Simo Karjalainen

MEKAANINEN MASSA SC-PAPERISSA; TUTKIMINEN JA ANALYSOINTI

Työn ohjaaja: DI Arto Nikkilä
Työn teettäjä: Metso Paper, valvoja Saija Lampinen
Tampere 2008
TIIVISTELMÄ

Turbini- ja DD-massoilla oli paras energianominaiskulutus TMP-massoista. Ainoastaan PGW:n valmistus vei vähemmän energiaa.

Mikään testatuista massoista ei ole vielä valmis tehdastuotantoon. DD- ja turbiniijauhetut massat vaativat parempia lujuusominaisuuksia. LE- sekä STD-jauhetut massat kuluttavat liikaa energia.

Työ pitää sisällään salassa pidettävää aineistoa.
In this thesis mechanical pulp properties were analyzed in general aiming to find a way to produce mechanical pulp with lower energy consumption for SC-paper grades.

There were 5 different pulps in all to be analyzed, four of those were refined using TMP process, one of the pulps were traditional PGW-pulp. All the results were compared to mill pulp which worked as a reference.

The pulps were analyzed at Metso Paper fiber technology center in Anajalankoski. Sheets were made and analyzed at Tampere University of applied science. The calandering were done at Helsinki University of technology in Espoo.

The SEC of turbine pulp and double disc pulp were significantly lower when comparing to reference TMP pulp. Only the PGW pulp used less energy.

The LE- and standard pulps had the best strength qualities. On the other hand, the optical properties weren’t as good as the PGW- and DD pulps had.
SISÄLLYSLUETTELO

TIIVISTELMÄ

ABSTRACT

SISÄLLYSLUETTELO

1 JOHDANTO

2 TYÖN KUVAUS

3 HIERTEEN VALMISTUS

3.1 Hiertomenetelmät

3.1.1 Kuumahierre

3.1.2 Kemikuumahierre

3.2 Hiertämisen vaiheet

3.2.1 Hakkeen esikäsittely

3.2.2 Hiertoprosessi

3.2.3 Jauhatuksen valvonta ja ohjaus

3.3 Hierrejauhimen rakenne ja toimintaperiaate

3.3.1 Yksikiekkojauhin

3.3.2 Kaksikiekkojauhin

3.3.3 Levy-kartiojauhin

3.3.4 Kartiojauhin

3.4 Jauhinterät

3.4.1 Jauhinterien materiaali

3.4.2 Vaihtoehtoiset terämallit

3.4.2.1 Low Energy -terät

3.4.2.2 Turbiiniterät

3.5 Hierremassan lajittelu ja jälkikäsittely

3.5.1 Painelajittimet

3.5.2 Pyörrepuhdistus

3.5.3 Rejektin käsittely

4 HIOKKEEN VALMISTUS

4.1 Hiontaprosessit

4.1.1 Painehioke

4.1.2 Painehiomakone

4.2 Hionnassa vaikuttavat tekijät

4.2.1 Kiiven teroitus

4.2.2 Suihkuvedet

4.2.4 Kiiven kehänopetus

4.2.5 Kiiven kuormitus

5 KOKIoELiNiN OSA

5.1 Massat

5.1.1 Massan hajotus

5.1.2 Latessi

5.2 Märkähajoittaminen

5.3 Sakeuden määritys

5.4 Tikkujen poisto
5.5 Arkitus
5.5.1 Massa-arkit
5.5.2 Seosarkit

5.6 Retentioaineen laimennus

5.7 Pigmentti sekä sen laimennus

5.8 Kalanterointi

6 MITTAAMINEN, LAATUSUURET JA NIIDEN MERKITYKSET

6.1 Massasta tehdyt mittaukset
6.1.1 Suotautuvuus
6.1.2 Kuidun pituus ja kuitupituujsjakauma
 6.1.2.1 Bauer Mcnett
 6.1.2.2 Fiberlab
6.1.2 Tikkupitoisuus

6.2 Paperitekniset mittaukset
6.2.1 Nelioimassa
6.2.2 Tiheys ja paksuus
6.2.3 Tuhka
6.2.4 Kiilto
6.2.5 Ilmanlääpäisy ja huokoisuus
6.2.6 Repäisyljuus
6.2.7 Optiset ominaisuudet
6.2.8 Vetolujuus ja venymä
6.2.9 Pinnankarheus

7 MITTASTULOKSET

7.1 Massamittaukset
7.1.1 Suotautuvuus
7.1.2 Energian ominaiskulu
7.1.3 Kuidun pituus ja hienoaine
7.1.4 Kuitujakauma
 7.1.4.1 Päällinjamassat
 7.1.4.2 Prima-massat
 7.1.4.3 Kierroslukumassat
7.1.5 Tikkupitoisuus

7.2 Pohja-arkit
7.2.1 Nelioimassa
7.2.2 Tiheys
7.2.3 Tuhka
7.2.4 Huokoisuus
7.2.5 Karheus
7.2.6 Optiset mittaukset

7.3 Massa-arkit
7.3.1 Nelioimassa
7.3.2 Tiheys
7.3.3 Huokoisuus (ilmänlääpäisevyys)
7.3.4 Karheus
7.3.5 Optiset ominaisuudet
7.3.6 Repäisyljuus
7.3.7 Vetolujuus
7.3.8 Venymä

7.4 Kalanteroidut arkit
7.4.1 Nelioimassa
7.4.2 Tiheys
7.4.3 Huokoisuus (ilmänlääpäisevyys)
7.4.4 Karheus
7.4.5 Pinnankarheus
7.4.6 Kiilto
7.4.7 Opasiteetti
7.4.8 Valonsirontakerroin ja ISO-vaaleus
7.4.9 Repäislyjuus
7.4.10 Vetoljuus
7.4.11 Venymä

7.4.9 Repäislyjuus
7.4.10 Vetoljuus
7.4.11 Venymä

8 LOPPUTULOKSET JA PÄÄTELMÄT

8.1 Standardi
8.2 Low Energy
8.3 Turbiini
8.4 Double Disc
8.5 PGW
8.6 Kierroslukumassat
8.7 Sellun merkitys
8.8 Kalanteroinnin merkitys

9 PÄÄTELMÄ

LÄHDELUETTELO
1 JOHDANTO

Kuumahierteen (TMP) käyttö paperinvalmistuksessa on kasvussa. TMP:n suosio perustuu sen hyviin lujuosominaisuuksiin, joiden ansiosta on sellun määrää tietyissä paperilaaduissa pystytty vähentämään. Joissain tapauksissa sellun käytöstä on voitu luopua kokonaan.

Suuria läpimurtoja TMP:n energiankulutuksen vähentämiseksi ei olla vielä löydetty, mutta kehitys alalla jatkuu maailmalla intensiivisesti.

2 TYÖN KUVAUS

Lisäksi jokaisesta prima-massasta valmistettiin kaksi koesarjaa seosarkkeja. Toisessa koesarjassa sellun osuus massasta oli 10 % ja toisessa 20 %. Täyteaineen (kaoliini) osuus, noin 30 %, pyrittiin pitämään vakiona koesarjojen välillä. Arkit kalanteroitin käyttäen kahta erilaista nippikuormaa: 200 kN/m ja 300 kN/m.

Valmiista arkeista tehtiin tarvittavat paperitekniset mittaukset. Tuloksia verrattiin toisiinsa ja tehtiin johtopäätökset.

3 HIERTEEN VALMISTUS

Tyypillisesti hierre valmistetaan hakketetusta puuraaka-aineesta joko yhdessä tai kahdessa vaiheessa. Kuorittu ja hakketettu puu-aines syötetään jauhimien terien väliseen tilaan, jossa hakepalat lopulta kuituuntuvat yksittäisiksi kuiduiksi mekaanisen rasituksen sekä lämmön vaikutuksesta. Usein hierretä tehtäessä apuna voidaan käyttää erilaisia ligniiniä pehmentäviä kemikaaleja tai lämmitystä.

Hierteen raaka-aineena käytetään yleensä havupuita, joista kuusi on osoittautunut parhaaksi, vaikka myös mäntyä käytetään. Lehtipuut, ennen kaikkea haapa on myös tulossa hierteen raaka-aineeksi. Tämä koskee etenkin kemihierrettä, joka vaati erityisen hyvälaatuisen puuraaka-aineen.

Yleensä laadukkaimpiin papereihin käytetyn mekaaniset massat valkaistaan ennen käyttöä. Tyypillisesti tähän käytetään peroksideja ja ditioniittia. Poikkeuksena tässä on kemihierre (CTMP, APMP), joka usein kelpaa paperinvalmistukseen ilman valKAISUA.

Alla esiteltty erilaisia hiertomenetelmiä

- **RMP** – (Refiner Mechanical Pulp) = kylmähierre, atmosfääринen hierto. Saanto 97,5 %
- **TMP** – (Thermo Mechanical Pulp) = kuumahierre, hakkeen esilämmitys ja hierto paineen alaisena. Saanto 97,5 %
- **CMP** – (Chemi-Mechanical-Pulp) = Kemihierre, hakkeen kemikaalikäsittely ennen hiertoa. Saanto 80%–95%
- **CTMP** – (Chemi-Thermo-Mechanical Pulp) = kemikuumahierre, lievä kemikaalikäsittely ennen hiertoa ylipaineessa. Saanto yli 90%./1, 2, 6/

3.1 Hiertomenetelmät

3.1.1 Kuumahierre

3.1.2 Kemikuumahierre

Hakkeen käsittely kemiallisesti on mahdollistanut lehtipuiden käytön hierteen valmistuksessa. Se on myös mahdollistanut paremmin yksilöidyn massan valmistamisen tietyille paperilaaduille.\cite{1, 6}

3.2 Hiertämisen vaiheet

3.2.1 Hakkeen esikäsittely

Haketusprosessin jälkeen lastut lajitellaan tasoseuloissa tai kiekkoseuloissa. Seulonnan tarkoituksena on erotella puruja ja jälkeen palautetaan takaisin prosessiin. Hakkeen seulomisen jälkeen se on valmis siirrettäväksi hakesäiliöön.

Pesun ja vedenpoiston jälkeen hake ohjataan esilämmittimeen, jossa sitä lämmitetään höyryllä muutaman minuutin ajan. Seuraavaksi hake syötetään hierrejauhimeen jauhettavaksi.\cite{1, 2, 6}

3.2.2 Hiertoprosessi

Hiertoprosessissa pestystä hakkeesta jauhetaan valmista hierremassaa. Hake syötetään kiekkojauhimen terien vällin, jossa se jauhetaan aluksi pienemmiksi tikkumaisiksi palasiksi, edelleen kuitukimpuiaksi ja lopulta yksittäisiksi kuiduuiksi. Hierteen ominaisuuudet riippuvat paljon jauhatukseen käytetyn energian määrästä ja jauhatusolosuhteista. Kuidun irtaimistapahtuman perusmekanismina toimii...
monien nopeiden rasituspuolien johtaminen puuaineeseen. Hakkeen
kuidutuksessassa ja kuitujen jauhatuksessa hake kuituuntuu ja kuidut muokkautuvat
muotoonsa puristus- ja leikkausvoimien vaikutuksesta. Puristusvoimat
aiheuttavat kuidun puuaineen lämpenemistä ja rakenteen löystymistä.
Leikkausvoimat taasen hajottavat puuaineen kuitukimpuiksi ja edelleen
yksittäisiksi kuiduksi. Jauhatusvaihe muokkaa kuituja. Niiden haiventuminen ja
taipuisuus lisääntyvät, pinta-ala kasvaa sekä sitoutumiskyky paraneee./1, 2, 6/

3.2.3 Jauhatuksen valvonta ja ohjaus

Jauhatusta hallinnalla pyritään pitämään vakiona jauhatukseen vaikuttavat tekijät.
Niitä muutoksia, joita ei pystytä vakioimaan, voidaan mitata ja säätötoimenpitein
hoitaa. Edellytyksenä kuitenkin on, että muutokset jotka vaikuttavat massan
laatuun, ovat tiedossa. Käytännössä tähän on vielä hankala päästä puutteellisten
tietojen vuoksi. Puutteelliset tiedot koskevat esimerkiksi puuraaka-ainetta, terien
kuntoa, energianominaiskulutusta ja jauhatussakeutta.

Jauhatustulos riippuu seuraavista muuttujista:

- kuitu
- jauhatuksen määrä
- jauhatustapa
- prosessiolasuhteet.

Jauhimen syötössä tavoitteena on pitää hakkeen laatua mahdollisimman tasaisena.
Laatusuureina tässä toimii

- puulajisuude
- hakkeen kosteus (mahdollisimman tasainen, yleensä noin 50 %)
- jakeiden koko (vähän pieniä ja suuria jakeita)
- lämpötila (vakio, noin 100 °C)
- tiheysvaihtelu (mahdollisimman pieni)
- sahahakeannostelu.

Jauhatuksen määrä riippuu aina jauhimen läpi ajetusta tuotannosta ja käytetystä
moottoritehosta. Tätä säädetään muuttamalla jauhimen terärahoa, jotta
saavutettaisiin tavoiteltu energianominaiskulutus. Jauhatuksen määrä riippuu myös käytetystä jauhatustavasta./1/

Jauhatussakeutta hallitaan laimennusvettä lisäämällä. Normaalisti sakeus jauhatusvyöhykkeellä on noin 40–50 % ensimmäisessä vaiheessa ja 5 % pienempi seuraavassa vaiheessa. Yleisesti sakeuden alarajana pidetään 25 %:a. Tätä alhaisemmassa sakeudessa jauhetuissa massoissa lujuudet alkavat laskeva ja tikkuisuus lisääntyy./1, 6/

3.3 Hierrejauhimen rakenne ja toimintaperiaate

Jauhatuksessa käytettään levyjauhimia, joissa on kaksi teräkiekkoa. Teräkiekkojen pinnat valmistetaan valetuista segmenteistä kasaamalla. Jauhatuksessa laitteistoon kohdistuu suuria voimia, joka edellyttää akselilta, rungolta ja laakereilta vankkaa rakennetta. Rakennemateriaalinä käytetään teräkiekkoja jauhimen sisällä voitava säätää. Ainakin toisen teräkiekoista on oltava säädettävissä./1, 2/

3.3.1 Yksikiekkojauhin

Yksikiekkojauhin (SD, Single Disc) on rakenteeltaan yksinkertaisin levyjauhin (kuva 1), jonka toinen teräkiekko on pyörivä (roottori) ja toinen kiinteä (staattori). Terävälystä säädetään tarvittaessa liikkuttamalla pyörivää teräkiekkoa. Hake syötetään prosessiin kiinteän teräkiekon keskiön läpi. Yksikiekkojauhimen voivat maksimissaan olla noin 1,8 metriä halkaisijaltaan. Tämän suuremmissa jauhimissa keskipakovoimat nousevat rakenteille liian suuriksi. Kierrosnopeudet
Simo Karjalainen

vaihtelevat 1000 rpm ja 2300 rpm välillä jauhimen koon
mukaan. Yksikiekkojauhimissa on ainoastaan yksi moottori, jonka teho vaihtelee
jauhimen koon mukaan suurimpien ollessa noin 20 MW. Tyypillisesti yhdessä
jauhinlinjassa toimii kaksi jauhinta kytkettynä sarjan rejetin ohjautuessa
omalle jauhimelleen. Kapasiteetti tällaiselle jauhinlinjalle on noin 250 tonnia
päivässä./1, 2, 6/

Kuva 1 Yksikiekkojauhin /6/

3.3.2 Kaksikiekkojauhin

Kaksikiekkojauhimen (DD, Double Disc) muodostaa kaksi vastakkaisiin suunti
pyörivää teräkiekkoa (kuva 3). Kumpaakin terää liikuttaa oma moottori.
Tyypillisesti yhteenlaskettu teho on suurimmissa jauhimissa noin 30 MW.
Jauhatuksessa kuituihin kohdistuu kaksinkertainen määrä iskuja
yksikiekkojauhimeen verrattaessa. Hake syötetään terärakoon kiekossa olevien
solien kautta. Terästä tohdään aina siirtämällä aukotonta kiekkoa. DD-
auhimien kierrosnopeudet ovat luonnollisesti huomattavasti SD-auhimia
suuremmat, korkeimmilla noin 3600 rpm (2x1800 rpm). Teräkiekkojen
halkaisijat ovat samankokoisia muiden jauhityyppeihin kannassa.
Kaksikiekkojauhinta käytettäessä on mahdollista suorittaa hiertäminen
ainoastaan yhdessä vaiheessa, esimerkiksi jauhetaessa massaa
sanomalehtipaperin valmistukseen. Jauhin kulututta arviota 15% vähemmän
ergiaa verrattaessa 1500 rpm DD-jauhinta 1500 rpm SD-auhimia
jauhettaessa samaan freeness-tasoon. DD-jauhetussa massassa kuitujen pituudet
ovat hieman lyhyempiä ja valonsirontakerroin hieman suurempia SD-jauhettuun
massaan verrattuna./1,2,6/
3.3.3 Levy-kartiojauhin

Kuva 4 Levykartiojauhin /6/
3.3.4 Kartiojauhin

3.4 Jauhinterät

Jauhinterillä pyritään vaikuttamaan höyryn sekä massan virtauksiin terävälissä sekä myös kuituuntumis- ja jauhatustapahtumaan. Terien suunnittelulla pyritään vaikuttamaan jauhimen ajettavuusominaisuuksiin, energiankulutukseen sekä massan laatuun.6/

Alla olevassa luettelossa esitelty erilaisten teräprofiilien vaikutusta hiertotuloksii:

- Korkeat teräharjat ja syvät urat nopeuttavat massan viipymää aikaa terävälissä ja aiheuttavat pyörteitä.
- Matalat terävälit pakottavat massan tehokkaammin terävällä. Ne nostavat viipymää aikaa.
- Leveät terävälit lisäävät höyrynpoistoa, heikentävät massan laatua.
Kapeat terävälit taasen nostavat massan laatua mutta heikentävät höyrynpoistoaa. Padoilla teräväleissä ohjataan massan ja höyryn virtauksia. Runsas ”padotus” heikentää höyrynpoistoaa.

Selettiiviuralla helpotetaan ajettavuutta sekä parannetaan höyrynpoistoaa. Hammaskulmalla pyritään säätämään massan viipymääkää sekä höyryn virtauksia eri vyöhykkeillä./6/

Teräsegmentit vaihtelevat paljon eri tuotantoyksiköissä, koska eri tehtailta tarvitaan hieman erilaista massaa, jotta ajettavuus ja laatuominaisuudet olisivat parhaalla tasolla. Ensimmäisen ja toisen vaiheen jauhatus, sekä rejeektin jauhatus vaativat myös kukin yksilöllisen teräratkaisun, jotta optimaalinen tulos voitaisiin savuttaa./1, 6/

3.4.1 Jauhinterien materiaali

Teräkiekkojen tulisi kestää suurta määrää sekä kemiallista että mekaanista kulutusta. Tämä asettaa suuret vaatimukset haluttuihin terämateriaaleille. Aluksi teräkiekkojen materiaalina käytettiin valkoista valurautaa. Pian kuitenkin kävi ilmi, että ne kestivät todella huonosti korroosiota. Pitempi kesto saavutettiin käyttämällä terässeoksia, joissa hiilipitoisuutta on vaihdeltu. Yleensä hiilipitoisuus vaihtelee vääliä 0,5 %–1 %. Seosaineina terässeoksille käytetään pääasiassa kromia, mutta myös nikkeliiä, molybdeeniä ja titaania käytetään. Nykyään terien kesto on noin 1000–3000 tuntia riippuen hierretystä massasta ja sen puhtaudusta./1, 2/

3.4.2 Vaihtoehtoiset terämallit

Tyypillisesti energiakustannukset hiertämöillä ovat noin 35 % hiertämön kokonaiskustannuksista ja ne muodostavat toiseksi suurimman meno-erän raaka-aineiden jälkeen. Uusimmilla teräratkaisuilla pyritään vähentämään merkittävästi energianominaiskulutusta kuitenkaan massan laatuominaisuuksista tinkimättä.
Uusilla teräratkaisuilla pyritään vaikuttamaan massan viipymääkaan terillä, höyryn määrään, lämpötilaan ja virtauksiin terillä sekä massan pumpauskulmiin./3, 7, 9/

Tutkitusti parhaimman tuloksen uudet terämallit antavat, mikäli niitä käytetään kartiojauhimessa. Kartiojauhimen suurempi teräväli ja paremmat säätöominaisuudet auttavat prosessin pitämistä stabiilina.

3.4.2.1 Low Energy -terät

Low-energy -terät (LE) kehitettiin nimensä mukaisesti vähentämään energian kulutusta hiertämöillä. LE-terillä pyritään vähentämään massavirran viipymääkaan terillä ja siten vähentämään ominaisenergiankulutusta. Tyypillisesti LE-terillä jauhettu massa käyttää jopa noin 20 prosenttia vähemmän energiaa kuin standarditerillä jauhettu massa.

Tarvittaessa kuidun pituutta voidaan kasvattaa painetta nostamalla. Tämä kuitenkin samalla laskee massan vaaleutta./7, 9/

3.4.2.2 Turbiiniterät

Perinteisesti jauhinteriä on pyritty kehittämään kokemuksen ja kokeilun kautta. Kuvassa 5 esitely turbiiniterä on poikkeus tästä kaavasta. Se on ensimmäinen suurimmalta osalta matemaattisiin malleihin perustuva terämalli.

Turbiiniterät perustuvat materiaali- ja höyryvirtojen tarkkaan optimointiin. Prosessin lämpötila turbiiniterillä on huomattavasti muita teriä alempi, jolla saavutetaan alhaisempi energianomaiskulutus. Alhaisempi lämpötila parantaa myös optimia ominaisuuksia huomattavasti, jopa niin paljon että massan valkaisusta on joissain tilanteissa pystytty luopumaan täysin.
Lujuudet jäävät turbiiniterillä ajettaessa hieman standardiin ja LE-terään heikommiksi. Vastaavasti optiset ominaisuudet ovat näitä paremmat sekä energiankulutus pienempi. /7, 8, 9/

3.5 Hierremassan lajittelua ja jälkikäsittely

3.5.1 Painelajittimet

Painelajittimissa hierre pumpataan painelajittimeen, jossa se kulkee paine-eron vaikutuksesta rakopinnan läpi. Energiankäyttöä pyritään optimoimaan syöttöpumpuilla, joissa on portaaton kierrosnopeuden säätö.

Painelajittelussa hyvään lopputulokseen päästäan jatkuvalla hallinnalla ja sääntötoimenpiteillä. Käytännössä lopputulokseen vaikuttavia suureita ovat:

- massan syöttöpaine sihdillä
- massan sakeus
- paine-ero syötön ja akseptin välillä
• rejetissuhde sekä rejetin laimennus
• roottorin pyöräimisnopeus
• tuotannon määrä (käytössä olevien yksikköjen määrä).

Tärkein yksittäinen painelajittelun vaikuttava tekijä on massan sakeus. Mikäli massalla on korkea sakeus, se on huomattavasti vaikeampi puhdistaa tehokkaasti, jolloin rejetissuhde kasvaa tarpeettoman korkealle./1/

3.5.2 Pyörrepuhdistus

Vaikkakin monilla tehtailla pyörrepuhdistuksesta on jo luovuttu hierten lajittelussa, se on silti osalla hiertämöistä yhä tärkeä osa prosessia. Pyörrepuhdistimen toiminta perustuu keskipakovoimaan ja siinä, että hyväksytyt kuidut käyttävät puhdistimessa erilailla kuin kuitukimput, tikut ja muut epäpuhtaudet. Pyörreiike punahdimen sisälle saavutetaan syöttämällä lajiteltava massa tangentiaalisesti kartiokkaan lajittimen laajempaan päähän. Aksepti massaaja poistuu puhdistimen laajemmasta päästä ja rejeti ohuemmasta päästä. Parhaiten pyörrepuhdistimet toimivat alhaisessa massan sakeudessa (alle 0,5%). Tähän kuitenkin harvoin päästään koska alhainen sakeus lisää huomattavasti käyttö- ja investointikustannuksia./1, 6/

3.5.3 Rejetin käsittely

Rejetijauhimet ovat samanlaisia jauhimea kuin päälinjan jauhimet, ainoastaan segmenttien kuviointi on erilainen. Jauhatuksen jälkeen massa ohjataan painelajittimille ja tuotantoon. Tyyppillisesti rejettilinjasta saatava massa on itse päälinjan-massaa parempaa, etenkin kuitujen sitoutumiskyvyssä on eroa./1/
Hioke valmistetaan siten, että halutut raaka-aineet, puut, ladotaan pölleinä kiven akselin suuntaisesti koneen uuniin. Puita painetaan uunin pyörivää kiveä vasten käyttäen hyväksi säädettyvissä olevaa hiontapainetta. Tavoitteena saada puun kuidut poikittain hiontasärmien liikerataa vasten. Hiontavyöhykkeeseen suihkutetaan myös lämmintä vetää, jonka lämpötilaa on mahdollisuuks säättää tarpeen mukaan./1/

Kuidun irtoamisen teoria

Tärkeä yksittäinen tekijä hiontapinnalla on vesi, joka muodostaa voitelevan kerroksen hiontarakeiden ja puun kuitujen välilin. Voitelukerroksella pyritään vähentämään kitkaa ja välittämään hiontakiven värähtelyt puuhun. Vesi myös jäähdyyttää puun pintaa estäen sen palamisen./1/

4.1 Hiontaprosessit

Yleisesti ottaen hiontaprosessit jaetaan päätyyppieihinsä prosessissä olevan ylipaineen ja suihkuvesien lämpötilan mukaan. Saanto hionnassa on noin 98,5 %.

Alla esitellyt lyhyesti eri hiontaprosesseja:

Kivihioke (GW)

- Suihkuvesien lämpötila 65–75 °C. Massan lämpötila 10-25 °C korkeampi kuin suihkuvesien

Kuumahiioke (TGW)
Hieman kivihiotetta korkeammat suihkuvesien lämpötilat. Saavutetaan lievällä ylipaineella.

Painehioke (PGW)
- Suihkuvesien lämpötila 90-95°C. Ylipaine noin 3 baria.

PGW70

Superpainehioke (PGW-S)
- Suihkuvesien lämpötila 120 °C. Ylipaine 5 bar./1, 2/

Kuva 6. PGW70 prosessi kokonaisuudessaan./6/

4.1.1 Painehioke

Painehionnassa hionta tapahtuu paineen alaisena (enintään 3 bar) Suihkuvesien lämpötila on tyypillisesti 90–95 °C, jolloin myös poistuvan massan lämpötila
nousee tasolle 105-120°C. Raaka-aineen syöttö tapahtuu paineistetun vähikammion kautta./1/

Painehionta voidaan suorittaa myös matalassa lämpötilassa (PGW70), jolloin hiokkeen ominaisuudet vastaavat hyvin vaativien mekaanisten painopaperien (LWC, SC, MWC) tarpeita. Alhaisemmalla lämpötilalla saadaan parempi massan vaaleus matalilla CSF-tasoilla, ja samanaikaisesti pystytään saavuttamaan tyypillinen painehiokkeen lujuus. Useilla painehiomoilla on lämpötilaa alennettu vastaamaan paremmin nykyajan vaatimuksiin./1, 2, 6/

4.1.2 Painehiomakone

Kaksiuunisessa painehiomakoneessa on kaksi paineistettua hiontauunia kiven vastakkaisilla puolilla. Hiomavyöhykkeen kokonaispituus on tällöin jopa 40 % kiven ympärysmittasta.

Puu syötetään koneeseen sen yläpuolella olevien paineellisten syöttötaskujen kautta. Kun uuni on tyhjä, vetäytyy paineantura takaisin ja syöttötaskujen luukut avautuvat pudottaen puut uuniin. Täyttötapahtuman on automaattinen ja vie nykyajan hiominen kestä 5–15 minuuttia. Puulajit, -laadut ja massalajit vaikuttavat hionnan kestoon./1,2,3/

Painehiomakoneen kiven halkaisija on noin 1,8 metriä ja normaali kehänopeus noin 28 m/s. Moottorin teho tyypillisesti vaihtelee 4MW:n ja 8 MW:n välillä./1,2/

4.2 Hionnassa vaikuttavat tekijät

4.2.1 Kiven teroitus

Kiven teroituksella pyritään vaikuttamaan kiven pinnan muotoon ja säädellään pinta-alueen eli niitä hiontaraahuippuja, jotka koskettavat puuta hionnan aikana. Jos
kivi on terävä, ainoastaan rakeiden huiput koskettavat puuainesta ja hiontapaine kasvaa. Suuri hiontapaine saa aikaan karkeaa ja tikkuista hioketta. Pieni kuormituksen kevennys teroituksen jälkeen vähentää massan tikkupitoisuutta. Kiven teroituksella pyritään ennen kaikkea vaikuttamaan paperiteknisiin ominaisuuksiin./1/

4.2.3 Suihkuvedet

Suihkuveden tehtävän on puhdistaa hiomakiven pinta sekä jäähdyttää kivi. Alhaisessa suihkuveden lämpötilassa puu ei pehmene. Liian korkea lämpötila vastaavasti haihduttaa veden hiontapinnalta ja heikentää massan vaaleutta. Suihkuvesien määrä pyritään pitämään vakiona siten, että saavutetaan 1,5–2 %:n allassakeus./1/

4.2.4 Kiven kehänopeus

Kiven kehänopeutta säädetään tuotannon määrää. Yleisesti noopeudet liikkuvat tasolla 20–40 m/s. Kehänopeuden lisääminen heikentää massan tasalaatuisuutta, vaaleus heikkenee ja kuidun pituus alenee. Kiven nopeutta vaihdettaessa on huomioitava myös kasvanut kuormitus. Suihkuvesiä ja kiven teroitusta on myös muutettava jotta hiontakivi kestää muutoksen./1/

4.2.5 Kiven kuormitus

Hiomakonetta kuormitetaan muuttamalla puuainesta työntävien anturoitten painetta. Koneen kuormituksen nostaminen lisää tuotantoa mutta samalla nostaa massan freeness-lukua. Jos halutaan pitää massan laatua samana tuotannon lisäämisestä huolimatta, on teroitusta kevennettää./1/