

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

Bachelor´s Thesis

Information Technology

Internet Technology

2015

Fernando Somoza Alonso

DEVELOPMENT OF A RESTFUL
API

– HATEOAS & DRIVEN API

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

BACHELOR´S THESIS | ABSTRACT
TURKU UNIVERSITY OF APPLIED SCIENCES

Information Technology | Internet Technology

2015

Tiina Ferm

Fernando Somoza Alonso

DEVELOPMENT OF A RESTFUL API

With the imminent future of the Internet of the Things which implies that everyday objects are
connected between them and to the Internet, the need for the development of a software capable
of managing communication devices arises.

The goal of this thesis was to create a prototype of an Application Programming Interface in the
Java language and implement a REST architectural style, capable of managing and
authenticating different kinds of information, such as devices and users, as well as to allow the
devices to import, export, store, and post-process relevant data. For this purpose, the thesis is
divided in two parts: the theoretical foundation and the practical implementation.

The theoretical foundation examines the difference in terms of software architecture and software
architectural style in order to introduce REST, both its elements and constraints.

The implementation of the prototype shows how the development was implemented as well as
some samples of its functionality.

After the implementation, the results are presented and assessed. Finally, recommendations for
upgrading the prototype are proposed.

KEYWORDS:

REST, API, HTTP, JAVA, Internet Of Things

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

CONTENT

LIST OF ABBREVIATIONS (OR) SYMBOLS 5

1 INTRODUCTION 6

2 REST 8

2.1 Software architecture 8

2.2 Software architectural style 10

2.3 REST approach 11

2.4 Constraints 12

2.5 REST elements 18

2.6 HATEOAS 21

2.7 REST API 23

2.8 REST through HTTP 23

3 DEVELOPMENT 25

3.1 Programming Environment 25

3.2 Other Tools 26

3.3 JSON as data format 27

3.4 Implementation 28

3.5 Testing 35

2.4.1 Client-Server 12

2.4.2 Stateless 13

2.4.3 Cacheable 14

2.4.4 Uniform Interface 15

2.4.5 Layered System 16

2.4.6 Code on Demand 17

2.5.1 Components 18

2.5.2 Connectors 19

2.5.3 Data Elements 20

3.4.1 Base Project 28

3.4.2 Core sub-project: Admins, Devices and Data 29

3.4.3 Api sub-project: Representations, implementing HATEOAS 31

3.4.4 Api sub-project: Controllers 32

3.4.5 Services sub-project: Services 33

3.4.6 Services sub-Project: DAOs 34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

4 CONCLUSION 39

REFERENCES 40

APPENDICES

Appendix 1. Code of the API

FIGURES

Figure 1: Software architecture model (Perry and Wolf 1992) 8
Figure 2: Elements of an architecture 9
Figure 3: Client-Server 12
Figure 4: Client-Stateless-Server 13
Figure 5: Client-Cache-Stateless-Server 14
Figure 6: Uniform-Client-Cache-Stateless-Server 15
Figure 7: Uniform-Layered-Client-Cache-Stateless-Server (Fielding 2000) 16
Figure 8: REST style (Fielding 2000) 17
Figure 9: JSON example 27
Figure 10: API structure 29
Figure 11: Device POJO 30
Figure 12: Data class and Location attribute class. 30
Figure 13: Jackson annotation and inheritance from ResourceSupport. 31
Figure 14: AdminResourceAssembler showing both methods. 31
Figure 15: AdminController sample 32
Figure 16: DataService sample 33
Figure 17: AdminUtil sample 33
Figure 18: AdminDao sample 34
Figure 19: DataDao sample 34
Figure 20: Tests samples 35
Figure 21: GET admins 36
Figure 22: Sample of JSON representation receive 36
Figure 23: DELETE device and HttpResponse 37
Figure 24: POST of Data 37
Figure 25: JSON representation of data 38

TABLES

Table 1: REST Components and examples (Fielding 2000) 18
Table 2: REST Connectors and examples (Fielding 2000) 19
Table 3: REST Data Elements and examples (Fielding 2000) 20
Table 4: CRUD and HTTP equivalence 23

3.5.1 JUnit tests 35

3.5.2 Testing as a User 36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

LIST OF ABBREVIATIONS (OR) SYMBOLS

DNS Domain Name System

CLI Command Line Interface

DAO Data Acces Object

GUI Graphical User Interface

HATEOAS Hypertext As The Engine Of Application State

HTTP HyperText Transfer Protocol

IoT Internet of Things

JDK Java Development Kit

JSON JavaScript Object Notation

JRE Java Runtime Environment

POJO Plain Old Java Object

REST REpresentational State Transfer

RESTful That conforms the REST constraints

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

1 INTRODUCTION

We live a world fully linked with the technology. Almost everybody is member of

a social media like Facebook, Twitter or LinkedIn and has a public profile on the

internet. In 2009, with the boom of the smartphones, the way of communication

of the society underwent a significant change. The first wearable devices have

started to gain popularity, from the smartbands to the smart jewellery, without

forgetting watches and glasses, everyday devices have started to be

interconnected and connected to the internet. A large majority of companies and

experts in technological marketing agree on the fact that in a window of five years,

billions of devices will be connected in the Internet of Things (IoT) (ABI Research

2013; Anderson et al. 2014).

The Internet of Things is a concept that refers to the digital interconnection of any

everyday object with internet. These objects acquire more value due to their

ability to send and receive data with the user, the manufacturer and other

connected devices. With the aim of being able to connect, the devices require a

software component that makes possible its communication and management.

The ideal software for this function is an interface that can be implemented in any

device, i.e. it is multiplatform, and that allow a fast, simple and efficient

communication.

The motivation for this thesis is to study and develop a RESTful API that could

satisfy those requirements.

The goal of this thesis is to develop and analyse an API using the REST

architectural style. This API will be basic for future development of different multi-

platform applications for the Internet of the Things. The API should be able to

manage and authenticate different kind of information like devices and users, as

well as to allow the devices to import, export, storage and post-process relevant

data. There is no need to include a GUI (Graphical User Interface) because the

API should be functional from a CLI (Command Line Interface).

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

In order to accomplish the goal of this thesis, a theoretical foundation is studied

and reviewed in the next chapter of the thesis with the aim of developing later on

a usable API. In chapter 3, the process of the development is reviewed with some

samples of the code and comments about the design. Finally, the last chapter

describes the conclusion with the result of the development.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

2 REST

The term REST stands for Representational State Transfer and was defined by

Roy Thomas Fielding in his PhD dissertation: ”Architectural Styles and the Design

of Network-based Software Architectures.” published in 2000. REST is not a

software architecture itself, but “a coordinated set of architectural constraints

which attempts to minimize latency and network communication, while

maximizing the independence and scalability of component implementations”

(Fielding and Taylor 2002).

This chapter presents the theory that supports the goal of this thesis. First of all

the terms of software architecture and software architectural style are defined as

they are necessary to a better understanding of REST later on. Then, the study

moves into REST: introduction in how Fielding approaches REST as an

architectural style, description of the specific constraints and elements that

compose REST, the importance of HATEOAS, the abstractions of a RESTful

system, and finally, an explanation of RESTful systems using HTTP.

2.1 Software architecture

Figure 1: Software architecture model (Perry and Wolf 1992)

One of the problems encountered in the past when talking about software

architecture is that the term has been used widely and inconsistently by different

authors in different situations. Fielding made his own definition based on previous

researches like the “Foundations for the study of software architecture” paper

from D. E. Perry and A. L. Wolf (Error! Reference source not found.). As

Fielding asserts in his dissertation:

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

 “A software architecture is defined by a configuration of architectural elements—

components, connectors, and data—constrained in their relationships in order to

achieve a desired set of architectural properties.” (Fielding 2000)

Nowadays, if a definition is needed, there is a standardize definition from ISO

(International Organization for Standardization) that generalize more the concept.

As ISO/IEC/IEEE establishes, architecture referring to systems or software is

defined as the fundamental concepts or properties of a system in its environment

embodied in its elements, relationships, and in the principles of its design and

evolution (ISO/IEC/IEEE 42010:2011).

According to the previous definitions, it can be stated that a software architecture

is a high-level abstraction of a system that instead of focusing on the details of

the elements, designs how the elements are used, how they are used by other

elements and how they interact among them. Therefore, the structure of a

software architecture can be separated in the following terms according to their

visible elements in components, connectors and properties, the latter two being

those forming the relationships between components.

Figure 2: Elements of an architecture

Components are the computational elements which collectively constitute an

architecture when accompanied by the description of their interactions (Garlan

and Shaw 1994). Those computational elements are abstracts units of software

instructions and internal states that provide a transformation of data via its

interface (Fielding 2000). If we imagine an architecture as a graph (Figure 2), the

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

nodes represent the components and arcs represent the relationship between

nodes (connectors). Some examples of components in an architecture

implementation could be clients, servers or databases.

The connectors can be described as the glue that keeps all the architecture

components together (Perry and Wolf 1992). In Fielding’s dissertation there is a

more accurate description defining a connector as “an abstract mechanism that

mediates communication, coordination, or cooperation among components”

(Shaw and Clements 1997). It has to be noted on both components and

connectors definitions that authors emphasize on the abstract nature of the

software architecture. Any implementation of the architecture has the details of

its components and connectors hidden at the architectural level. Examples of

connectors can be any communication protocols as client-server protocol, pipes

or procedure calls.

Data elements are those that contain the information that is used and transformed

(Perry and Wolf 1992). “A datum is an element of information that is transferred

from a component, or received by a component, via a connector” (Fielding 2000).

Properties can be defined as constraints that provide conditions and restrictions

for component and components relationships. One of the first definitions of

properties as part of a software architecture was a composition between

properties, which are used to define constraints on the elements and

relationships, which are used to constrain how the different elements may interact

and how they are organized with respect to each other in the architecture (Perry

and Wolf 1992). To summarize, properties are additional information about the

elements and their associated relations (Clements et al. 2003). The Properties

are induced by the set of constraints within an architecture (Fielding 2000). This

statement leads to the definition of software architectural style.

2.2 Software architectural style

An architectural style defines a set of rules that describe the way in which

component interacts. It is also defined as a specialization of element and relation

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

types, together with a set of constraints on how they can be used (Clements et

al. 2003). Although the definition closely resembles the software architecture,

note the term specialization of a style versus the high-level abstraction or

generalization of the architecture. Therefore, a style may be thought as a set of

constraints on an architecture and as an abstraction for a set of related

architectures.

Sometimes there is no hard dividing line between where architectural styles

ceases and architecture begins. The important thing about an architectural style

is that it encloses the important decisions concerning the architectural elements

and emphasizes important constraints on the elements and its relationships

(Perry and Wolf 1992).

2.3 REST approach

Roy T. Fielding introduced the term REST in his PhD dissertation. That is why

“Architectural Styles and the Design of Network-based Software Architectures” is

considered the “bible” of REST. Hence almost all the references in this section

and the next one come from it.

REST is an architectural style for distributed hypermedia systems. It is a hybrid

style inferred from various network-based architectural styles and combined with

extra constraints in order to define a uniform connector interface. It focuses on

the constraints that must be placed on the connectors semantics whereas other

styles focus on the constraints on the components semantics.

In order to derive REST, Fielding, instead of starting from scratch, starts

identifying the system needs, without any constraints, and then incrementally

starts applying constraints to the elements of the system. This way of designing

emphasizes moderation and proper understanding of the system context. Thus,

REST is derived from the null style, which is an empty set of constraints so there

are no relationships between elements, and then other constraints are added

ensuring harmony among them.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

The extra constraints of REST come from the next architectural styles: Client-

Server, Client-Stateless-Server, Client-Cache-Stateless-Server, Layered System

and Code On Demand. REST also includes the concepts of resources and

uniform interface.

2.4 Constraints

2.4.1 Client-Server

Figure 3: Client-Server

The Client-Server interface requires the existence of a client component that

sends requests and a server component that receives requests and may issue a

response (Figure 3). This constraint is based on the principle of separation of

concerns. A uniform interface separates clients and servers interfaces. This

separation of concerns means that clients for example are not related to data-

storage that is a server concern, and servers are not related to user interface or

user state that are client concerns. This improves portability of interfaces across

multiple platforms and scalability by simplifying the server components. Also it

supports the independent evolution of the client-side logic and server-side logic

as each component can be substituted and developed separately as long as the

interface among them does not change.

Server Client

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

Client-Server is perhaps the most foundational constraint as all of the other

constraints reference its artifacts and so build upon this constraint.

2.4.2 Stateless

Figure 4: Client-Stateless-Server

Statelessness constraint is added to the Client-Server constraint. In each

interaction, the communication between client and server has to be stateless.

This means that each request from any client should contain all the information

necessary in order to make the server understand the meaning of the request

(Figure 4). Then, all the data concerning the session state should be returned to

the client. Hence, session state is kept entirely on the client and the server cannot

reuse information from previous requests.

This constraint adds some very advantageous properties but also carries some

disadvantages. In one hand, stateless adds visibility, reliability, and scalability.

Visibility is improved because there is no need of a monitoring system to trace

back previous requests in order to determine the full nature of the request as the

request contains all the information. Reliability is improved because the recovery

from partial failures is much easier. Scalability is better because not having to

Client

Client

Client

Messages with all the information

needed for the operation

Server

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

store the state between requests allows the server component to free resources

rapidly, and also simplifies implementation because the server does not have to

manage resource usage across requests.

In the other hand, the network performance is reduced due to the need of several

requests since the server cannot store shared context data, and server control

over application consistency is reduced because any session state is allocated

on the client side.

2.4.3 Cacheable

Figure 5: Client-Cache-Stateless-Server

In order to mitigate the reduction of network performance due to the stateless

constraint, another constraint is added on top of the client-stateless-server style

shown before. REST includes cache constraint so that subsequent requests to

the server do not have to be made if the required data is already in a local cache

on the client side. So, the client-cache-stateless-server is formed (Figure 5).

This constraint requires the data within a response to a request to be labeled

implicitly or explicitly as cacheable or non-cacheable. Requests are passed

Client $

Client
$

Cache allows less

server work.

Client $
Server

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

through a cache component, which may reuse previous responses to partially or

completely eliminate some interactions over the network. Adding cache

constraints have some advantages but also a trade-off. On the one hand, cache

constraints have the potential to eliminate some interactions partially or

completely, reducing the average latency of a series of interactions thus

improving efficiency, scalability, and user perceived performance. On the other

hand, reliability might be compromised if the data within the cache differs from

the data that would have been obtained from the server.

2.4.4 Uniform Interface

Figure 6: Uniform-Client-Cache-Stateless-Server

Uniform interface constraint states that all the components (clients and servers)

within a REST architecture must share a single, prevailing interface (Figure 6).

This means that the interface for a component needs to as be generic as possible

(usually HTTP). It simplifies and decouples the architecture, which enables each

part of the architecture to evolve independently. This emphasis on a uniform

interface between components is what distinguished REST from other network-

based styles.

Client $

Client
$

Client $
Server

I

Uniform Interface

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

By applying this constraint, the overall system architecture is simplified and the

visibility of interactions is improved. Also, as seen before, it encourages

independent evolvability of components. However, a uniform interface degrades

efficiency, since information is transferred in a standardized form rather than one

which is specific to an application’s needs.

To obtain a uniform interface, multiple architectural constraints are needed to

guide the behavior of components so additionally, uniform interface has four sub-

constraints: Identification of resources, manipulation of resources through

representations, self-descriptive messages and Hypermedia as the engine of

application state (HATEOAS).

2.4.5 Layered System

Figure 7: Uniform-Layered-Client-Cache-Stateless-Server (Fielding 2000)

Layered system style allows an architecture to be composed of hierarchical layers

by constraining component behavior such that each component’s knowledge of

the system is limited to the immediate layer they interact with (Figure 7).

By having a layered system, it ensures that services are able to communicate

only with intermediary layers and other layers are invisible for them, making

possible to improve security. Intermediaries can also be used to improve system

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

scalability by enabling load balancing of services across multiple networks and

processors.

The primary disadvantage of layered systems is that they add overhead and

latency to the processing of data, reducing user-perceived performance. This

disadvantage can be relieved with the use of shared caches that acts like the

cache constraint but between layers.

2.4.6 Code on Demand

Figure 8: REST style (Fielding 2000)

The last constraint of the REST set is Code on Demand which is an “optional”

constraint that allows the clients to download and execute code from a server

(Figure 8). Client functionality may be extended with applets or scripts.

It is called optional because it has some advantages and disadvantages

depending on the context of the implementation and as it depends on the context,

it is not always possible to implement. The advantages are that it simplifies

clients, hence promotes the reduced coupling of features, and it improves

scalability by virtue of the server off-loading work onto the clients. However, code

on demand reduces visibility generated by the code itself, which is hard for an

intermediary to interpret.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

2.5 REST elements

The REST architectural style constrains an architecture to a client/server

architecture and is designed to use a stateless communication protocol, typically

HTTP. In the REST architecture style, clients and servers exchange

representations of resources by using a standardized interface and protocol.

Each software architecture is composed by components, connectors and data.

“REST ignores the details of component implementation and protocol syntax in

order to focus on the roles of components, the constraints upon their interaction

with other components, and their interpretation of significant data elements”

(Fielding 2000).

2.5.1 Components

The role of REST components is to establish communication. They are classified

by their function in an overall application action as shown in Table 1.

Table 1: REST Components and examples (Fielding 2000)

Component Modern Web Examples Component Modern Web Examples

Origin server Apache httpd, Microsoft IIS

Gateway Squid, CGI, Reverse Proxy

Proxy CERN Proxy, Netscape Proxy, Gauntlet

User agent Netscape Navigator, Lynx, MOMspider

 A user agent uses a client connector to initiate a request and becomes the

ultimate recipient of the response.

 An origin server uses a server connector to govern the namespace for a

requested resource.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

 A proxy is an intermediary selected by a client to provide interface

encapsulation of other services, data translation, performance

enhancement, or security protection.

 A gateway is an intermediary imposed by the network or origin server to

provide an interface encapsulation of other services, for data translation,

performance enhancement, or security enforcement.

2.5.2 Connectors

The connectors present an abstract interface for component communication,

enhancing simplicity by providing a clean separation of concerns and hiding the

underlying implementation of resources and communication mechanisms

(Fielding 2000). The different connector types are summarized in Table 2.

Table 2: REST Connectors and examples (Fielding 2000)

Connector Modern Web Examples Connector Modern Web Examples

Client libwww, libwww-perl

Server libwww, Apache API, NSAPI

Cache browser cache, Akamai cache network

Resolver bind (DNS lookup library)

Tunnel SOCKS, SSL after HTTP CONNECT

 Client and servers are the primary connector types. The different between

them is that a client initiates the communication by making a request,

whereas the server is constantly listening for connections and responds

requests for supplying access to its services.

 Cache can be allocated on the interface of clients or server to provide save

cacheable responses to current interactions in order to be reused for later

requests. Its main functionality is to reduce interaction latency.

 A resolver translates partial or complete resource identifiers into the

network address information needed to establish an inter-component

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

connection. The DNS is the most well-known and easy to understand. The

use of a resolver adds request latency but can improve the longevity of the

resources references.

 The tunnel simply relays communication across a connection boundary,

such as a firewall or lower-level network gateway.

2.5.3 Data Elements

REST components communicate by transferring a representation of a resource

in a format matching one of an evolving set of standard data types selected

dynamically based on the capabilities or desires of the recipient and the nature

of the resource (Fielding 2000). Thus data elements can be summarized as

follows: resources, resources identifiers, representations, representations and

resource metadata and control data (Table 3).

Table 3: REST Data Elements and examples (Fielding 2000)

Data Element Modern Web Examples Data Element Modern Web Examples

resource The intended conceptual target of a hypertext
reference.

resource identifier URL, URN

representation HTML document, JPEG image

representation metadata media type, last-modified time

Resource metadata source link, alternates, vary

control data if-modified-since, cache-control

 Resources: The key abstraction of information in REST is a resource. It is

a conceptual mapping to a set of entities, not the entity that corresponds

to the mapping at any particular point in time. Those are representations.

 Resources identifiers: A uniform resource identifier (URI) is a string of

characters used to identify a name of a resource. Such identification

enables interaction with representations of the resource over a network

(RFC 3986.2005).

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

 Representations: The representation of resources is what is sent back and

forth between components. It is a temporal state of the actual resource. In

general terms, it's a binary stream together with its metadata that

describes how it has to be consumed.

 Representation metadata: It is a set of name-value pairs, where the name

corresponds to a standard that defines the value’s structure and semantics

that describes the representation.

 Resource metadata: information about the resource that is not specific to

the supplied representation.

 Control data defines the purpose of a message between components,

such as the action being requested or the meaning of a response.

Once understood the REST elements, the sub-constraints necessary to achieve

a uniform interface can be defined.

 Identification of resources: each resource should have its own unique URI.

 Manipulation of resources through representations: Through a URI, an

instance of the resource can be requested. The response can be returned

in various formats each of them are representations of the identified

resource.

 Self-descriptive messages: Each message (client request and server

response) contains all the information necessary to complete the task.

 Hypermedia as the engine of application state: Sharing representations by

sending self-descriptive messages to identified resources changes the

state of the application.

2.6 HATEOAS

HATEOAS, Hypermedia As The Engine Of Application Style means that

hypertext should be used to navigate and find the way through the

implementation. REST has to be stateless but at the same time, REST means

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

Representational state transfer. HATEOAS solves this contradiction. For

example in a REST API implementation: The API should be entered with no prior

knowledge beyond the initial URI. From that point on, all application state

transitions must be driven by client selection of server-provided choices that are

present in the received representations or implied by the user’s manipulation of

those representations. In other words, each representation of a resource should

include references (links) that describe the transition to the next state. In each

response message, the link for the next request message should be included.

This constraint also allows REST APIs to be self-describing because a single

representation has data describing the resource, actions that it can be done by

the client to the resource and links to a possible next state. Fielding published on

his blog entry on 2008 that “a REST API should spend almost all of its descriptive

effort in defining the media type(s) used for representing resources and driving

application state” (Fielding 2008). In this publication, there are also some

assertions of why a RESP API should be hypertext-driven (HATEOAS) as the

ones described before.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

2.7 REST API

The acronym API comes from Application Programming Interface. An API is a set

of functions and procedures that fulfill one or many tasks for the purpose of being

used by other software. It allows to implement the functions and procedures that

conform the API in another program without the need of programming them back.

As RESTful systems usually communicate with the Hypertext Transfer Protocol

(HTTP), a REST API is a library based completely on the HTTP standard. It is

used to add functionality to a software somebody already owns safely. The

functionality of an API is usually limited by the developer so no more functionality

can be added.

2.8 REST through HTTP

The Hypertext Transfer Protocol (HTTP) is a stateless application-level

request/response protocol that uses extensible semantics and self-descriptive

message payloads for flexible interaction with network-based hypertext

information systems (RFC 7230.2014).

In a RESTful system, clients and servers negotiate the representations of

resources via HTTP. RESTful systems apply the four basic functions of persistent

storage, CRUD (Create, Read, Update, Delete), to a set of resources. In terms of

the HTTP standard, those actions can be translated to the HTTP methods (also

known as verbs): POST, GET, PUT, and DELETE (Table 4). Other HTTP

methods that are also used but not as often as the formers are OPTIONS, HEAD,

TRACE, PATCH and CONNECT.

Table 4: CRUD and HTTP equivalence

CRUD actions HTTP method equivalence

Create POST

Read GET

Update PUT

Delete DELETE

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

The HTTP verbs comprise a major portion of the Uniform Interface constraint

because it provides action based on resources instead of verbs. It is possible to

make a correlation between the CRUD actions of a system and the equivalent

HTTP methods as follows:

 GET: The method GET is used to retrieve/read a representation of a

resource and should only be used for that purpose although it is also

possible to update the state of data in the server. When used only for

reading is considered safe.

 POST: The POST verb is most-often utilized for creation of new resources.

It is an unsafe method because it can modify data states on the server

 PUT: It is used to update one existing resource on the server with the

information contained on the request. However, PUT can also be used to

create a new resource if the data does not already exist in the server. It is

not a safe method because it modifies or create data.

 DELETE: As the name suggest, DELETE is used to delete a resource by

providing its ID.

A classification of the verbs is possible depending on if they are safe or unsafe,

and if they are idempotent or not.

Safe methods never modify resources. From the previous ones, only GET is safe

because the others may result in a modification of the resources.

Idempotent methods achieve the same result regardless of how many times the

request is repeated. When used them correctly, GET, PUT and DELETE are

idempotent. Repeating a PUT method with the same body content should modify

a resource with the same data, so it remains unchanged. This is similar with

DELETE where you can only remove a resource once.

Apart from HTTP methods, RESTful services also use HTTP headers to specify

the representation metadata, for example the content type of the body that it can

be used to choose between different representations of the same resource.

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

3 DEVELOPMENT

The first part of the thesis discusses REST as an architectural style. This chapter

discusses how to implement a RESTful API using Java with Spring framework.

First, the necessary tools used for the implementation of the API are explained.

Later on, there is an explanation of JSON, the standard data format the API

manages. Finally, the implementation and testing are explained.

3.1 Programming Environment

The programming language chosen for the development of the API is Java. Java

is a high-level programming language so it enables to write programs for any

computer, which are easier to understand for humans than other assembly

languages which are very close to machine language. Java is intended to “Write

once, run everywhere”. This means that after the compilation, a Java program

could be executed in any other platform as long as they support Java (with a Java

virtual machine).Thus, Java is one of the most popular languages for developing

client-server web applications. For programming in Java, a Java Development Kit

(JDK) is required, and it is a development environment for building applications,

applets, and components using the Java programming language. It always come

with a Java Runtime Environment (JRE) that includes a Java Virtual Machine to

run the applications.

For the realization of the API described in this thesis, the version 7 of the Java

JDK is used and it can be downloaded from the Oracle official page for free. After

the installation, is necessary to set the system PATH variable by including on it

the location of the bin directory of the installed Java JDK.

In addition to Java, the API is built with the Spring Framework. The Spring

Framework is a Java platform that provides comprehensive infrastructure support

for developing Java applications. In order to use Spring, the only requirement is

to have a minimum required JDK installed.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

Another tool that is used in this project is Maven. Apache Maven is a software

project management and comprehension tool. Based on the concept of a project

object model (POM), Maven can manage a project's build, reporting and

documentation from a central piece of information. Maven, among other things,

helps the user to build a project through an inner lifecycle that includes validation

and compilation. In addition Maven allows to manage the dependencies of a

project such as the ones of the Spring Framework in this project. Maven version

used is 3.3.3.

Finally, an Integrated Development Environment (IDE) is used for source code

editing. The IDE chosen is Eclipse IDE, because it also includes a Java compiler

and interpreter. The version of Eclipse IDE used is Luna (v. 4.4.1).

3.2 Other Tools

Additionally to the programming environment, other tools are also needed for the

development of the API.

Git is a distributed version control system. Its usage along with gitBucket (an

online project hosting) keeps the project in an organized manner and allows to

view, revert or commit changes.

cUrl is used for the purpose of making HTTP requests and test the system and

its final functionality. It allows to transfer data with URL syntax.

Orchestrate is used for storing data on the cloud. Orchestrate provides a RESTful

API with the purpose of storing data without the need of the user to interact

directly with a SQL database and its operations.

The project uses other APIs to perform some actions that otherwise would take

much more effort and time to implement. Stormpath API serves to manage users

and this API uses its functionality to store and manage admins and devices.

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

3.3 JSON as data format

The communication between components is made through representations of

resources. In this API, the format of those representations is JSON.

JavaScript Object Notation (JSON) is a lightweight data-interchange format. It

was derived from the ECMAScript Programming Language Standard (ECMA-404

2013; RFC 7159.2014). JSON structure can be defined as a ordered list of

objects (array of objects). These objects are a collection of name/value pairs

separated by colons (:). An example can be seen in Figure 9.

Figure 9: JSON example

The utilization of JSON instead of other standard format like XML is due to its

simplicity. Both XML and JSON are human readible, but JSON does not need

closing tags and is easier to read and is less dense.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

3.4 Implementation

The main goal of the API is to create and manage admins and devices by storing

them on a database on the cloud. Those devices have to be able to import, export,

storage and post-process relevant data. Therefore, the API has to implement

three main resources (admins, devices and data) and also the different

components that enables to store and manage them. This thesis does not cover

the implementation of the security because it has not been made by the author.

Also, all the Figures showing any code are only representative due to the API

code having more than five thousand lines some of which can be seen in the

appendices.

The first step of this process is to set up the different projects that host the API

implementation.

3.4.1 Base Project

The whole API is divided into three different Maven projects each of them

containing different modules of the API. There are several reasons for the

modularization. First of all, the separation on concerns allows to limit the

knowledge of the internal classes with different tasks. It also increases the

security because it minimizes the potential damage the API could suffer if one of

the components fails. Finally, a layered system is easier to maintain and easier

to scale.

The skeleton of the API is divided into api, core and services. The project api

contains the controller classes of the admins, devices and data. It is the layer

which interacts with the client side while doing requests. The project named

services, contains classes of the services and DAOs (Data Access Object). This

project is where all the logic to connect the databases and the API is

programmed. The last project, core, is the one that contains all the resource

classes like the POJOs of the admins, devices and controllers, as well as their

classes as representations and the definition of exceptions.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

Every project has the necessary tests suites in order to test the functionality of

each component. The structure of each project with the most representative

classes can be seen on Figure 10.

Figure 10: API structure

3.4.2 Core sub-project: Admins, Devices and Data

Once the skeleton is created, the next step is to create the entities the API is

managing. First, the admins and devices are created. These classes are POJOS,

so they do not extend of any interface or abstract classes and they have each

attributes, getters and setters. The attribute “xxxId” in addition to the path in which

each resource is located is used as URI. The other attributes give information

about the resource. The Figure 11 shows an example of (a part of) the device

class.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

Figure 11: Device POJO

The resource Data attributes contains from the raw data with all the information

a device want to share, to the location and timestamp, which would serve to

perform searches with those criteria afterwards. Data class and the its location

attribute class can be seen in Figure 12.

Figure 12: Data class and Location attribute class.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

3.4.3 Api sub-project: Representations, implementing HATEOAS

The next step is to create the classes which give support for giving the API the

HATEOAS constraint. This step is divided into two smaller. Firstly, a class with

each representation admins and devices is created. The classes are almost equal

to the ones created before, but now, the classes extend from “ResourceSupport”

which is imported from the spring framework library and allow the representations

to collect links. Additionally one annotation is included which imported from the

“jackson” library. This annotation helps the controller when receiving data by the

user(Figure 13).

Figure 13: Jackson annotation and inheritance from ResourceSupport.

The second step is to create classes, which are named XXXResourceAssembler

and extend from ResourceAssemblerSupport, that transform the resources into

representation while adding hyperlinks pointing to themselves and to the possible

usable methods (Figure 14).

Figure 14: AdminResourceAssembler showing both methods.

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

3.4.4 Api sub-project: Controllers

The controller’s function is to handle the HTTP requests. Stated differently, they

receive the http request from the user and forward the information to the services

which are the ones that have the logic to attend the request. Finally, the

controllers deliver the response to the user.

In order to program them, the annotations for the API to recognize them as

controllers and the ones that map the class to the URI path have to be included.

Also, each of them have to include the constructor and the declaration of the

service and the assembler class. Lastly, the methods of the controller are

programmed. A part of the AdminController with the HTTP methods GET and

POST for create and read can be seen in Figure 15.

Figure 15: AdminController sample

Each of the methods must contain the http verb and path which are associated

to, and the type of media they support. Furthermore, the methods have to return

a response whose body includes the requested representation and whose

headers reflect the status of the operation.

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

3.4.5 Services sub-project: Services

The services sub-project contains the classes which are more oriented to the

server-side. One can distinguish two layers: the DAO classes which interact with

the database where the data is located and the services classes. This middle

layer is responsible for transforming the controller requests to be understood by

the DAO classes and vice versa.

Furthermore, the services are responsible for checking that data from controllers

is processable and includes all the required fields, as well as to verify the

permissions of the user who is making the requests. If any of the issues listed

above occur, a proper exception is thrown and it stops attending the request.

Samples of the DataService class and a Utility class for AdminService with some

methods pushing and checking data are shown in Figure 16 and Figure 17 where

one can see how the security access and missing field exceptions are handled.

Figure 16: DataService sample

Figure 17: AdminUtil sample

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

3.4.6 Services sub-Project: DAOs

DAO classes provide access to an underlying database or any other persistence

storage. They are in charge of having the correct syntaxes to communicate with

the storage unit.

This project interacts with two different storages (Stormpath and Orchestrate) and

both of them need to create a client beforehand. Also, both use a set of api key

and api secret for authentication. Once both clients are instantiated, the way of

communication is different on each of them.

The one for admins and devices needs to handle all the requests via an account

which once created, is the responsible of storing and managing admins and

servers in the shape of different groups. The persistent storage where the data is

stored uses a collection method to store the data and its own objects class called

KVObject that extends from the serializable class. Both samples can be seen in

Figure 18 and Figure 19.

Figure 18: AdminDao sample

Figure 19: DataDao sample

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

3.5 Testing

3.5.1 JUnit tests

Once the whole API is programmed, it has to be tested. For this purpose, some

test classes are created in each of the different layers to check that every

component is working as intended. Tests are also very helpful to ensure that the

code still works as intended in case a modification of the code is done for fixing

a bug or extending functionality.

This API implements testing with JUnit which is a simple framework to write

repeatable tests. When there are several tests for the same components, they

can be combined into a bigger class or test suite. Each test is a method with an

annotation @Test in which a method provided by the JUnit framework is used to

check the expected result of the code execution versus the actual result. In Figure

20 there is a sample of the tests for the devices DAO and controller class.

In the controller tests, RestServerDriver class from restdriver library is used to

make http requests and the class Response to compare them with the expected

results.

Figure 20: Tests samples

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

3.5.2 Testing as a User

To check that everything is working as intended, a simulation of a real use of the

API is done. For this test, the API is run on a local server with path localhost:8080

and the requests are made using cUrl.

GETing a list of admins:

The controller has mapped the URI of the admins in /admins. With a GET request

to that URI (Figure 21), the representations of the admins are received in the

response.

Figure 21: GET admins

Figure 22: Sample of JSON representation receive

In the JSON representation of Figure 22, one can observe a field “Links”. Those

links are the engine of the API. From the list of admins, the user can perform http

verbs in order to perform actions such as enable or disable admins or devices,

delete them, or simply get a representation of each of them. By doing a POST

request into the root path and including the proper data on the body, the user can

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

create new resources. And in case of a PUT request, a user is modified with the

new data.

DELETEing a device:

When deleting, the response does not need to have any representation so there

is no need of the headers supporting JSON. The response is a String with the

status of the http request (Figure 23). This can also be seen in the header of the

response.

Figure 23: DELETE device and HttpResponse

POSTing and GETing data:

Any data with JSON format can be pulled to the persistent unit as long as one of

the fields is “type”. The service creates a JSON object from a string to store it

mapping each pair and value (Figure 24).

Figure 24: POST of Data

By doing a GET request, the user is able to obtain the data (Figure 25). This data

contains the raw data the user has pushed and includes other fields like the

creator and the date of creation.

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

Figure 25: JSON representation of data

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

4 CONCLUSION

The main goal of this thesis is to develop a usable API for managing admins and

devices that could be able to store and manipulate data in the scope of Internet

of Things. This goal has been achieved firstly by acquiring the necessary

knowledge about REST, its elements and constraints, presenting how it works

with HTTP and why HATEOAS is so important in RESTful APIs. Finally, the

implementation of an API in Java language using Spring framework completes

the research purpose.

Although the API created is usable, it is just a prototype or alpha version because

its behaviour is quite limited. The API can be easily scalable adding more

functionality, for example searches for the data which can be by location or by

timestamp; or implementing a graphical interface which will make the API more

user friendly. In addition, although the format chosen for this thesis is JSON, it

can be extended to other formats such as XML without having to re-program

everything, just adding or moddifying a layer on the implementation.

Internet of Things is going to be a reality in a couple of years if not before, and

some forecast, assert that more than 26 billion of devices excluding PCs, tablets

and smartphones will be connected (Gartner Inc., 2013). Thus, any company

which produces any device and want them to be connected has to use an API

with similar characteristics but with more functionality as the one developed in

this thesis.

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

REFERENCES

ABI Research, 2013. More Than 30 Billion Devices Will Wirelessly Connect to the Internet of
Everything in 2020. Allied Business Intelligence, Inc. London, United Kingdom. Consulted
22.4.2015
https://www.abiresearch.com/press/more-than-30-billion-devices-will-wirelessly-conne/

Anderson J. and Rainie L. 2014. Main Report: An In-depth Look at Expert Responses. Pew
Research Center Internet, Science & Tech. Consulted 22.4.2015
http://www.pewinternet.org/2014/05/14/main-report-an-in-depth-look-at-expert-responses/

Clements P.; Bachmann F.; Bass L.; Garlan D.; Ivers J.; Little R.; Merson P.; Nord R.; Stafford J.
2003. Documenting Software Architectures: Views and Beyond. Addison-Wesley.

ECMA-404. 2013. The JSON Data Interchange Format. Consulted April 2015
http://www.ecma-international.org/publications/standards/Ecma-404.htm

Fielding R. T. 2000. Architectural Styles and the Design of Network-based Software Architectures.
University of California, Irvine

Fielding R. T. and Taylor R. N. 2002. Principled Design of the ModernWeb Architecture.
Information and Computer Science University of California, Irvine

Fielding, R. T. 2008. REST APIs must be hypertext-driven. Consulted 9.3.2015
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

Garlan D. and Shaw M. 1994. An Introduction to Software Architecture. School of Computer
Science, Carnegie Mellon University.

Gartner, Inc. December 12, 2013.Press Release. Stamford, Connecticut. Consulted 22.4.2015
http://www.gartner.com/newsroom/id/2636073

Hazlewood, Les, 2012. Designing a Beautiful REST+JSON API.
https://www.youtube.com/watch?v=5WXYw4J4QOU

ISO/IEC/IEEE 42010:2011 Systems and software engineering - Architecture description, 2011.
Consulted April 2015
https://www.iso.org/obp/ui/#iso:std:50508:en

JUnit 4.12 API Documentation. Consulted April 2015
http://junit.org/javadoc/latest/index.html

Orchestrate API Documentation. Consulted April 2015
https://orchestrate.io/docs/apiref

Perry D. E. and Wolf A. L. 1992. Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes.

RestDriver API Documentation. Consulted April 2015
https://github.com/rest-driver/rest-driver/wiki/Server-Driver

RFC 3986.2005. Uniform Resource Identifier (URI): Generic Syntax. Consulted April 2015
https://tools.ietf.org/html/rfc3986

RFC 7159.2014. The JavaScript Object Notation (JSON) Data Interchange Format. Consulted
April 2015
https://tools.ietf.org/html/rfc7159

41

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Fernando Somoza Alonso

RFC 7230.2014. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing.
Consulted April 2015
https://tools.ietf.org/html/rfc7230

Spring Framework 4.1.6. API Documentation. Consulted April 2015
http://docs.spring.io/spring/docs/current/javadoc-api/overview-summary.html

Spring HATEOAS 0.18.0 API Documentation. Consulted April 2015
http://docs.spring.io/spring-hateoas/docs/current-SNAPSHOT/api/

Shaw M. and Clements P. 1997. A field guide to boxology: Preliminary classification of
architectural styles for software systems. COMPSAC '97. Proceedings.

Stormpath API Documentation Consulted April 2015
http://docs.stormpath.com/rest/product-guide

