Laura Jokinen

TIEDEPUISTON KAMPUKSEN ILMANVAIHTO- JA JÄÄHYTYSJÄRJESTELMIEN KUNTOARVIO

Rakennustekniikan koulutusohjelma
2015
Rakennuskantamme kuluu ja vanhene koko ajan. Lisäksi kunnossapidon ja korjaustoiminnan puutteet ovat johtaneet jatkuvan korjausvajeeseen. Rakennusten elinkaararenaikaisia kustannuksia voidaan alentaa merkittävästi suunnitelmallisella ja oikea-aikaisella kiinteistönpidolla. Tieto rakennuksen kunnosta on tärkeä perusta, jonka pohjalta voidaan arvioida korjaustarpeet ja niiden kustannukset.

Tässä opinnytetyössä selvitetään ammattikorkeakoulurakennuksen ilmanvaihdon ja jäähdytysen tämänhetkinen kunto, ja perehdytään yleisesti kuntoarvioon ja sen tekemiseen. Tässä työssä tutkittiin silmämääryisesti järjestelmien kunto ja huoltokirjan sisältö, selvitettiin järjestelmien ikä ja haastateltiin kiinteistön käyttäjiä. Lopputuloksena saatiin kuntoarvio, josta selviää rakennuksen tämänhetkinen kunto ja korjaustarve.
The existing buildings are expiring and aging all the time. Also the defects of un-keeping and repair work have resulted in continuous repair deficit. The life cycle costs of buildings can be reduced significantly by systematic and timely maintenance of the properties. The knowledge of the state of the building is an important basis on grounds of the needs for repair and the costs of the repairs can be evaluated.

The purpose of this thesis is to find out the present condition of the ventilation and cooling in the building of the University of Applied Sciences, and also to familiarize generally to condition evaluation and how to do it. In this thesis the condition of the systems and the content of the maintenance book were ocularly inspected, the age of the systems was found out and the users of the property were surveyed. The result of this thesis is a condition evaluation from which the present condition of the building and its need for repair turns out.
SISÄLLYS

1 JOHDANTO .. 5
2 KUNTOARVIO ... 6
3 ILMANVAIHTOJÄRJESTELMÄ .. 8
 3.1 Ilmanvahtokoneet ... 9
 3.1.1 Tuloilmakone ... 9
 3.1.2 Poistoilmakone .. 13
 3.2 Kanavisto ... 13
 3.3 Päätelaitteet .. 15
 3.3.1 Tuloilmapäätelaitteet ... 15
 3.3.2 Poistoilmapäätelaitteet ... 16
 3.4 Kuntoarvio .. 17
4 JÄÄHDYTYSJÄRJESTELMÄ .. 18
 4.1 Jäähdylaitos .. 18
 4.1.1 Höyrystin .. 18
 4.1.2 Kompressori ... 19
 4.1.3 Lauhdutin ... 19
 4.1.4 Paisuntaventiili .. 20
 4.2 Putkisto .. 20
 4.3 Jäähdyspalkki .. 20
 4.4 Kuntoarvio ... 20
5 TUTKIMUSTULOKSET .. 21
 5.1 Kohteen kuvaus ... 21
 5.2 Kustannukset .. 22
 5.3 Toimenpide-ehdotukset ... 23
6 YHTEENVETO .. 23
LÄHTEET ... 24
LIITTEET
1 JOHDANTO

Kohteena on Satakunnan ammattikorkeakoulun Tiedepuisto B:n kampus, joka on rakennettu vuonna 1964. Kampus on rakennettu 76 576,6 m²:n tontille, ja sen huoneala on 17 536,0 m². Tiedepuisto B:n kampuksessa on Satakunnan ammattikorkeakoulun tekniikan Porin yksikkö keväaseen 2017 saakka. Syksyllä 2017 kampus siirtyy uuteen osoitteeseen, ja nykyisen kampuksen käyttötarkoitus muuttuu.

Opinnäytetyön tarkoituksena on selvittää kiinteistön ilmanvaihto- ja jäähdytysjärjestelmien korjaustarve työn tilaajalle Porin Kaupungille, joka suunnittelee kiinteistölle uutta käyttötarkoitusta. Tällä hetkellä ajatuksena tilaajalla on, että kiinteistöä käytetäisiin ammattiopetukseen, toimistotiloina tai näiden yhdistelmänä.

Haasteita kuntoarvion tekoon tuo epäselvyys kiinteistön tulevasta käyttötarkoituksesta. Tarkoituksenani on luoda hyvä pohja kiinteistön ilmanvaihto- ja jäähdytysjärjestelmien kunnosta ja korjaustarpeesta, jolloin tilaajan on helppo lähteä muuttamaan sitä tarpeen määräämään suuntaan.
Kuntoarviossa selvitetään pääasiassa astinvaraisesti ja kokemusperäisesti rakennetta ja materiaaleja rikkomattomien menetelmin kiinteistön tilojen, rakennusosien, järjestelmien, laitteiden ja ulkoalueiden kunto. Se voidaan tehdä koko kiinteistölle tai vain tietylle rakennusosalle, rakenteelle, järjestelmälle tai laitteelle tarpeen mukaisesti. Kuntoarviossa on yleisesti kolme kuntoarvioijaa rakennus-, LVIA- sekä sähkö- ja tietoteknisten järjestelmien osalta, ja he muodostavat kuntoarvion työryhmän. (RT 18–11086, 2)

Kunnossapitosuunnitelmaehdotuksessa, eli PTS-ehdotuksessa, esitetään suositeltu toteutumisvuosi ja kustannusennuste. Kaikki kuntoarvion nimikkeiston päänimikkeitä esitetään PTS-ehdotuksessa, vaikka niille ei kohdistu toimenpide-ehdotuksia kuntoarvion tarkastelujaksolla. PTS-ehdotuksen toimenpide-ehdotuksiin ei sisältyttä vikailmoituksia, vuosihuollontyyppisiä toimenpiteitä eikä kiireellisiä heti korjausta tai lisätutkimusta tarvitsevia kohteita. (RT 18–11086, 8)

Kuntoluokat kuvaavat päänimikkeiden kuntoa ja korjaustarpeen kiireellisyyttä. Päänimikkeiden alla olevien yksittäisten tarkastuskohteiden kunto voi poiketa yleiskuntoluokasta. Kuntoluokkien arviointi menee asteikolla 1-5 niin, että 1 on heikko ja 5 vastaa uutta. (RT 18–11086, 8)

Kustannusennusteessa käytetään yleisiä ja arvioijan omaan kokemukseen perustuvia kustannustietoja, ja ne esitetään kustannustason mukaisesti arvolisäveroineen. Ennusteet ovat alustavia lähtötietoja budjetointia varten, eivätkä ne ole hankkeen tarkkoja kustannusarvioita. PTS-ehdotuksen kustannusennusteisiin sisältytään suunnitteluv-, rakennuttamis-, toteutus- ja valvontakustannukset sekä aputöiden kustannukset. (RT 18–11086, 8)

3 ILMANVAIHTOJÄRJESTELMÄ

Tutkimusten mukaan ilmanvaihdon tarve määräytyy ensisijaisesti ihmisten ja eläinten aineenvaihdunnan erittymistuotteiden mukaan, ja vasta sitten rakennus- ja sisustus materiaalien emissioiden, jäähdytystarpeen ja tilan hiilidioksidi- tai happipitoisuuden mukaan. Ihminen aistii epämiellyttävät hajut astuessaan hunnetilaan, mutta kuitenkin tottuu nopeasti vallitsevaan tilanteeseen. (Korkala & Laksola 2012, 21)

2000-luku on tuonut mukaan huomattavan määrän rajoituksia etenkin tupakanpoltoon sisätiloissa. Tästä syystä sisäilman laatu on paranut ja ilmanvaihdon tarve vähentynyt. 6-10 dm3/s ulkoilmaa henkilö kohden on pidetty tyydyttävän sisäilman puhtauden takaavana ilmamääränä, mutta kuitenkin normaalikorkuisten asuinhuone tilojen ilmanvaihdon tulee olla vähintään 0,5 l/h. (Korkala & Laksola 2012, 21)

Ilman jako huoneisiin tapahtuu kolmella eri tavalla; syrjäyttävällä virtauksella, sekoittavalla virtauksella tai oikosulkuvirtauksella.

Kuva 1. Ilman jakotavat ja niiden virtauskenttä huoneessa.

Ilmastointijärjestelmän muodostavat:
- tuloilmakone
- tuloilmakanavisto
- huoneyksiköt, eli päätelaitteet
- poistoilmakanavisto
- poistoilmakone

3.1 Ilmanvaihtokoneet

3.1.1 Tuloilmakone

Tuloilmakoneessa on erilaisia osia, joiden tarkoitus on käsitellä tuloilma haluttuun olotilaan. Koneet voivat olla tehtaalla valmiiksi koottuja paketteja tai ne voidaan koota moduuleista paikan päällä. Yleisimpiä tuloilmakoneiden osia ovat:
- ulkoilmasäleikkö
- ulkoilmapelti
- sekoitusosa
- palautusilmapelti
- suodatin
- lämmöntulentoollais
- esilämmityspatteri
- kostutin
- jäähdytyspatteri
- jälkilämmityspatteri
- puhallin
- äänenvaimennin
- automatiikka ja
- tarvittavat putkikytkennät

Kaikkia osia ei kuitenkaan tarvita aina tuloilmakoneessa. (Korkala & Laksola 2012, 77–78)

Ulkoilmasäleikkö toimii ulkoilman sisääntuloaukkona. Säleikön tehtävänä on estää veden, lumen, vieraiden esineiden ja eläinten pääsy tuloilmakoneeseen ja sen kanavistoon. (Korkala & Laksola 2012, 78)

Ulkoilmapellin tarkoituksena on estää ulkoilman pääsy tuloilmakoneeseen ja sen kanavistoon, kun ilmanvaihto on pysäytettynä. Ilmanvahdon ollessa päällä pelti on auki. Ulkoilmapeltiin yleensä liitetään myös toimimoottori, joka avaa ja sulkee peltiä koneen käynnin mukaan. (Korkala & Laksola 2012, 80)

Palautusilmapelti kuuluu palautusilmaa käyttävään tuloilmakoneeseen. Pelti yleensä liitetään vivuston avulla samaan toimimoottoriin ulkoilmapellin kanssa siten, että palautusilmapelti liikkuu vastakkaiseen suuntaan ulkoilmapeltiin nähden. Asia voidaan ratkaista myös erillisillä toimimoottoreilla tai kahdella ulkoilmapellillä. (Korkala & Laksola 2012, 81)

Tuloilmakoneessa suodattimen tehtävänä on poistaa ulkoilmasta ja palautusilmasta epäpuhtauksia. Yleisimpiä suodattimia ovat kuitu- ja sähkösuodattimet. Suodattimien päätytypit ovat karkeasuodattimet, hienosuodattimet, mikrosuodattimet ja sähkösuodattimet. Niiden käyttö riippuu ilmastointikoneesta ja sen käyttötarkoituksesta. (Korkala & Laksola 2012, 83)
Lämmöntalteenottolaitteilla pystytään käyttämään uudelleen merkittävää osa poistoilman sisältämästä lämpöenergiasta. Poistoilman energiaa käytetään yleensä tuloilman lämmittämiseen. Yleisimmät lämmöntalteenoton tekniset ratkaisut ovat

- patteri-patteri-järjestelmä
- pyörivä talteenottokenno ja
- levylämmönsiirrin.

Pyörivässä talteenottokennossa tulo- ja poistoilma on johdettu vierekkäin tuloilmakoneen lämmöntalteenotto-osaan ja siihen on asennettu pyörivä alumiinirakenteinen kennosto. Poistoilma virtaa kennoston läpi lämmittäen sen, ja siten kosteuden. Pyöriessä lämmennyttä alue siirryy tuloilman puolelle luovuttaen lämpöä ja kosteutta tuloilmaan.

Alumiinilevyistä valmistettu levylämmönsiirrin on pakka, joka on rakennettu niin, että tuloilma virtaa toisessa Levyvälissä ja poistoilma toisessa. Lämpö siirryy alumiinilevyjen läpi poistoilmasta kylmään tuloilmaan. Laitteessa on yleisesti myös säätepeltti, jolla voidaan tarvittaessa rajoittaa talteenoton hyötysyhdetta. (Korkala & Laksola 2012, 87–93)

Lämmityspatterilla lämmitetään tuloilma haluttuun lämpötilaan. Ilmaa voidaan myös lämmittää vaiheittain useammalla lämmityspatterilla. Lämpöenergian lähteinä toimii vesi, sähkö tai höyry. (Korkala & Laksola 2012, 94)

Tuloilman kostutukseen on kolme eri menetelmää. Sumutuskostutuksessa vesi hajotetaan pieniksi pisaroiksi ilmaan, johon vesi kokonaan tai osittain höyrystyy ottaen tarvittavan lämmön ilmaan. Tämä tapa myös jäähdyttää ilmaa. Haihdutuskostuttimessa on kennomainen märkänä pidettävä osa tai pyörivän runmun päälle on sijoitettu märkä matto, jonka läpi ilma virtaa ja vesi haihtuu märästä pinnasta. Tätäkin kostu-
tintyyppi ottaa tarvittavan lämmön ilmasta jäähdyttäen sitä. *Höyrykostutin* johtaa ilmaan kuumaa vesihöyryä. Tässä menetelmässä ilman lämpötila ei muutu merkittävästi, koska vesi on jo höyryn muodossa. (Korkala & Laksola 2012, 98)

Vesilämmityspatterin kaltaisessa *jäähdytyspatterissä* kiertää joko jäähdytetty vesi tai höyryystyvä kylmäaine. Tämän avulla tuloilmaa saadaan jäähdytettyä haluttuun lämpötilaan. (Korkala & Laksola 2012, 101)

Äänenvaimentimen tehtävänä on suodattaa koneesta aiheutuvaa melua, jolloin se ei pääse ilman mukana huoneisiin. Äänenvaimenninta voidaan käyttää myös estämään äänen päasy huoneesta toiseen kanavistoa pitkin. (Korkala & Laksola 2012, 128)

Laajasti selitettyä *automatiikka* tarkoittaa kaikkia tuloilmakoneen toimintaa ohjaavia, säätäviä ja valvovia laitteita. Se voidaan ryhmitellä seuraavalla lausuksesta:

- **säättölaitteet**, jotka säättävät lämpötilan, kosteuden, virtaaman ynnä muun halutunlaisiksi,
- **varolaitteet**, jotka valvovat koneen toimintaa ja häiriötilanteissa käynnistävät tiettyjä varotoimenpiteitä,
- **hälytyslaitteet**, jotka hälyttävät häiriötilanteissa ja
• *ohjauslaitteet*, jotka huolehtivat laitteiden käymisestä.

(Korkala & Laksola 2012, 109)

3.1.2 Poistoilmakone

Poistoilmakone on rakenteelta vastaavanlainen kuin tuloilmakone. Keskeisenä osana toimii poistoilmapuhallin. Tämän lisäksi osina voi olla:

- jätteilmapelti
- lämmöntalteteenottolaite
- suodatin.

Jätteilmapellin tarkoitus on päinvastainen ulkoilmapeltiin nähden. Sen tarkoituksena on päästä huoneista nullut jätteilma poistoilmakoneesta ulkoilmaan.

Aksiaali- ja keskipakoispuhaltimien lisäksi poistoilmakoneissa käytetään runsaasti *huippuimureita*. Huippuimuri on ulos katolle asennettava yksinkertainen poistoilmapuhallin. (Korkala & Laksola 2012, 115–116)

3.2 Kanavisto

Pääasiassa sinkitetystä teräslevystä rakennetut ilmastointikanavat ovat yleensä muodoiltana pyöreitä tai suorakaiteen muotoisia. Vanhemmat ilmastointikanavat voivat olla niin kutsuttuja rakenneaineikanavia, jotka ovat rakennettu betonista tai tiilestä.

Kanavistolle tärkeintä on tiiviys, joka voidaan toteuttaa monella menetelmällä. Vuodot pienentävät huoneiden ilmanvaihtoa ja aiheuttavat ääntä. (Korkala & Laksola 2012, 121–124)

Kanavia voidaan myös tarpeen mukaan eristää. Palomääräysten mukaan ilmastointikanavia on jouduttu eristämään hormeissa ja vierailla paloalueilla. Sisätiloissa olevat kanavat, jotka kuljettavat kylmää ulkoilmaa, joudutaan lämpöeristämään. Tällä estetään jäähdytetyn ulkoilman lämpiäminen ennen sisäänpuhallusta. Eristys tapahtuu
yleensä kanavan päälle asennetun vuorivillan avulla, joka on usein pääldystetty pellillä. (Korkala & Laksola 2012, 125)

Ilmastointikanaviston varusteita ovat

- säättöpelti
- palonrajoitin
- tarkistus- ja puhdistusluukku
- moottoripelti ja
- äänenvaimennin.

Säättöpelti on tarkoitettu ilmavirran kertaluontoiseen asetukseen. Näiden avulla saadaan säädettyä ilmavirrat suunnitelmien mukaisiksi eri kanavahaaroissa ja huoneniloissa. (Korkala & Laksola 2012, 125–126)

Palonrajoittimen tehtävänä on estää tulipalon leviäminen paloalueelta toiselle. Palonrajoittimia asennetaan yleensä paloalueita rajoittavien seinien tai välipohjien läpi-vienteihin sekä konehuoneista lähteviin kanaviin. Tulipalon sattuessa kuumat palokaasut virtaavat palonrajoittimen läpi, jolloin palosulake laukeaa ja laite sulkeutuu omavoimaisesti. (Korkala & Laksola 2012, 126)

Tarkastus- ja puhdistusluukkujen kautta kanavisto voidaan puhdistaa sekä sen laitteet tarkistaa ja huoltaa. Luukkujen sijainti on usein alakattojen yläpuolella tai verhousrakenteiden takana, jolloin ne ovat helposti avattavissa. (Korkala & Laksola 2012, 127)

Moottoripeltien avulla pystytään avaamaan tai sulkeamaan ilman kulku tietyssä kanavan osassa muun kanaviston ollessa käytössä. Niiden ohjaaminen tapahtuu käsikytkemällä tai aikaohjelmalla. (Korkala & Laksola 2012, 127)

3.3 Päätelaitteet

Ilmastointikanava päättyy aina päätelaitteeseen. Päätelaitteita on useita erilaisia ja eri käyttötarkoituksen tarkoitetuja. Tulo- ja poistoilmalle on omat päätelaitteensa.

3.3.1 Tuloilmapäätelaitteet

Tuloilmapäätelaitteita on monenlaisia moniin eri käyttötarkoituksiin. Niiden tehtävä-nä on jakaa ja sekoittaa tuloilmaa huoneilmaan. Ilmanjon tulisi tapahtua vedotomasti ja äänettömästi, joten on tärkeää huomioida päätelaitteet heittopituus ja heitkokuvio. Tuloilmaventtiileitä on seuraavanlaisia:

- tuloilmaventtiili
- säleiköt
- rakoventtiili
- kartiohajotin
- rei’itetty hajotin
- ulkoilmaventtiili

Tuloilmaventtiili on kanavan päähän asennettava venttiili, jota voi säätää joko itse venttiilistä tai säätöpellillä. Rakenteeltaan useimmat tuloilmaventiilit mahdollistavat ilmavirran suuntauksen muuttamisen ilman, että ilmamäärä muuttuu. (Korkala & Laksola 2012, 133)

Sisäkkäisistä kartioista muodostuva kartiohajotin puhaltaa tuloilman huonetilaan kartioiden välistä. Hajottimet voivat olla pyöreitä tai neliskulmaisia, ja ne asennetaan katton tai vapaasti tilan yläosaan. Ne puhaltavat ilmaa kaikkiiin suuntaan, eikä puhallussuuntia pystytä sulkemaan. Tämä hajotin soveltuu alilämpöisen ilman puhaltamiseen. (Korkala & Laksola 2012, 138)

Ulkoilmaventtiilit ovat tarkoitettu ulkoilman sisäänottoon suoraan ulkovaipan läpi. (Korkala & Laksola 2012, 139)

3.3.2 Poistoilmapäätelaitteet

Poistoilmapäätelaitteita on muutamia. Tuloilmasiuhkusta poiketen poistoilmapäätelaitteiden tuntuva imukaikutus ulottuu vain muutaman kymmenen sentin päähän venttiilin pinnasta. Tämän vuoksi poistoilmapäätelaitteita ei edellytetä samoja omien asuksia kuin tuloilmapäätelaitteita. Poistoilmapäätelaitteita ovat:
- säleiköt
- yhteiskanavventtiilit
- painovoimaisen ilmanvaihdon venttiilit

Suurten poistoilmavirtojen poistamiseen käytetään säleiköitä. Säleiköt voivat olla tuloilmasäleiköitä tai yksinkertaisempia poistoilmaan tarkoitettuja malleja. Säleiköt
varustetaan yleensä venttiilikohaisilla tai erillisillä säätölaitteilla. (Korkala & Laksola 2012, 139)

Pieniä poistoilmavirtoja varten on kehitetty *yhteiskanavaventtiili*. Venttiili on malliltaan pyöreä ja sen ilmavirtaa säädetään keskuskartioita pyörittämällä, jolloin kartion ja rungon välinen rako muuttuu. Yhteiskanavaventtiileiksi hyväksytty venttiilit toimivat myös palonrajoittimina. (Korkala & Laksola 2012, 139–140)

Painovoimaisen ilmanvaihdon venttiileinä toimivat pienipainehäviöiset lautasventtiilit tai käsin säädettävät säleiköt. Näiden venttiilien käyttö ei ole sallittuja poistoilmanvaihdossa. (Korkala & Laksola 2012, 141)

3.4 Kuntoarvio

Edellytys suunnitelmalliselle ja ennakovalle kiinteistön pidolle on teknisten järjestelmien kunnon arviomisen aika ajoin. Ilmanvaihdon kuntoarvioissa tutkitaan ilmanvaihtojärjestelmien osien ja koneiden käyttöikää ja verrataan niitä tavoitteellisiin käytökiintoihin. Paras tulos saadaan huolellisella huoltokirjan pidolla, jota voidaan käyttää täydentämään kuntoarviota. (RT 56–10831, 3–4)

Ensimmäinen kuntoarvio kiinteistölle olisi hyvä tehdä viimeistään kymmenen vuoden päästä käyttöönotosta. Sen jälkeen kuntoarvio pitäisi toistaa viiden vuoden välein. Myös seuraavat seikat viittaavat muun muassa siihen, että ilmastointijärjestelmä on tarpeen peruskorjata tai -parantaa:

- huono sisäilma
- pölyyn muodostuminen sisäpinnoille
- asukkaiden jatkuva oireilu
- vetoisuus
- ikkunoiden huurtuminen
- märkätilojen hitas kuivuminen
- vuotojaljet päätelaitteissa
- homeen muodostuminen
- suuri energiankulutus
hajujen kulkeutuminen huoneesta toiseen
ilmanvaihdon äänihaitat

(RT 56–10831, 4)

4 JÄÄHDYTYSJÄRJESTELMÄT

4.1 Jäähdytyslaitos

Jäähdytyslaitos koostuu pääosin höyrystimestä, kompressorista, lauhdutimesta, nestesäiliöstä ja paisuntaventtiilistä. Seuraavaksi käydään läpi niiden toimintaperiaate.

4.1.1 Höyrystin

Nestemäinen kylmäaine höyrystyy höyrystimestä ja sitoo itseensä runsaasti lämpöä. Lämmönsiirtopintojen toisella puolella oleva väliaine luovuttaa lämpöä, eli jäähtyy, höyrystävälle kylmäaineelle. Lämpöä luovuttava väliaine voi olla ilmastointilaitoksissa joko ilma tai jäähdytysvesi. (Korkala & Laksola 2012, 216–217)
4.1.2 Kompressori

Kompressori imee lämpöenergiaa sitoneen kylmääinehöyryn pisaranerottimen kautta ja pumppaa kylmääinetta eteenpäin puristaen sitä voimakkaasti kokoon. Kaasumaisen kylmääineen tilavuus pienenee ja lämpötila nousee huomattavasti. Tyypiltään ja toimintaperiaatteeltaan kompressorit ovat niin sanottuja mäntäkompressoreita, joissa edestakaisin liikkuvat männät puristavat kylmääinekaasua kokoon ja siirtävät eteenpäin. (Korkala & Laksola 2012, 217–218)

4.1.3 Lauhdutin

Lauhduttimesta kuuma, höyrystynyt kylmääine luovuttaa lämpöenergiaa pois suljettusta kiertopiiristä sitä ympäröivään väliaiheeseen. Tässä vaiheessa kylmääine jäätyy niin paljon, että se nesteytyy. (Korkala & Laksola 2012, 218)

Yleisin ratkaisu on ilmalauhdutin. Tässä lauhdutinta jäähdyttävä väliaine on ulkoinen. Rakenteeltaan ilmalauhdutin on lamellimaisen jäähdytyspatterin kaltaisen. Kylmääine virtaa putkistossa ja ulkoilma virtaa erillisten puhaltimien avulla lamellien välissä jäähdyttäen sitä. (Korkala & Laksola 2012, 218)

Lauhduttimesta nesteytynyt kylmääine johdetaan nestesäiliöön, jonka tehtävänä on tasoittaa kuormitusvaihteluita. (Korkala & Laksola 2012, 220)
4.1.4 Paisuntaventiili

Paisuntaventiiliin tehtävänä on kuristaa ja säättää kylmäainenesteen virtaus höyrystimeen. Kuristuksen ja kompressorin imuvaikutuksen johdosta kylmäaineen paine laskee venttiilin läpi virratessa. Tullessaan höyrystimeen kylmäaine alkaa höyrystyä. (Korkala & Laksola 2012, 220)

4.2 Putkisto

Jäähdytysjärjestelmien putkisto on yleensä kupariputkea, ja niitä on aina kaksi rinnakkain. Toisessa virtaa kylmäneste kohti jäähdytyspalkkia, ja toisessa virtaa lämmennyt neste takaisin jäähdytyskoneelle. Putkien eristäminen on myös tärkeää. Eristämisellä suojataan virtaava neste lämpenemiseltä ja estetään kondenssiveden muodostuminen.

4.3 Jäähdytyspalkki

4.4 Kuntoarvio

5 TUTKIMUSTULOKSET

5.1 Kohteen kuvaus

Satakunnan ammattikorkeakoulun Tiedepuisto B:n kampus on rakennettu vuonna 1964 ja sitä on remontoitunut ja laajennettu muutamaan kertaan. Kampuksen alkuperäinen osa, joka on rakennettu vuonna 1964. Tässä osassa sijaitsee liikuntasali, ruokala sekä suurin osa Tiedepuisto B:n opetustiloista, opettajien tiloista ja toimistoista.

Opetustiloissa ja opettajien työhuoneissa ilmastointi oli toteutettu tuloilmakoneella ja korvasilmalla. Tuloilmakone puhaltaa ilmaa käytäviin, josta se siirtyy siirtoilmana tiloihin. Tästä ei saada kunnollista hyötyä, koska seinästä tuleva siirtoilma painuu suoraan alaspäin lattialle, ja ei näin ollen muuta tilojen sisäilmaa. Koneesta puuttuu myös lämmöntalteenotto, joka on nykymääräysten mukaan pakollinen ilmastointikoneissa.

Aulan ja auditorion koneet olivat lähes samanlaisia tuloilmakoneita, ainoana erona oli auditoriossa oleva ilmanvaihdon tehostuksen säätö, jolla pystytään säätämään ilmanvaihtoon tehostusta auditorion ollessa täynnä ihmisiä. Nämäkin koneet olivat todella pelkistettyjä, eivätkä nekään sisältäneet lämmöntalteenottoa.

Ruokalan ja keittiön tuloilmakoneet olivat myös käyttöikänsä pässä. Kuten aiemmissa mainitsemistani koneista on tullut huomattua, eivät nämäkään tuloilmakoneet sisältäneet nykyisin vaadittua lämmöntalteenottoa.

Liikuntasalissa oli kaksi konetta; tuloilmakone ja kiertoilmakone. Tuloilmakoneella puhalletaan tuloilmaa liikuntasaliin, ja sitä on lämmitetty kiertoilmakoneesta tulevalta lämpimällä ilmalla. Peruskorjauksen yhteydessä nämäkin koneet tulee vaihtaa nykyaikaisempiaan koneisiin.

Rakennuksessa on paljon myös vanhoja huippuimureita, joilla hoidetaan erinäisiä kohdepoistoja. Nämäkin kaipaavat päivitystä.

Tarkemmat erittelyt löytyvät liitteestä 1, jossa on koottuna koko rakennuksen ilmanvaihdon kuntoarvio.

5.2 Kustannukset

5.3 Toimenpide-ehdotukset

Tarkemmat toimenpiteet löytyvät kuntoarvioraportista liitteestä 1.

6 YHTEENVETO

Satakunnan ammattikorkeakoulun Tiedepuisto B:n kampuksen kuntoarvion teko oli monivaiheinen prosessi. Siinä vaadittiin paljon huolellista suunnittelua, koska tekijöitä oli neljä; rakennustekniikalle, sähkötekniikalle, LVV-järjestelmille ja ilmanvaihtojärjestelmille. Suunnittelu oli ensisijaisen tärkeää, jotta saatiin luotua neljästä eri opinnäytetyöstä yhtenäinen kokonaisuus tilaajalle.

Kuntoarvion tekemisen aikana tuli opittua paljon uusia asioita kuntoarvioista, ja tuli huomattua kuinka omatietoisuus kasvoi koko ajan. Suurimpana vaikeutena kuntoarvion tekemiselle pidin asiakirjojen päivittämisen puutetta. Piirustuksista oli todella vähän hyötyä tässä työssä, koska niiden päivittäminen oli jäännyt kokonaan pois. Paljon joutui itse kiertelemään ja selvittelemään, missä mikäkin oikeasti on ja minkälainen järjestelmän toiminta oikeasti on.

Tulevan käyttötarkoituksen puutteen aiheutti hieman hankaluuksia. SAMK siirtyy syksyllä 2017 toisiin tiloihin, jolloin kiinteistölle tulee uudet käyttäjät. Koska uusista käyttäjistä ei ole vielä tietoa, joutui todella paljon pohtimaan korjausehdotuksia vain yleisellä tasolla, eikä tulevaa käyttäjää ajatellen.
LÄHTEET

LIITTELUETTELO

LIITE 1 Kuntoarvioraportti Satakunnan ammattikorkeakoulu Tiedepuisto B
SAMK
TIEDEPUISTO B

KUNTOARVIORAPORTTI

Ilmanvaihto- ja jäähdytysjärjestelmät
SISÄLLYSLUETTELO

1 YHTEENVETO 4
 1.1 Rakennustekniikka 5
 1.2 LVI-tekniikka 5
 1.3 Sähkötekniikka 6
 1.4 Energiatalous 6
 1.5 Välittömästi korjattavat puutteet 6
 1.6 Lisätutkimukset 6
 1.7 Kiinteistön PTS-ehdotus 7

2 KOHTEEN TIEDOT JA HAVAINNOT NYKYTILANTEESTA 7
 2.1 Kohteen tiedot 8
 2.2 Tehdyt korjaukset 9
 2.3 Asiakirjatilanne 9
 2.4 Käyttäjäkyselyn palaute 9
 2.5 Huoltotoimen ja kiinteistön käytön arviointi 9
 2.6 Sisäolosuhdeisiin liittyvät havainnot 10
 2.7 Turvallisuuteen ja ympäristöriskeihin liittyvät havainnot 10
 2.8 Kosteusvaarioihin liittyvät havainnot 10

3 LVI-JÄRJESTEMIEN KUNTOARVIO 11
 G3 Ilmastointijärjestelmät 11
<table>
<thead>
<tr>
<th>Kap.</th>
<th>Ohjelmaohjelma</th>
<th>Sivu</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>SAMK</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TIEDEPUISTO B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G31 Ilmastointikoneet</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>G32 Ilmastointikoneeseen liittyvät osat</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>G33 Kanavisto</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>G34 Pääte-elimet</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Toimenpide-ehdotukset</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>G8 Muita LVI-teknisiä järjestelmiä</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>G82 Kohdepoistokojeet</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Toimenpide-ehdotukset</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>LISÄTUTKIMUKSET</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>6.1 Välittömästi tehtävät lisätutkimukset</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>KIINTEISTÖSSÄ TEHTYJÄ HAVAINTOJA VALOKUVINA</td>
<td>16</td>
</tr>
</tbody>
</table>
1 YHTEENVETO

Satakunnan ammattikorkeakoulun Tiedepuiston kampus on rakennettu vuonna 1964 ja sitä on remontoitu ja laajennettu muutamaan kertaan. Alla olevasta kuvasta näkee, minkälaisiin alueisiin kiinteistö on pilkottu. Alueet on määritelty seuraavasti:

Alue 1 on kampuksen alkuperäinen osa, joka on rakennettu vuonna 1964. Tässä osassa sijaitsee liikuntasali, ruokala sekä suurin osa Tiedepuisto B:n opetustiloista, opettajien tiloista ja toimistoista.

Alue 2 on kampuksen kemian siipi. Siipi on rakennettu vuonna 1982, ja siellä sijaitsee opetustiloja sekä kemian laboratoriot.

Alue 3 on keväällä 1991 valmistunut liiketalouden siipi.

Alue 4 koostuu laboratorioista, ja se on remontoitu täysin vuonna 2004. Siellä sijaitsee mm. fysiikan, sähköteknikan, rakennustekniikan, LVI-tekniikan ja konetekniikan laboratoriot.

Alue 5 on 2000-luvulla valmistunut liiketalouden uusi siipi. Tarkempaa vuosilukua ei tuosta laajennuksesta ole.

Kuntoarvio käsittelee ainoastaan Tiedepuisto B:n tiloja, joka kattaa alueet 1, 2 ja 4.
Raportin PTS-taulukossa on käytetty kuntoluokat ovat seuraavat:

5 = uusi, ei toimenpiteitä seuraavan 10 vuoden aikana.
4 = hyvä, kevyt huoltokorjaus 6…10 vuoden aikana.
3 = tyydyttävä, kevyt huoltokorjaus 1…5 vuoden kuluessa tai peruskorjaus 6 …10 vuoden kuluessa.
2= välttävä, peruskorjaus 1…5 vuoden kuluessa tai uusiminen 6…10 vuoden kuluessa
1 = heikko, uusitaan 1…5 vuoden kuluessa

1.1 Rakennustekniikka

Rakennustekniisiä asioita käsitellään toisessa kuntoarvion osassa.

1.2 LVI-tekniikka

Vesi-, viemäri- ja lämmitysjärjestelmät käsitellään toisessa kuntoarvion osassa.
1.3 Sähkötekniiikka

Sähköteknisiä asioita käsitellään kuntoarvion toisessa osassa.

1.4 Energialalous

Energiansäästömahdollisuudet voidaan selvittää tarkemmin kiinteistöön tehtävällä energiankatselmuksella.

1.5 Välittömästi korjattavat puutteet

- vanhojen ilmanvaihtokoneiden vaihtaminen uusiin
- vanhojen päätelaitteiden uusinta

1.6 Lisätutkimukset

Ennen IV-koneiden uusimista olisi hyvä selvittää uusitaanko myös ilmanvaihtokanavat. Kanavat ovat todennäköisesti käyttökelpoisia, mutta silti nuohouksen tarpeessa. Ilmamäärät eivät kuitenkaan välttämättä riittä tähdellisesti, koska vaatimukset ovat muuttuneet 50 vuoden aikana.
1.7 Kiinteistön PTS-ehdotus

Tietotaulu

<table>
<thead>
<tr>
<th>Yritys-</th>
<th>Toinemies-pide-ehdotukset</th>
<th>Kiinteistön PTS-ehdotus</th>
<th>Make-</th>
<th>Aloitussa</th>
<th>Koottimuusarvo (1.981-6)</th>
<th>Yrityksen toteutukset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiinteistön PTS-ehdotus</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Table Content

<table>
<thead>
<tr>
<th>Nro</th>
<th>Yritys-</th>
<th>Toinemies-pide-ehdotukset</th>
<th>Kiinteistön PTS-ehdotus</th>
<th>Make-</th>
<th>Aloitussa</th>
<th>Koottimuusarvo (1.981-6)</th>
<th>Yrityksen toteutukset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>Kiinteistön PTS-ehdotus</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Table Details

<table>
<thead>
<tr>
<th>Toinemies-pide-ehdotukset</th>
<th>Kiinteistön PTS-ehdotus</th>
<th>Make-</th>
<th>Aloitussa</th>
<th>Koottimuusarvo (1.981-6)</th>
<th>Yrityksen toteutukset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arkitehtitekniikka</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Table Notes

- Arkitehtitekniikka
 - Kiinteistön PTS-ehdotus
 - Make-
2 KOHTEEN TIEDOT JA HAVAINNOT NYKYTILANTEESTA

2.1 Kohteen tiedot

Tilaaja: Porin Kaupunki
Mikko Viitala

Tutkimuskohde: Satakunnan ammattikorkeakoulu Tiedepuisto B
Tiedepuisto 3
PL 520
28600 PORI

Tyyppi: Koulurakennus

Rakennuksia: 1 kpl
Portaita: 3 kpl
Tilavuus: yht. 79 100 m³
Bruttopinta-ala: yht. 19 714 m²
Kerrosala: yht. 17 536 m²
Rakennusvuosi: 1964 ja 1982
Kiinteistön huoltoyhtiö: Porin Kaupunki
Kiinteistön isännöinti: Porin Kaupunki
2.2 Tehdyt korjaukset

2.3 Asiakirjatilanne

2.4 Käyttäjäkyselyn palaute

Henkilöstölle suoritetuilla käyttäjäkyselyillä saatiin vain muutama vastaus. Palautteesta kävi ilmi mm. nämä havainnot:

- talvella kylmä ja kesällä kuuma
- huono sisäilma

2.5 Huoltotoimen ja kiinteistön käytön arviointi

Kiinteistön huollossa vastaa Porin Kaupungin Tilapalvelujen kiinteistönhoitaja. Kiinteistönhoitaja on vahvustunut hetki sitten, mutta uudelle kiinteistönhoitajalla tuntui olevan hyvä käsitys rakennuksen tämän hetkisestä tilasta ja korjaustarpeesta.
Huoltokirjaa on ylläpidetty vasta muutaman vuoden. Sen ylläpidon jatkuminen on tärkeää kiinteistölle, jotta on helppoa seurata kiinteistön tilaa.

2.6 Sisäolosuhteisiin liittyvät havainnot

2.7 Turvallisuuteen ja ympäristöriskeihin liittyvät havainnot

Turvallisuuteen ja ympäristöriskeihin liittyviä havainnoita ei tehty.

2.8 Kosteusvaarioihin liittyvät havainnot

Kosteusvaarioihin liittyviä havainnoita ei tehty.
3 LVI-JÄRJESTELMIEN KUNTOARVIO

G3 Ilmastointijärjestelmät

Laboratorio- ja miniauditorio-siivet (alue 4) ovat 2000-luvulla remontoituja, ja niissä on tulo- ja poistoilmakoneet lämmöntalteenotolla.

Kemia-siipi (alue 2) on myös kokonaan varustettu ainoastaan poistoilmalla. Kemian laboratorioissa on oma erillinen poistoilmakone ja huippuimurilla varustettuja kohdepoistoja.

Kiinteistön vessojen poisto on toteutettu huippuimureilla.

Korvausilma tulee kaikkiin tiloihin ikkunoiden alta jalkalistan takaa.

G31 Ilmastointikoneet

Keittiö ja ruokala

Keittiön ja ruokalan ilmastointikoneet ovat KOJA Oy:n valmistamia poistoilmakoneita. (Kuva 2 ja 3) Koneet sijaitsevat keittiön työntekijöiden sosiaalitilojen viereisessä konehuoneessa. Koneet ovat varustettu sulkipelleillä, suodatinyksiköillä ja lämmityspatterilla. Keittiössä on myös lisänä vanhoja
huippumureita, jotka toimivat kohdepoistona. Koneet ovat tulleet jo teknisen käyttöikänsä perusteella tiensä päähän.

Aula ja auditorio

Liikunta-/juhlasali

Opetustilat ja opettajien työhuoneet

2. ja 3. kerroksen opetustiloissa ja opettajien työhuoneissa on suuri KOJA Oy:n valmistama poistoiilmakone. (kuva 8) Kone on varustettu lämmityspatterilla, suodatinyksiköllä ja sulkupellillä. Tämäkin kone on tullut teknisen käyttöikänsä päähän.
Kemia ja kemian laboratoriot

Hallintotilat

Hallintotiloihin on laitettu 2000-luvulla uudet KOJA Oy:n valmistamat koneet, joissa on lämmöntalteenotto. (kuva 10) Näiden tilojen ilmanvaihtoon ei tarvitse puuttua saneerauksen yhteydessä.

Fysiikka- ja laboratorio-siivet

Fysiikka- ja laboratorio-siipiin on laitettu vuonna 2004 uusia KOJA Oy:n ja WOLF:n valmistamia koneita, joissa on lämmöntalteenotto. (kuva 11 ja 12) Näiden tilojen ilmanvaihtoon ei tarvitse puuttua saneerauksen yhteydessä.

G32 Ilmastointikoneeseen liittyvät osat

G33 Kanavisto

Kanavat ovat sinkittyä peltikanavaa (kierresaumakanavaa ja kantikanavaa). Kanaviston tiiviyttä ei ole testattu, mutta se tulee testata ennen kuin suunnitellaan vanhan kanaviston uudelleenkäyttöä.

G34 Pääte-elimet

Kiinteistöstä löytyy venttiileitä, ritiläsäleikkoja, erilaisia kattohajottajia ja lattialla olevia syrjäytyväviä ilmanjakolaitteita. Vanhat päätelaitteet tullaan vaihtamaan uusiin saneerauksen yhteydessä.

Toimenpide-ehdotukset

G8 Muita LVI-teknisiä järjestelmiä

G82 Kohdepoistokojeet

Toimenpide-ehdotukset

6 LISÄTUTKIMUKSET

6.1 Välittömästi tehtävät lisätutkimukset

- Vanhan kanaviston tiiveystutkimus

- Asbestikartoitus
KIINTEISTÖSSÄ TEHTYJÄ HAVAINTOJA VALOKUVINA

Kuva 2 Keittiön nykyinen IV-kone

Kuva 3 Ruokalan nykyinen IV-kone
Kuva 4 Vasemmalla aulan nykyinen IV-kone ja putkien takana oikealla auditorion nykyinen IV-kone
Kuva 5 Aulan IV-koneen revennyt rätilaippa
Kuva 6 Liikunta-/juhlasalin tuloilmakone

Kuva 7 Liikunta-/juhlasalin kiertoilmakone
Kuva 8 Opetustilojen tuloilmakone

Kuva 9 Kemian siiven tuloilmakoneet
Kuva 10 Hallintotilojen IV-kone

Kuva 11 Fysiikka- ja laboratorio-siiven IV-kone
Kuva 12 Fysiikka- ja laboratorio-siiven IV-kone