696 40523 

 Cost savings from using biomass 

The average amount of savings per year from these two consecutive years was calcu-

lated for further evaluation. Average saving per year: 

20408,18 + (
40523,16

2
)

2
= 20334,88 $𝐶𝐴𝐷 

Combined yearly energy consumption 

2013 996 587 kWh 

2014 952 006 kWh  

Average 974 296,5 kWh  
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 Combined yearly energy consumption of all buildings 

To estimate the output capacity of the power plant, we have to know how much the 

system, in other words the buildings, consume energy in a year. Table 20 shows the 

consumption of years 2013 and 2014. With the average of these years and by assuming 

that the power plant will be running for 4000 hours per year we get: 

974296,41

4000
= 243,57 𝑘𝑊 

The estimated output capacity therefore is 243.57 kW, which can be rounded up to 

250kW. With 4000 yearly running hours the power plant will cover the heat requirements 

for the system viewed in this study. There is potential for more heat output if it is required, 

since the yearly running hours can be increased. Table 21 includes key figures and cal-

culated values which are used in the analysis. 

Key Inputs & Calculated Values*   
    
Propane displaced 107208,38 liters/a* 
Propane price 0,467 $CAD/liter* 
System load 974296,41 kWh/a* 
Plant output 1 MWh/a 
Output capacity of woodchip boiler 250kW/h* 
wood boiler efficiency  n/a 
wood moisture content 30 % 
Wood MJ content on dry basis 5,14 kWh/kg 
Wood requirement 282.6 tons/year* 
Woodchip price 173.8 $CAD/ton 
Price reduction on cost of propane 29 % 
Current price of propane heat 0,06645 $CAD/kWh 

Hours of full load operation 3897,2h 

 Key Inputs & Calculated Values*. 

 

The capital costs shown in Table 22 are derived from the cost of technology and storage, 

which were presented earlier on in the text in Tables 7 and 8.  
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Capital Cost ($CAD)   

    

Wood energy boiler 252,116 $CAD 

Storage 77,367 $CAD 

Total Capital 329,483$CAD 

 Capital costs 

Any operations and management costs were not considered in this analysis. With the 

information at hand, it does not make sense to estimate the running costs, such as costs 

derived from logistics, electricity use and labor. 

Table 23 includes the assumed inflation rate and interest rate, which sum up as the cal-

culation rate used in this analysis. The inflation rate is an average from four previous 

years’ statistics. The other figures are assumptions. 

Analysis rate 

Inflation rate1 1,48 % 

Interest rate 6,00 % 

Calculation rate 7,48 % 

 The calculation rate used in the analysis, 1average inflation rate (Focus-Econom-

ics, 2015). 

Table 24 shows how the net present value of the savings compares to a direct investment 

cost. With the amount of savings derived from the use of biomass, a break-even point 

cannot be seen in 20 years of time. Though this kind of a limited calculation does not yet 

tell anything, it gives an understanding of the magnitude of savings that build up over 

time. 
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Year Saving, $/a Money value, NPV Cash flow 

0      $        -329 483  
1 20335 18920  $        -310 563  
2 20335 17603  $        -292 960  
3 20335 16378  $        -276 582  
4 20335 15238  $        -261 344  
5 20335 14178  $        -247 166  
6 20335 13191  $        -233 975  
7 20335 12273  $        -221 702  
8 20335 11419  $        -210 284  
9 20335 10624  $        -199 659  
10 20335 9885  $        -189 775  
11 20335 9197  $        -180 578  
12 20335 8557  $        -172 021  
13 20335 7961  $        -164 060  
14 20335 7407  $        -156 653  
15 20335 6892  $        -149 761  
16 20335 6412  $        -143 349  
17 20335 5966  $        -137 383  
18 20335 5551  $        -131 832  
19 20335 5164  $        -126 668  
20 20335 4805  $        -121 863  

  TOTAL 207619,44   

 Direct total capital cost in comparison with yearly net present value of savings. 

Below are three different scenarios for funding with grants. The grant amount is sub-

tracted from the investment amount and the savings from using biomass is used to pay 

back the investment amount.  The amount of grants are taken from chapter 5.6, which 

presents amounts from two different national funding programs. The Municipal Energy 

Plan (MEP) and The Green Municipal Fund (GMF) both allow grants to new and existing 

projects. The scenarios play with grant amounts from each of the funds and then with an 

amount combined from both funds. 

Funding Scenario 1   

    

Total investment amount 329,483$ 

    

Amount grants   

MEP 90,000$ 

    

Amount municipal equity 239,483$ 

    

Discount rate 7,48 % 

Term (year) 20 
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 Funding scenario 1. 

Savings total NPV Investment Difference 

207 619 239 483 -31 864 

 Funding scenario 1 outcome. 

The amount to be paid, after the grants from The Municipal Energy Plan, is 239,483 

CAD$.  We can see from Table 26 that with the savings derived from using forest bio-

mass and with a grant amount of 90,000CAD$, the investment amount cannot be paid 

back with the savings alone. This results in a negative sum in the end of the 20-year 

observation period. 

Funding Scenario 2   

    

Total investment amount 329,483$ 

    

Amount grants   

GMF 50% 164,742$ 

    

Amount municipal equity 164,742$ 

    

Discount rate 7,48 % 

Term (year) 20 

 Funding scenario 2 

Funding scenario 2 differs from the first one with a larger grant amount and a smaller 

amount for the municipality to be paid. The difference between the investment amount 

and total savings is in this example positive. In the course of 20 years, the investment 

can be paid off and the savings add up to 42,877CAD$.  

Savings total NPV Investment Difference 

207 619 164 742 42 877 

 Funding scenario 2 outcome 

The last scenario introduces the smallest amount of municipal equity with a relatively 

large grant amount of 254,742CAD$, which is slightly over 77% of the total investment 

amount. 
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Funding Scenario 3   

    

Total investment amount 329,483$ 

    

Amount grants   

MEP 90,000$ 

GMF 164,742$ 

Grants total 254,742$ 

    

Amount municipal equity 74,741$ 

    

Discount rate 7,48 % 

Term (year) 20 

 Funding scenario 3. 

As in scenario 2, also in this one the amount in the end of the 20-year observation period 

is positive. The savings add up to a total of 132,878CAD$.   

Savings total NPV Investment Difference 

207 619 74 741 132 878 

 Funding scenario 3 outcome. 

Although the final amounts in all scenarios are positive, one has to keep in mind that in 

these examples any costs from designing and building the structures, the costs of the 

district heating network itself, the heat loss in the network and so on are not taken into 

account. The final results also depend heavily on the cost of logistics and storage, which 

comprise a large proportion of the total costs of biomass, as mentioned earlier in chapter 

4.2. But on the other hand, any income from selling heat is not taken into account either. 

Other positive effects, which are harder to quantify, are jobs created, reduction of emis-

sions, money left in the municipality, locally sourced energy and steady energy prices. 
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  scenario 1 scenario 2 scenario 3 

Grant amount 90 000 164 742 254 742 

Amount to be paid 239 483 164 742 74 741 

Biomass price -30% 70 086 144 827 234 828 

Current -31 864 42 877 132 878 

Biomass price +30% -230 729 -155 988 -65 987 

 Sensitivity analysis of net present value of investment and yearly savings and 

change in biomass price 

To see how the costs and savings are affected by the price of biomass, a simple sensi-

tivity analysis was made. Table 31 above presents the current differences between in-

vestments and cost savings for all funding scenarios. The current situation is compared 

to biomass prices 30% lower and higher. Since there is no adequate data of the future 

outlook for biomass market price, a 30% increase and decrease was used in this sensi-

tivity analysis. 
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9 Summary of Results 

A summary of the results of this study are shown in this chapter. 

The cost of harvesting for a whole tree was assessed to be in the price range of 28.33 

to 34.08 $/m3. For trees that are cut-to-length, the price range was estimated to be 

between 27.33 and 32.58 $/m3. These numbers were created by using a couple of dif-

ferent sources and combining the information together. For calculations, see chapter 

4.2.1. 

The cost of transportation was valued at 8.38 $/m3 per 100 kilometers. To see how the 

figure changes relatively to transport distance, a simple cost sensitivity calculation was 

done. The transport cost for a haul of 50 km was valued at 5.17$/m3. The same figure 

for a haul of 150 km was 11.60$/m3. For more detailed information about transportation, 

see chapter 4.2.2. 

A case study of a Finnish small-scale power plant in Tuupovaara indicated, that 1000 

megawatt-hours of produced energy employs approximately 0.87 person years. For 

Marathon, an employment estimation of 1.305 person years could be obtained with a 

biomass district heating system. This is calculated by multiplying the estimation of re-

quired output heating capacity, which is 250kWth. This is then multiplied by an estimation 

of 6,000 running hours. The result is divided by 1,000,000 (kWh) and multiplied by 0.87. 

With the current knowledge, the cost of technology was hard to estimate, so costs of 

different sized biomass power plants are presented in Table 8. For example, a biomass 

boiler with the capacity of 250kWth and 35kWe costs €184,000. This price of technology 

was used in the analysis. 

For storage, the cost estimation has a similar problem than the cost of technology. For 

this reason, a table of different kinds of storage methods was created. The cost of stor-

age ranges from tens of thousands to some millions, from simple open pile storages to 

warehouses. Table 7 presents costs for different storage methods. In the analysis of this 

study, the price of a metal building with a concrete pad was used. In Table 7 the price 

for the structure is 62,000$USD, which is roughly 77,000$CAD. 
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Costs per kWh   2015 2012 2010 
Marathon  

Furnace Oil $/kWh 0,1044 0,1224 0,1008 
- 

Propane $/kWh 0,1224 0,1332 0,1116 
0,0664 

MC30 Hard woodchips $/kWh 0,0504 
- 

MC30 soft woodchips $/kWh 0,0522 
- 

Hydro One average price $/kWh 0,0906 
- 

 Cost of different fuel types. 

The current price of heating was calculated with the contract price between the Town of 

Marathon and Superior Propane. Marathon pays 0,467$ per liter of propane. For easier 

comparison, the price was calculated per kilowatt-hour. 

With the Google Maps distance measuring tool, the total distance of the planned district 

heating network was estimated to be 1341,95 meters. 

The data collection resulted in obtaining data from four different buildings. These build-

ings were the town hall (#1), marathon arena (#6), fire hall & OPP station (#10) and 

library (#7), which can be seen on the map in Figure 9. The analysis in this study was 

based on the energy use data collected from these buildings. 

With the energy use of the buildings, the monthly and yearly costs could be estimated 

with the price of fuel. Table 33 below presents the energy consumptions, propane and 

biomass costs for years 2013 and 2014 and shows the cost savings derived from the 

use of biomass. 

Year Total energy use (kWh/a) Current cost ($CAD/a) 
 

Cost with biomass 
 

Cost Savings 

2013 996587 70636 50228 20408 

2014 952006 68096 47981 20262 
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 Buildings combined: the total energy consumption and costs of energy use. 

An analysis of a hypothetical investment, limited to a wood boiler and storage structure, 

was made in relation to the above mentioned cost savings. Three different funding sce-

narios were created with grant amounts taken from chapter 5.6. The investment costs 

are shown in Table 34 below.  

Capital Cost ($CAD)   

    

Wood energy boiler 252,116 $CAD 

Storage 77,367 $CAD 

Total Capital 329,483$CAD 

 Hypothetical investment for analysis. 

The analysis viewed how the payback of the investment cost, 329,483$CAD, changed 

with different grant amounts. Table 35 summarizes the analysis of funding scenarios 1, 

2 and 3. The NPV of the cost savings was used to pay back the remaining investment 

cost after grants.  

Fund-
ing 
sce-
nario 

Amount 
grants 

Investment af-
ter grant 
($CAD) 

Net present value of investments and yearly 
savings after investment costs ($CAD) 

1 90,000$ 239,483                         -31,864  

2 164,742$ 164,742                          42,877  

3 254,742$ 74,741                        132,878  

 Summary of funding scenarios for 20 years 

Based on the analysis one could make an assumption that a district heating investment, 

with a large enough grant amount, is profitable or at least pays itself back. The results of 

this study should be read with a healthy amount of criticism, since the analysis does not 

consider possible income originated from selling heat and other positive factors, which 

are harder to quantify. These would include for instance job creation, greenhouse gas 

reductions and money remaining in the municipality. Examples of greenhouse gas re-

ductions in different case studies are shown in Table 10. Similarly, the analysis does not 

take into account other costs than the price of a biomass boiler and a storage structure. 

For this kind of a system there would be costs from engineering and designing, mapping 
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out the procurement functions of biomass, logistics, land use, permits and construction, 

just to mention a few. The logistics and storage costs would play the largest role in the 

total costs of this kind of a system.  

Although the results cannot be considered reliable, the benefits of using forest biomass 

to produce energy are widely proven in different case studies from around the world. For 

Marathon this means that a new analysis with more fact-based data and information of 

costs should be made. A more accurate estimation of the feasibility of the system can be 

made by gathering energy consumption data of the remaining buildings. Also more ac-

curate and facts based information about the costs of this kind of a system should be 

gathered in order to gain reliable results from the analysis. For instance, a quote from a 

biomass boiler representative would give the best estimate of the energy production unit. 
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10 Discussion and Conclusions 

The thesis studied the viability of embarking on a full-scale feasibility study of a forest 

biomass fueled district heating system for the Town of Marathon. The secondary objec-

tive was to compile the best practices and lessons learned from global case studies in 

forest-biomass fueled district-heating projects. 

The second objective met the expectations of the BIC project team and received good 

feedback. 

What comes to the viability study, due to the restrictions of available data, the analysis 

and comparison of the current state of heating and the alternative option of forest bio-

mass, did not reveal the kind of results, which could be used to make a reasoned con-

clusion to the present question. 

The lack of data caused a slight problem whereby investment costs, such as the district 

heating piping, building and land, and labor costs were not evaluated. Operations and 

management costs were not taken into account. Also the income from selling heat, mak-

ing heating contracts and connections with customers was not taken into account. 

Therefore, one has to take a critical attitude towards the results of the analysis, since 

they do not reflect the real-life situation. However, the energy cost savings do show some 

direction how the reality would look like, although the cost savings are done with an 

assumption of the price of woodchips. The real price for self-harvested and processed 

wood most likely differs from the price used here and need local evaluation. Also the 

price of propane fuel and other fossil fuels change in time and the results shown in this 

thesis can dramatically change if the price of propane drops. 

Although the results were not in line with the expectations, there is useful information in 

this thesis. The costs of logistics, harvesting and transportation can be used in further 

research with some caution, since the values are estimates and not absolute values. 

Information about technology costs, cost savings, employment numbers and carbon re-

ductions can be used as benchmark and background information. The information about 

best practices, especially financing, regulations and lessons learned from other case 

studies can be seen as valuable information for anyone seeking to learn more about 

district heating and energy sourced from forest biomass. Lessons learned in chapter 5.8 
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from other district heating projects should be viewed for further use in possible follow-up 

projects. 

Despite the fact that, with the information gained in this research, a grounded conclusion 

of the rational follow-up cannot be made, it is evident that there are benefits in the use 

of biomass as an energy source.  

The next steps the Town of Marathon should take are: 

 Gather more data on the current costs of heating, building and structure specifi-

cations, pipe network specifications, logistic details and more detailed information 

of financing models. 

 Gain a more precise understanding of the costs of implementing a forest biomass 

fueled district heating network. 

 Based on gathered information, evaluate the prospect of embarking on a full 
scale feasibility study. 

10.1 Evaluation of the Study 

The results of the study are valid but not reliable. The assumptions made makes the 

analysis too theoretical and does not reflect enough to the real situation. However, the 

information presented in the theory part of this study is both valid and reliable. Especially 

the best practices in chapter 5 provide a good base knowledge of the things that should 

be considered in a district heating project. 

The analysis model in this study does lack versatility and because of the circumstances 

in the data gathering process, the analysis model is insufficient. The data, speaking of 

the heating costs and energy consumption amounts, are nonetheless correct. Although 

the study did not reveal enough information for a grounded conclusion of the matter of 

whether to continue with a full scale feasibility study, it does provide valuable information 

for benchmarking and background information of forest biomass fueled district heating. 

These pieces of information can be further used in future studies. 

 



74 

 

  

References 

AEA, Arctic Energy Alliance, (2010). NWT Community Wood Pellet District Heating 

Study. [Web document] Retrieved from: http://aea.nt.ca/files/download/71. (Accessed 12 

Feb 2015). 

Allen, J., Browne, M., Hunter, A., Boyd, J. & Palmer, H. (1998). Logistics Management 

and Costs of Biomass Fuel Supply. International Journal of Physical Distribution & Lo-

gistics Management 28(6) 463-477. Retrieved from: http://www.emer-

aldinsight.com.ezproxy.metropolia.fi/doi/pdfplus/10.1108/09600039810245120. (Ac-

cessed 13 Jan 2015). 

Andrews, D., Riekkola, A.K., Tzimas, E., Serpa J., Carlsson, J., Pardo-Garcia, N., Pa-

paioannou, I. (2012). Background Report on EU-27 District Heating and Cooling Poten-

tials, Barriers, Best Practice and Measures of Promotion. Joint Research Centre. [Web 

document] Retrieved from: https://setis.ec.europa.eu/system/files/1.DHCpotentials.pdf. 

(Accessed 26 Jan 2015). 

AREN, Aboriginal Renewable Energy Network, (2015). [Web page] Retrieved from: 

http://www.aboriginalenergy.ca/regulation-ontarios-electricity-market. (Accessed 30 Jan 

2015). 

Badger, P.C., (2002). Processing Cost Analysis for Biomass Feedstocks. [Web docu-

ment] Retrieved from: http://web.ornl.gov/~webworks/cppr/y2002/rpt/114971.pdf. (Ac-

cessed 12 Feb 2015). 

Baral, A. & Malins, C., (2014). Comprehensive Carbon Accounting For Identification of 

Sustainable Biomass Feedstocks. The International Council on Clean Transportation. 

[Web document] Retrieved from: http://www.theicct.org/sites/default/files/publica-

tions/ICCT_carbonaccounting-biomass_20140123.pdf. (Accessed 19 Feb 2015). 

Barnes, K. & Ashton, S. (n.d). Implications of Using Woody Biomass for Energy and 

Other Products. Southern Regional Extension Forestry. [Web document] Retrieved 

from: http://www.nacdnet.org/resources/guides/biomass/pdfs/handout_4.pdf. (Ac-

cessed 21 Jan 2015). 

http://aea.nt.ca/files/download/71
http://www.emeraldinsight.com.ezproxy.metropolia.fi/doi/pdfplus/10.1108/09600039810245120
http://www.emeraldinsight.com.ezproxy.metropolia.fi/doi/pdfplus/10.1108/09600039810245120
https://setis.ec.europa.eu/system/files/1.DHCpotentials.pdf
http://www.aboriginalenergy.ca/regulation-ontarios-electricity-market
http://web.ornl.gov/~webworks/cppr/y2002/rpt/114971.pdf
http://www.theicct.org/sites/default/files/publications/ICCT_carbonaccounting-biomass_20140123.pdf
http://www.theicct.org/sites/default/files/publications/ICCT_carbonaccounting-biomass_20140123.pdf
http://www.nacdnet.org/resources/guides/biomass/pdfs/handout_4.pdf


75 

 

  

BERC, Biomass Energy Resource Center (2010). Feasibility Study of a Biomass Dis-

trict Heating Project in Greenfield, Massachusetts. [Web document] Retrieved from: 

http://www.biomasscenter.org/images/stories/Biomass_District_Energy_Green-

field_MA_Feasibility_Study.pdf. (Accessed 21 Jan 2015). 

BERC, Biomass Energy Resource Center (2015). Community District Energy. [Web 

page] Retrieved from: http://www.biomasscenter.org/resource-library/case-stud-

ies/community-district-energy. (Accessed 26 Jan 2015). 

BERC, Biomass Energy Resource Center (2009). City of Revelstoke, Case study. 

[Web document] Retrieved from: http://www.biomassinnovation.ca/pdf/Case%20Stud-

ies/CaseStudy_RevelstokeDH2_BC.pdf. (Accessed 2 Feb 2015). 

BERC, Biomass Energy Resource Center (2009). Village of Oujé-Bougomou. [Web 

document] Retrieved from: http://www.biomasscenter.org/images/stories/ouje-bougou-

mou.pdf. (Accessed 2 Feb 2015). 

BERC, Biomass Energy Resource Center (2011). Woodchip Heating Fuel Specifica-

tions in the Northeastern United States. [Web document] Retrieved from: http://www.bi-

omasscenter.org/images/stories/Woodchip_Heating_Fuel_Specs_electronic.pdf. (Ac-

cessed 6 Mar 2015). 

BIC, Biomass Innovation Centre, (2013). Biomass for Combined Heat and Power 

(CHP). [Web page] Retrieved from: http://www.biomassinnovation.ca/Com-

binedHeatAndPower.html. (Accessed 26 Jan 2015). 

Bioenarea, (2011). Good Practices. [Web page] Retrieved from: www.bioenarea.eu/list-

good-practices. (Accessed 20 Feb 2015). 

BIOS, (2004). Techno-economic evaluation of selected decentralised CHP applications 

based on biomass combustion in IEA partner countries – final report. [Web document] 

Retrieved from: 

https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CDIQFjA

D&url=http%3A%2F%2Fwww.ieabcc.nl%2Fpublications%2FIEA-CHP-Q2-fi-

http://www.biomasscenter.org/images/stories/Biomass_District_Energy_Greenfield_MA_Feasibility_Study.pdf
http://www.biomasscenter.org/images/stories/Biomass_District_Energy_Greenfield_MA_Feasibility_Study.pdf
http://www.biomasscenter.org/resource-library/case-studies/community-district-energy
http://www.biomasscenter.org/resource-library/case-studies/community-district-energy
http://www.biomassinnovation.ca/pdf/Case%20Studies/CaseStudy_RevelstokeDH2_BC.pdf
http://www.biomassinnovation.ca/pdf/Case%20Studies/CaseStudy_RevelstokeDH2_BC.pdf
http://www.biomasscenter.org/images/stories/ouje-bougoumou.pdf
http://www.biomasscenter.org/images/stories/ouje-bougoumou.pdf
http://www.biomasscenter.org/images/stories/Woodchip_Heating_Fuel_Specs_electronic.pdf
http://www.biomasscenter.org/images/stories/Woodchip_Heating_Fuel_Specs_electronic.pdf
http://www.biomassinnovation.ca/CombinedHeatAndPower.html
http://www.biomassinnovation.ca/CombinedHeatAndPower.html
http://www.bioenarea.eu/list-good-practices
http://www.bioenarea.eu/list-good-practices
https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CDIQFjAD&url=http%3A%2F%2Fwww.ieabcc.nl%2Fpublications%2FIEA-CHP-Q2-final.pdf&ei=GkDmVNXJG-LlsASHoIG4Bw&usg=AFQjCNFCMumg7jdjHKTBdVqBmZbdPuqRVQ&bvm=bv.85970519,d.aWw&cad=rja
https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CDIQFjAD&url=http%3A%2F%2Fwww.ieabcc.nl%2Fpublications%2FIEA-CHP-Q2-final.pdf&ei=GkDmVNXJG-LlsASHoIG4Bw&usg=AFQjCNFCMumg7jdjHKTBdVqBmZbdPuqRVQ&bvm=bv.85970519,d.aWw&cad=rja


76 

 

  

nal.pdf&ei=GkDmVNXJG-LlsASHoIG4Bw&usg=AFQjCNFC-

Mumg7jdjHKTBdVqBmZbdPuqRVQ&bvm=bv.85970519,d.aWw&cad=rja. (Accessed 

19 Feb 2015). 

CBCL Limited, (2010). Pre-Feasibility Analysis of Biomass Fuelled Cogeneration Unit 

for Port Hope Simpson – Final Report. [Web document] Retrieved from: 

http://www.ceaa-acee.gc.ca/050/documents/49680/49680E.pdf. (Accessed 10 Feb 

2015). 

CEPP, (2010). CEPP Overview. [Web page] Retrieved from: http://www.communi-

tyenergyprogram.ca/Project_Grants/Project_Grants_OverviewPage.aspx. (Accessed 1 

Feb 2015). 

City of Guelph, (2010). Guelph Municipal Holding Company – Business Case Study. 

[Web document] Retrieved from: https://guelph.ca/wp-content/uploads/Holdco_draft-

businessCaseStudy.pdf. (Accessed 28 Jan 2015). 

Connolly, D., Mathiesen, B.D., Østergaard, P.A., Möller, B., Nielsen, S., Lund, H., 

Persson, U., Werner, S., Grözinger, J., Boermans, T., Bosquet, M. & Trier, D., (2013). 

Heat Roadmap Europe 2050, Second Pre-Study for the Eu27. [Web document] Re-

trieved from: http://www.euroheat.org/Admin/Public/DWSDown-

load.aspx?File=/Files/Filer/documents/Publications/Heat%20Roadmap%20II/LAY-

OUT_Complete%20Heat%20Roadmap%20Europe%20Pre-

Study%20II%2020130524%20-%20FINAL.pdf. (Accessed 18 Feb 2015). 

CTR, Metropolitan Copenhagen Heating Transmission Company, (n.d.). The Main Dis-

trict Heating Network in Copenhagen. [Web document] Retrieved from: http://freshai-

reva.us/wp-content/uploads/2012/04/Copenhagen-District-Heating.pdf. (Accessed 26 

Jan 2015). 

Deputy Prime Minister’s Office, (2014). Press release City Deal to bring UK’s first ever 

large-scale, low-carbon heat network system to Stoke-on-Trent. [Web page] Retrieved 

from: https://www.gov.uk/government/news/city-deal-to-bring-uks-first-ever-large-scale-

low-carbon-heat-network-system-to-stoke-on-trent. (Accessed 18 Feb 2015). 

https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CDIQFjAD&url=http%3A%2F%2Fwww.ieabcc.nl%2Fpublications%2FIEA-CHP-Q2-final.pdf&ei=GkDmVNXJG-LlsASHoIG4Bw&usg=AFQjCNFCMumg7jdjHKTBdVqBmZbdPuqRVQ&bvm=bv.85970519,d.aWw&cad=rja
https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CDIQFjAD&url=http%3A%2F%2Fwww.ieabcc.nl%2Fpublications%2FIEA-CHP-Q2-final.pdf&ei=GkDmVNXJG-LlsASHoIG4Bw&usg=AFQjCNFCMumg7jdjHKTBdVqBmZbdPuqRVQ&bvm=bv.85970519,d.aWw&cad=rja
http://www.ceaa-acee.gc.ca/050/documents/49680/49680E.pdf
http://www.communityenergyprogram.ca/Project_Grants/Project_Grants_OverviewPage.aspx
http://www.communityenergyprogram.ca/Project_Grants/Project_Grants_OverviewPage.aspx
https://guelph.ca/wp-content/uploads/Holdco_draft-businessCaseStudy.pdf
https://guelph.ca/wp-content/uploads/Holdco_draft-businessCaseStudy.pdf
http://www.euroheat.org/Admin/Public/DWSDownload.aspx?File=/Files/Filer/documents/Publications/Heat%20Roadmap%20II/LAYOUT_Complete%20Heat%20Roadmap%20Europe%20Pre-Study%20II%2020130524%20-%20FINAL.pdf
http://www.euroheat.org/Admin/Public/DWSDownload.aspx?File=/Files/Filer/documents/Publications/Heat%20Roadmap%20II/LAYOUT_Complete%20Heat%20Roadmap%20Europe%20Pre-Study%20II%2020130524%20-%20FINAL.pdf
http://www.euroheat.org/Admin/Public/DWSDownload.aspx?File=/Files/Filer/documents/Publications/Heat%20Roadmap%20II/LAYOUT_Complete%20Heat%20Roadmap%20Europe%20Pre-Study%20II%2020130524%20-%20FINAL.pdf
http://www.euroheat.org/Admin/Public/DWSDownload.aspx?File=/Files/Filer/documents/Publications/Heat%20Roadmap%20II/LAYOUT_Complete%20Heat%20Roadmap%20Europe%20Pre-Study%20II%2020130524%20-%20FINAL.pdf
http://freshaireva.us/wp-content/uploads/2012/04/Copenhagen-District-Heating.pdf
http://freshaireva.us/wp-content/uploads/2012/04/Copenhagen-District-Heating.pdf
https://www.gov.uk/government/news/city-deal-to-bring-uks-first-ever-large-scale-low-carbon-heat-network-system-to-stoke-on-trent
https://www.gov.uk/government/news/city-deal-to-bring-uks-first-ever-large-scale-low-carbon-heat-network-system-to-stoke-on-trent


77 

 

  

Dotzauer, E., (2002). Simple model for prediction of loads in district-heating systems. 

Applied Energy 73(3-4) 277-284. [Web article] Retrieved from: http://www.sciencedi-

rect.com/science/article/pii/S0306261902000788. (Accessed 2 Feb 2015). 

Dyrelund, A. & Steffensen, H., (1999). Best practice in Danish district heating. News 

from DBDH 3/1999. [Web article] Retrieved from: https://stateofgreen.com/files/down-

load/310. (Accessed 29 Jan 2015). 

Ellis, J., (2010). Energy Service Companies (ESCOs) in Developing Countries. IISD, 

International Institute of Sustainable Development. Trade, Investment and Climate 

Change Series. [Web document] Retrieved from: 

http://www.iisd.org/pdf/2009/bali_2_copenhagen_escos.pdf. (Accessed 2 Feb 2015). 

Energy Charter Secretariat, (2005). Cogeneration and District Heating -  Best Practices 

for Municipalities. Energy Charter Protocol on Energy Efficiency and Related Environ-

mental Aspects (PEEREA). [Web document] Retrieved from: http://www.enchar-

ter.org/fileadmin/user_upload/document/Energy_Efficiency_-_Cogeneration_and_Dis-

trict_Heating_-_2006_-_ENG.pdf. (Accessed 27 Jan 2015). 

EU2020, (n.d.). EU 2020 Going Local – LGYH Presentation energy & transport. [Web 

document] Retrieved from: http://www.eu2020goinglo-

cal.eu/%5CExtDocUploads/Presentations/Riga/Good%20Practice%20Exam-

ples,%20Local%20Government%20Yorkshire%20&%20Humber.pdf. (Accessed 20 

Feb 2015). 

Faaij, A. (2006). Modern Biomass Conversion Technologies. Mitigation and Adaptation 

Strategies for Global Change 11: 343-375. [Web article] Retrieved from: file:///C:/Us-

ers/Omistaja/Downloads/NWS-E-2006-109.pdf. Accessed 14 Jan 2015). 

Federation of Canadian Municipalities, (2014). About GMF. [Web page] Retrieved from: 

http://www.fcm.ca/home/programs/green-municipal-fund/about-gmf.htm. (Accessed 1 

Feb 2015). 

Focus-Economics, (2015). Canada – Inflation. [Web page] Retrieved from: 

https://www.focus-economics.com/country-indicator/canada/inflation. (Accessed 8 Mar 

2015). 

http://www.sciencedirect.com/science/article/pii/S0306261902000788
http://www.sciencedirect.com/science/article/pii/S0306261902000788
https://stateofgreen.com/files/download/310
https://stateofgreen.com/files/download/310
http://www.iisd.org/pdf/2009/bali_2_copenhagen_escos.pdf
http://www.encharter.org/fileadmin/user_upload/document/Energy_Efficiency_-_Cogeneration_and_District_Heating_-_2006_-_ENG.pdf
http://www.encharter.org/fileadmin/user_upload/document/Energy_Efficiency_-_Cogeneration_and_District_Heating_-_2006_-_ENG.pdf
http://www.encharter.org/fileadmin/user_upload/document/Energy_Efficiency_-_Cogeneration_and_District_Heating_-_2006_-_ENG.pdf
http://www.eu2020goinglocal.eu/%5CExtDocUploads/Presentations/Riga/Good%20Practice%20Examples,%20Local%20Government%20Yorkshire%20&%20Humber.pdf
http://www.eu2020goinglocal.eu/%5CExtDocUploads/Presentations/Riga/Good%20Practice%20Examples,%20Local%20Government%20Yorkshire%20&%20Humber.pdf
http://www.eu2020goinglocal.eu/%5CExtDocUploads/Presentations/Riga/Good%20Practice%20Examples,%20Local%20Government%20Yorkshire%20&%20Humber.pdf
file:///C:/Users/Omistaja/Downloads/NWS-E-2006-109.pdf.%20Accessed%2014%20Jan%202015
file:///C:/Users/Omistaja/Downloads/NWS-E-2006-109.pdf.%20Accessed%2014%20Jan%202015
http://www.fcm.ca/home/programs/green-municipal-fund/about-gmf.htm
https://www.focus-economics.com/country-indicator/canada/inflation


78 

 

  

FOEX, Foex Indexes, (2015). Biomass Indexes. [Web page] Retrieved from: 

http://www.foex.fi/biomass/. (Accessed 16 Feb 2015). 

Francescato, V., Antonini, E., Bergomi, L. Z., Metschina, C., Schnedl, C., Krajnc, N., 

Koscik, K., Gradziuk, P., Nocentini, G., Stranieri, S., (2008). Wood Fuels Handbook – 

Production, Quality Requirements, Trading. AIEL. [Web document] Retrieved from: 

http://www.aebiom.org/IMG/pdf/WOOD_FUELS_HANDBOOK_BTC_EN.pdf. (Ac-

cessed 20 Jan 2015). 

Fyfe, S. & McLean, W., (2002). Opportunities for Municipally Owned Corporations in 

Ontario’s Electricity Market. Canadian Tax Journal 50(3) 970-1010. [Web article] Re-

trieved from: https://www.ctf.ca/ctfweb/Documents/PDF/2002ctj/2002ctj3_fyfe.pdf. (Ac-

cessed 29 Jan 2015). 

Gallis, C., (2003). Probabilistic assessment of forest biomass storage times and its effect 

on cost: A beech biomass case study. Forest Products Journal, 53(10) 44-47. Retrieved 

from: http://www.mgul.ac.ru/info/inter/news/news62/j.pdf. (Accessed 23 Jan 2015). 

Giollarnáth, R. M. (n.d.). Biomass: Strategic Issues in Supply Chain Logistics. [Web 

document] Retrieved from: http://www.limatel.com/wp-content/uploads/Limatel_Bio-

mass_Report.pdf. (Accessed 19 Jan 2015). 

Gronheit, P.E., & Mortensen, B.O.G., (2003). Competition in the market for space heat-

ing. District heating as the infrastructure for competition among fuels and technologies. 

Energy Policy 31(2003) 817-826. [Web article] Retrieved from: http://ac.els-

cdn.com/S0301421502000666/1-s2.0-S0301421502000666-main.pdf?_tid=0afc2a5c-

a726-11e4-bcd1-00000aab0f6b&ac-

dnat=1422474436_8e3c10367ebcbc9b0b319ee521997ae9. (Accessed 28 Jan 2015). 

Hirvonen, M. (2014). Bioenergy Feasibility Study – Berzasca, Romania. Publications 

Series C20 – Karelia University of Applied Sciences. [Web document] Retrieved from: 

http://theseus.fi/bitstream/handle/10024/82084/C20.pdf?sequence=1. (Accessed 26 

Jan 2015). 

Hugos, M.H., (2011). Essentials of Supply Chain Management, 3rd Edition. [E-book] 

Retrieved from: 

http://www.foex.fi/biomass/
http://www.aebiom.org/IMG/pdf/WOOD_FUELS_HANDBOOK_BTC_EN.pdf
https://www.ctf.ca/ctfweb/Documents/PDF/2002ctj/2002ctj3_fyfe.pdf
http://www.mgul.ac.ru/info/inter/news/news62/j.pdf
http://www.limatel.com/wp-content/uploads/Limatel_Biomass_Report.pdf
http://www.limatel.com/wp-content/uploads/Limatel_Biomass_Report.pdf
http://ac.els-cdn.com/S0301421502000666/1-s2.0-S0301421502000666-main.pdf?_tid=0afc2a5c-a726-11e4-bcd1-00000aab0f6b&acdnat=1422474436_8e3c10367ebcbc9b0b319ee521997ae9
http://ac.els-cdn.com/S0301421502000666/1-s2.0-S0301421502000666-main.pdf?_tid=0afc2a5c-a726-11e4-bcd1-00000aab0f6b&acdnat=1422474436_8e3c10367ebcbc9b0b319ee521997ae9
http://ac.els-cdn.com/S0301421502000666/1-s2.0-S0301421502000666-main.pdf?_tid=0afc2a5c-a726-11e4-bcd1-00000aab0f6b&acdnat=1422474436_8e3c10367ebcbc9b0b319ee521997ae9
http://ac.els-cdn.com/S0301421502000666/1-s2.0-S0301421502000666-main.pdf?_tid=0afc2a5c-a726-11e4-bcd1-00000aab0f6b&acdnat=1422474436_8e3c10367ebcbc9b0b319ee521997ae9
http://theseus.fi/bitstream/handle/10024/82084/C20.pdf?sequence=1


79 

 

  

http://books.google.ca/books?hl=fi&lr=&id=Ob9cfr1ahGAC&oi=fnd&pg=PA1&dq=to-

tal+supply+chain+manage-

ment&ots=IR6v25Y8oO&sig=xmbk7a1LUYFwnEScq7Ux3yDuS4I#v=onep-

age&q&f=false. (Accessed 18 Jan 2015). 

IEA, International Energy Agency. (2011). Co-generation and Renewables: Solutions 

for a low-carbon energy future. [Online] Retrieved from: http://www.districten-

ergy.org/assets/pdfs/International-Energy-Agency/IEACogenerationandRenewa-

bles.pdf. (Accessed 11 Jan 2015). 

IEA ETSAP, (2010). Biomass for Heat and Power. Technology Brief E05 – May 2010. 

[Web document] Retrieved from: http://www.iea-etsap.org/web/E-TechDS/PDF/E05-Bi-

omass%20for%20HP-GS-AD-gct.pdf. (Accessed 19 Feb 2015). 

IESO, Independent Electricity System Operator, (n.d.). [Web document] Retrieved 

from: http://www.ieso.ca/Documents/corp/Serving_Ontarios_Electricity_Consum-

ers.pdf. (Accessed 30 Jan 2015). 

Infrastructure Ontario, (2015). Infrastructure Lending. [Web page] Retrieved from: 

http://www.infrastructureontario.ca/Templates/LoanWithCarousel.aspx?id=50&lang-

type=1033. (Accessed 2 Feb 2015). 

IRENA and IEA-ETSAP (2013). Biomass Cofiring, Technology Brief. [Web document] 

Retrieved from: http://www.irena.org/DocumentDownloads/Publications/IRENA-

ETSAP%20Tech%20Brief%20E21%20Biomass%20Co-firing.pdf. (Accessed 15 Jan 

2015). 

Karekezi, S., Lata, K., Coelho, S.T. (2006). Traditional Biomass Energy: Improving Its 

Use and Moving to Modern Energy Use. Renewable Energy: A Global Review of Tech-

nologies, Policies and Markets, pp. 230-257. Edited by Assmann, D., Laumanns, U. 

and Uh, D. 

Klein, C.M., Jang, W., Tan, J. & Shumacher, L. (2011). Biomass Logistics: Design and 

Operation of Biomass Supply Networks. Proceedings of the 2011 Industrial Engineer-

ing Research Conference. [Web document] Retrieved from: 

http://books.google.ca/books?hl=fi&lr=&id=Ob9cfr1ahGAC&oi=fnd&pg=PA1&dq=total+supply+chain+management&ots=IR6v25Y8oO&sig=xmbk7a1LUYFwnEScq7Ux3yDuS4I#v=onepage&q&f=false
http://books.google.ca/books?hl=fi&lr=&id=Ob9cfr1ahGAC&oi=fnd&pg=PA1&dq=total+supply+chain+management&ots=IR6v25Y8oO&sig=xmbk7a1LUYFwnEScq7Ux3yDuS4I#v=onepage&q&f=false
http://books.google.ca/books?hl=fi&lr=&id=Ob9cfr1ahGAC&oi=fnd&pg=PA1&dq=total+supply+chain+management&ots=IR6v25Y8oO&sig=xmbk7a1LUYFwnEScq7Ux3yDuS4I#v=onepage&q&f=false
http://books.google.ca/books?hl=fi&lr=&id=Ob9cfr1ahGAC&oi=fnd&pg=PA1&dq=total+supply+chain+management&ots=IR6v25Y8oO&sig=xmbk7a1LUYFwnEScq7Ux3yDuS4I#v=onepage&q&f=false
http://www.districtenergy.org/assets/pdfs/International-Energy-Agency/IEACogenerationandRenewables.pdf
http://www.districtenergy.org/assets/pdfs/International-Energy-Agency/IEACogenerationandRenewables.pdf
http://www.districtenergy.org/assets/pdfs/International-Energy-Agency/IEACogenerationandRenewables.pdf
http://www.iea-etsap.org/web/E-TechDS/PDF/E05-Biomass%20for%20HP-GS-AD-gct.pdf
http://www.iea-etsap.org/web/E-TechDS/PDF/E05-Biomass%20for%20HP-GS-AD-gct.pdf
http://www.ieso.ca/Documents/corp/Serving_Ontarios_Electricity_Consumers.pdf
http://www.ieso.ca/Documents/corp/Serving_Ontarios_Electricity_Consumers.pdf
http://www.infrastructureontario.ca/Templates/LoanWithCarousel.aspx?id=50&langtype=1033
http://www.infrastructureontario.ca/Templates/LoanWithCarousel.aspx?id=50&langtype=1033
http://www.irena.org/DocumentDownloads/Publications/IRENA-ETSAP%20Tech%20Brief%20E21%20Biomass%20Co-firing.pdf
http://www.irena.org/DocumentDownloads/Publications/IRENA-ETSAP%20Tech%20Brief%20E21%20Biomass%20Co-firing.pdf


80 

 

  

http://search.proquest.com.ezproxy.metropo-

lia.fi/docview/1190347322/fulltextPDF/81DEE8104F5047F1PQ/1?accountid=11363. 

(Accessed 11 Jan 2015).  

Kolström, M., Pekkanen, M., Herder, M. & Karppinen, H., (2011). Case Study in Fin-

land, Forest use for bioenergy in North Karelia. [Web document] Retrieved from: 

http://tosia.efi.int/uploads/northerntosia/ntosia_casenk_final_2011.pdf. (Accessed 7 

Feb 2015). 

Kuitto, P-J., (n.d.). Sector Handbook - District Heating. [Web document] Retrieved 

from: http://www.crossborderbioenergy.eu/fileadmin/user_upload/Sector_Hand-

book_DH.pdf. (Accessed 27 Jan 2015). 

Larsson, M., (2013). Regional Analysis of District Heating in the Kaliningrad Region. 

[Web document] Retrieved from: http://innoheat.eu/wp-content/uploads/2014/02/Re-

gional-analysis-of-District-Heating-in-Kaliningrad.pdf. (Accessed 18 Feb 2015). 

Linger, R., (2009). Cork Docklands High Level District heating feasibility study. [Web 

document] Retrieved from: http://www.corkcity.ie/services/docklands/sustainability/dis-

trictheatingfeasibilitystudy/District%20Heating%20Feasibility%20Study.pdf. (Accessed 

13 Feb 2015). 

Loo, S. V. & Koppejan, J. (2012). The Handbook of Biomass Combustion and Co-firing, 

45-46. Earthscan. Retrieved from: 

https://books.google.ca/books?id=KE565zmFumQC&dq=bulk+density+of+forest+bio-

mass&hl=fi&source=gbs_navlinks_s. (Accessed 20 Jan 2015). 

Lopez, I., Marin, J.P.D., Oliver, J.V., Monzo, F.P., Krajnc, N., Triplat, M., Masiero, M., 

La Mela Veca, D.S., Joly, N. & Duhen, L-M., (2014). Presentation of Existing Good 

Practice Examples of Forest Biomass Use. Work package 4: Setting-up of integrated 

strategies for the development of renewable energies. [Web document] Retrieved from: 

http://proforbiomed.eu/sites/default/files/2.2%20-%20Good%20practices.pdf, (Ac-

cessed 21 Jan 2015). 

http://search.proquest.com.ezproxy.metropolia.fi/docview/1190347322/fulltextPDF/81DEE8104F5047F1PQ/1?accountid=11363
http://search.proquest.com.ezproxy.metropolia.fi/docview/1190347322/fulltextPDF/81DEE8104F5047F1PQ/1?accountid=11363
http://tosia.efi.int/uploads/northerntosia/ntosia_casenk_final_2011.pdf
http://www.crossborderbioenergy.eu/fileadmin/user_upload/Sector_Handbook_DH.pdf
http://www.crossborderbioenergy.eu/fileadmin/user_upload/Sector_Handbook_DH.pdf
http://innoheat.eu/wp-content/uploads/2014/02/Regional-analysis-of-District-Heating-in-Kaliningrad.pdf
http://innoheat.eu/wp-content/uploads/2014/02/Regional-analysis-of-District-Heating-in-Kaliningrad.pdf
http://www.corkcity.ie/services/docklands/sustainability/districtheatingfeasibilitystudy/District%20Heating%20Feasibility%20Study.pdf
http://www.corkcity.ie/services/docklands/sustainability/districtheatingfeasibilitystudy/District%20Heating%20Feasibility%20Study.pdf
https://books.google.ca/books?id=KE565zmFumQC&dq=bulk+density+of+forest+biomass&hl=fi&source=gbs_navlinks_s
https://books.google.ca/books?id=KE565zmFumQC&dq=bulk+density+of+forest+biomass&hl=fi&source=gbs_navlinks_s
http://proforbiomed.eu/sites/default/files/2.2%20-%20Good%20practices.pdf


81 

 

  

Marathon.ca - website. (n.d.). Town of Marathon Community Profile. [Online] Retrieved 

from: http://www.marathon.ca/upload/documents/marathon-community-profile.pdf. (Ac-

cessed 11 Jan 2015). 

Marinescu, M. (2012). Forest Biomass Availability for Bio-Energy in Small Communities 

on the BC Coast. Technical Reports – BC Coastal Forest Sector Hem-Fir Initiative. 

FPInnovations. [Requested pdf document] Requested from: publications@fpinnova-

tions.ca. (Received 20 Jan 2015). 

Martin, J.R., (2008). Biomass Energy Economics. [Web document] Retrieved from: 

http://www.masonbruce.com/wfe/2008Program/martin.pdf. (Accessed 19 Feb 2015). 

Maure, J. (2013). Ontario Forest Biofibre. Ontario Ministry of Natural Resources. [Web 

presentation] Retrieved from: http://www.ssmic.com/UploadedFiles/files/SSMIC_Availa-

ble_biomass_Maure(1).pdf. (Accessed 22 Jan 2015). 

McCallum, B., (1997). Small-Scale Automated Biomass Energy Heating Systems: A Vi-

able Option for Remote Canadian Communities? NODA Note No. 30. [Web document] 

Retrieved from: http://www.cfs.nrcan.gc.ca/pubwarehouse/pdfs/9511.pdf. (Accessed 7 

Feb 2015). 

McKendry, P. (2002). Energy Production from Biomass (part 1): overview of biomass. 

Bioresource Technology 83 (2002) 37-46. [Web document]. Retrieved from: 

http://ac.els-cdn.com/S0960852401001183/1-s2.0-S0960852401001183-

main.pdf?_tid=fb995a68-99c8-11e4-acbe-00000aacb35f&ac-

dnat=1421005102_be9df63b8ccd20840c3148e70ca6f08e. (Accessed 11 Jan 2015). 

Ministry of Environment and Climate Change, (2015). [Web page] Retrieved from: 

https://www.ontario.ca/environment-and-energy/renewable-energy-approvals. (Ac-

cessed 30 Jan 2015). 

MNR, Ministry of Natural Resources – Government of Ontario, (2014). Ontario Crown 

Timber Charges (Stumpage). [Web document] Retrieved from: 

http://www.lrcsde.lrc.gov.on.ca/itrees/stumpage/pdf/stumpage_1314_5.pdf. (Accessed 

22 Jan 2015). 

http://www.marathon.ca/upload/documents/marathon-community-profile.pdf
mailto:publications@fpinnovations.ca
mailto:publications@fpinnovations.ca
http://www.masonbruce.com/wfe/2008Program/martin.pdf
http://www.ssmic.com/UploadedFiles/files/SSMIC_Available_biomass_Maure(1).pdf
http://www.ssmic.com/UploadedFiles/files/SSMIC_Available_biomass_Maure(1).pdf
http://www.cfs.nrcan.gc.ca/pubwarehouse/pdfs/9511.pdf
http://ac.els-cdn.com/S0960852401001183/1-s2.0-S0960852401001183-main.pdf?_tid=fb995a68-99c8-11e4-acbe-00000aacb35f&acdnat=1421005102_be9df63b8ccd20840c3148e70ca6f08e
http://ac.els-cdn.com/S0960852401001183/1-s2.0-S0960852401001183-main.pdf?_tid=fb995a68-99c8-11e4-acbe-00000aacb35f&acdnat=1421005102_be9df63b8ccd20840c3148e70ca6f08e
http://ac.els-cdn.com/S0960852401001183/1-s2.0-S0960852401001183-main.pdf?_tid=fb995a68-99c8-11e4-acbe-00000aacb35f&acdnat=1421005102_be9df63b8ccd20840c3148e70ca6f08e
https://www.ontario.ca/environment-and-energy/renewable-energy-approvals
http://www.lrcsde.lrc.gov.on.ca/itrees/stumpage/pdf/stumpage_1314_5.pdf


82 

 

  

Municipal Act, S.O Chapter 25 (2001). 10(1). Retrieved from: http://www.e-

laws.gov.on.ca/html/statutes/english/elaws_statutes_01m25_e.htm#BK11. (Accessed 

30 Jan 2015). 

NEB, National Energy Board (2015). Energy Conversion Tables. [Web page] Retrieved 

from: https://www.neb-one.gc.ca/nrg/tl/cnvrsntbl/cnvrsntbl-eng.html. (Accessed 20 Jan 

2015). 

NRCAN, National Resources Canada (2015). Energy Sources database. [Web page] 

Retrieved from: http://www2.nrcan.gc.ca/eneene/sources/pripri/prices_by-

city_e.cfm?PriceYear=2010&ProductID=7&LocationID=66,22,23,17#PriceGraph. (Ac-

cessed 16 Feb 2015). 

Obernberger, I. & Thek, G., (2008). Cost Assessment of Selected Decentralised CHP 

Applications Based on Biomass Combustion and Biomass Gasification. [Web docu-

ment] Retrieved from: http://bios-bioenergy.at/uploads/media/Paper-Obernberger-Cost-

assessment-CHP-BM-comustion-gasification-2008-05-30.pdf. (Accessed Feb 19 

2015). 

OEB Ontario Energy Board (n.d.). Energy Sector Regulation – A brief Overview. [Web 

document] Retrieved from: http://www.ontarioenergyboard.ca/oeb/_Documents/Docu-

ments/Energy_Sector_Regulation-Overview.pdf. (Accessed 30 Jan 2015). 

Okkonen, L., Suhonen, N., (2010). Business models of heat entrepreneurship in Fin-

land. Energy Policy 38(2010) 3443-3452. [Web article] Retrieved from: http://ac.els-

cdn.com/S0301421510000996/1-s2.0-S0301421510000996-main.pdf?_tid=77a5cdd2-

a737-11e4-9145-00000aacb35f&ac-

dnat=1422481920_89ca2de13ebad2dad1324af83f8662e8. (Accessed 28 Jan 2015). 

Ontario Ministry of Energy, (2014). Renewable Energy Development: A Guide for Mu-

nicipalities – Updated for FIT 2.0. [Web page] Retrieved from: http://www.en-

ergy.gov.on.ca/en/renewable-energy-facilitation-office/resources-and-contacts-2/re-

newable-energy-development-a-guide-for-municipalities/#section4. (Accessed 31 Jan 

2015). 

http://www.e-laws.gov.on.ca/html/statutes/english/elaws_statutes_01m25_e.htm#BK11
http://www.e-laws.gov.on.ca/html/statutes/english/elaws_statutes_01m25_e.htm#BK11
https://www.neb-one.gc.ca/nrg/tl/cnvrsntbl/cnvrsntbl-eng.html
http://www2.nrcan.gc.ca/eneene/sources/pripri/prices_bycity_e.cfm?PriceYear=2010&ProductID=7&LocationID=66,22,23,17#PriceGraph
http://www2.nrcan.gc.ca/eneene/sources/pripri/prices_bycity_e.cfm?PriceYear=2010&ProductID=7&LocationID=66,22,23,17#PriceGraph
http://bios-bioenergy.at/uploads/media/Paper-Obernberger-Cost-assessment-CHP-BM-comustion-gasification-2008-05-30.pdf
http://bios-bioenergy.at/uploads/media/Paper-Obernberger-Cost-assessment-CHP-BM-comustion-gasification-2008-05-30.pdf
http://www.ontarioenergyboard.ca/oeb/_Documents/Documents/Energy_Sector_Regulation-Overview.pdf
http://www.ontarioenergyboard.ca/oeb/_Documents/Documents/Energy_Sector_Regulation-Overview.pdf
http://ac.els-cdn.com/S0301421510000996/1-s2.0-S0301421510000996-main.pdf?_tid=77a5cdd2-a737-11e4-9145-00000aacb35f&acdnat=1422481920_89ca2de13ebad2dad1324af83f8662e8
http://ac.els-cdn.com/S0301421510000996/1-s2.0-S0301421510000996-main.pdf?_tid=77a5cdd2-a737-11e4-9145-00000aacb35f&acdnat=1422481920_89ca2de13ebad2dad1324af83f8662e8
http://ac.els-cdn.com/S0301421510000996/1-s2.0-S0301421510000996-main.pdf?_tid=77a5cdd2-a737-11e4-9145-00000aacb35f&acdnat=1422481920_89ca2de13ebad2dad1324af83f8662e8
http://ac.els-cdn.com/S0301421510000996/1-s2.0-S0301421510000996-main.pdf?_tid=77a5cdd2-a737-11e4-9145-00000aacb35f&acdnat=1422481920_89ca2de13ebad2dad1324af83f8662e8
http://www.energy.gov.on.ca/en/renewable-energy-facilitation-office/resources-and-contacts-2/renewable-energy-development-a-guide-for-municipalities/#section4
http://www.energy.gov.on.ca/en/renewable-energy-facilitation-office/resources-and-contacts-2/renewable-energy-development-a-guide-for-municipalities/#section4
http://www.energy.gov.on.ca/en/renewable-energy-facilitation-office/resources-and-contacts-2/renewable-energy-development-a-guide-for-municipalities/#section4


83 

 

  

Ontario One Call, (2015). About us. [Web page] Retrieved from: 

http://www.on1call.com/about-us/. (Accessed Feb 10 2015). 

Ontario Municipal Energy Plan Program, (2015). [Web page] Retrieved from: 

http://www.energy.gov.on.ca/en/municipal-energy/. (Accessed 31 Jan 2015). 

Pan, O.M.D, Bouchlaghem, D., Eames, P., Young, A. & Gill, Z.M. (2012). Post Occu-

pancy Evaluation of Decentralised Energy Systems. Sustainability in Energy and Build-

ings, SIST 12, 341-351. (Accessed 26 Jan 2015). 

Parent, J., Graziano, M. & Yang, X., (2014). Potential of using forest residue to offset 

coal use in co-fired coal power plants in the eastern United States. International Jour-

nal of Agricultural and Biological Engineering 7(4) 99-105. [Web article] Retrieved from: 

http://www.ijabe.org/index.php/ijabe/article/viewFile/1281/pdf_1. (Accessed 9 Feb 

2015). 

Rajvanshi, A. K. (1986). Biomass Gasification. Alternative Energy in Agriculture, 2(4) 

83-102. Retrieved from: http://www.nariphaltan.org/gasbook.pdf. (Accessed 15 Jan 

2015). 

Ray Barton & Associates, (2006). Final Report – Transport Canada Economic Analysis 

Directorate, Estimation of Costs of Heavy Vehicle Use per Vehicle-Kilometer in Can-

ada. [Web document] Retrieved from: http://www.bv.trans-

ports.gouv.qc.ca/mono/0965385.pdf. (Accessed 22 Jan 2015). 

Rentizelas, A. A., Tolis, A. J., Tatsiopoulos, I. P, (2007). Logistics issues of biomass: 

The storage problem and multi-biomass supply chain. Renewable and Sustainable En-

ergy Reviews, 13(4) 887-894. Retrieved from: http://ac.els-

cdn.com/S1364032108000142/1-s2.0-S1364032108000142-main.pdf?_tid=fcd6fbc4-

a30f-11e4-a922-00000aab0f6c&ac-

dnat=1422025159_9507d3f86b1502b0f33b9821ca42d52a. (Accessed 23 Jan 2015). 

RETScreen International, (2004). Case Study – Biomass Heating Project, Local/district 

heating/Ontario, Canada. [Web document] Retrieved from: http://woodforen-

ergy.ca/case-studies/ontario?lang=en#geraldton-district-heating. (Accessed 2 Jan 

2015). 

http://www.on1call.com/about-us/
http://www.energy.gov.on.ca/en/municipal-energy/
http://www.ijabe.org/index.php/ijabe/article/viewFile/1281/pdf_1
http://www.nariphaltan.org/gasbook.pdf
http://www.bv.transports.gouv.qc.ca/mono/0965385.pdf
http://www.bv.transports.gouv.qc.ca/mono/0965385.pdf
http://ac.els-cdn.com/S1364032108000142/1-s2.0-S1364032108000142-main.pdf?_tid=fcd6fbc4-a30f-11e4-a922-00000aab0f6c&acdnat=1422025159_9507d3f86b1502b0f33b9821ca42d52a
http://ac.els-cdn.com/S1364032108000142/1-s2.0-S1364032108000142-main.pdf?_tid=fcd6fbc4-a30f-11e4-a922-00000aab0f6c&acdnat=1422025159_9507d3f86b1502b0f33b9821ca42d52a
http://ac.els-cdn.com/S1364032108000142/1-s2.0-S1364032108000142-main.pdf?_tid=fcd6fbc4-a30f-11e4-a922-00000aab0f6c&acdnat=1422025159_9507d3f86b1502b0f33b9821ca42d52a
http://ac.els-cdn.com/S1364032108000142/1-s2.0-S1364032108000142-main.pdf?_tid=fcd6fbc4-a30f-11e4-a922-00000aab0f6c&acdnat=1422025159_9507d3f86b1502b0f33b9821ca42d52a
http://woodforenergy.ca/case-studies/ontario?lang=en#geraldton-district-heating
http://woodforenergy.ca/case-studies/ontario?lang=en#geraldton-district-heating


84 

 

  

RFKL, Region Förbun I Kalmar Län, (2007). Small scale district heating in Borgholm – 

From traditional furnace to efficient district heating plant. [Web document] Retrieved 

from: www.rfkl.se/Documents/English/smal-scale-borgholm.pdf. (Accessed 20 Feb 

2015). 

Riipinen, M. (2013). Modern District Heating and Cooling Systems. [Web document] 

Retrieved from: http://cleanenergyministerial.org/Portals/2/pdfs/CHP%20Workshop/Rii-

pinen%20M_HELEN_MODERN%20DISTRICT%20HEATING%20AND%20COOL-

ING%20SYSTEMS%20_Helsinki_%2026.1113.pdf. (Accessed 27 Jan 2015). 

Seveda, M.S., Rathore, N.S., Kumar, V. (2011). Biomass as a source of energy. Hand-

book of Renewable Energy Technology, World Scientific, 1(14) 324-344. Retrieved 

from: http://gearju.com/225768904560/Data/Engineering/Special%20Topics/Hand-

book%20of%20Renewable%20Energy%20Technology%20-%20GearTeam.pdf. (Ac-

cessed Jan 13 2015). 

Stockport, (n.d.). Guidance for District Heating Feasibility. [Web document] Retrieved 

from: http://www.stockport.gov.uk/2013/2994/developmentcontrol/planningpol-

icy/dhguidance. (Accessed 2 Feb 2015). 

USDA – United States Department of Agriculture (2014). USDA Improves Forest 

Health by Harvesting Biomass for Energy. [Web page] Retrieved from: 

http://www.fsa.usda.gov/FSA/newsReleases?area=newsroom&subject=land-

ing&topic=ner&newstype=newsrel&type=detail&item=nr_20141216_rel_0270.html. (Ac-

cessed Jan 13 2015). 

Vakkilainen, E., Kuparinen, K., Heinemö, J. (2013). Large Industrial Users of Energy 

Biomass. IEA Bioenergy – Task40: Sustainable, International Bioenergy Trade. Lap-

peenranta University of Technology. [Web document] Retrieved from: http://www.bio-

energytrade.org/downloads/t40-large-industrial-biomass-users.pdf. (Accessed 11 Jan 

2015). 

Zafar, S. (2014). Summary of Biomass Combustion Technologies. BioEnergy Consult. 

[Web page] Retrieved from: http://www.bioenergyconsult.com/biomass-combustion-

systems/. (Accessed 14 Jan 2015).

http://www.rfkl.se/Documents/English/smal-scale-borgholm.pdf
http://cleanenergyministerial.org/Portals/2/pdfs/CHP%20Workshop/Riipinen%20M_HELEN_MODERN%20DISTRICT%20HEATING%20AND%20COOLING%20SYSTEMS%20_Helsinki_%2026.1113.pdf
http://cleanenergyministerial.org/Portals/2/pdfs/CHP%20Workshop/Riipinen%20M_HELEN_MODERN%20DISTRICT%20HEATING%20AND%20COOLING%20SYSTEMS%20_Helsinki_%2026.1113.pdf
http://cleanenergyministerial.org/Portals/2/pdfs/CHP%20Workshop/Riipinen%20M_HELEN_MODERN%20DISTRICT%20HEATING%20AND%20COOLING%20SYSTEMS%20_Helsinki_%2026.1113.pdf
http://gearju.com/225768904560/Data/Engineering/Special%20Topics/Handbook%20of%20Renewable%20Energy%20Technology%20-%20GearTeam.pdf
http://gearju.com/225768904560/Data/Engineering/Special%20Topics/Handbook%20of%20Renewable%20Energy%20Technology%20-%20GearTeam.pdf
http://www.stockport.gov.uk/2013/2994/developmentcontrol/planningpolicy/dhguidance
http://www.stockport.gov.uk/2013/2994/developmentcontrol/planningpolicy/dhguidance
http://www.fsa.usda.gov/FSA/newsReleases?area=newsroom&subject=landing&topic=ner&newstype=newsrel&type=detail&item=nr_20141216_rel_0270.html
http://www.fsa.usda.gov/FSA/newsReleases?area=newsroom&subject=landing&topic=ner&newstype=newsrel&type=detail&item=nr_20141216_rel_0270.html
http://www.bioenergytrade.org/downloads/t40-large-industrial-biomass-users.pdf
http://www.bioenergytrade.org/downloads/t40-large-industrial-biomass-users.pdf
http://www.bioenergyconsult.com/biomass-combustion-systems/
http://www.bioenergyconsult.com/biomass-combustion-systems/


Appendix 1 

1 (2) 

 

  

 

Appendix 1: Table 7 Calculations 

 

Furnace oil price per MJ 

2015 

1.129 $/𝐿

37.7 𝑀𝐽/𝐿
= 0.029 $/𝑀𝐽 

2012 

1.293 $/𝐿

37.7 𝑀𝐽/𝐿
= 0.034 $/𝑀𝐽 

2010 

1.076 $/𝐿

37.7 𝑀𝐽/𝐿
= 0.028 $/𝑀𝐽 

Propane price per MJ 

2015 

0.869 $/𝐿

25.3 𝑀𝐽/𝐿
= 0.034 $/𝑀𝐽 

2012 

0.949 $/𝐿

25.3 𝑀𝐽/𝐿
= 0.037 $/𝑀𝐽 
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2010 

0.799 $/𝐿

25.3 𝑀𝐽/𝐿
= 0.031 $/𝑀𝐽 

Hard Woodchips price per MJ 

223 𝑘𝑔 = 2768 𝑀𝐽 (See Table 2.) 

(
1000 𝑘𝑔

223 𝑘𝑔
) ∗ 2768 𝑀𝐽 = 12412.555 𝑀𝐽/𝑡𝑜𝑛 

173.88 $/𝑡

12412.555 𝑀𝐽/𝑡
= 0.0140 $/𝑀𝐽 

Price of biomass per ton (Foex, 2015). 

Soft Woodchip price per MJ 

328 𝑘𝑔 = 3987 𝑀𝐽 (See Table 2.) 

(
1000 𝑘𝑔

328 𝑘𝑔
) ∗ 3987 𝑀𝐽 = 12155.487 𝑀𝐽/𝑡 

177.46 $/𝑡

12155.487 𝑀𝐽/𝑡
= 0.0145 $/𝑀𝐽 

Price of biomass per ton (Foex, 2015).
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Appendix 2: Example of HydroOne online account billing information 
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Appendix 3: Example calculation of monthly energy usage 
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Appendix 4: Formulas used in Analysis 

 

NPV, Net Present Value 

𝑁𝑃𝑉 (𝑖, 𝑁) =  ∑ =

𝑁

𝑡=0

𝑅𝑡

(1 + 𝑖)𝑡
 

Where, 

t = time of cashflow, i = the discount rate, Rt = the net cash flow 

 


