

AGILE METHODOLOGIES IN LARGE-SCALE SOFTWARE
PROJECTS

Sana Grigoryeva

Thesis
Degree Programme in Information Technology

2015

Technology, Communication and
Transport
Degree Programme in Information
Technology

Abstract of Thesis

Author Sana Grigoryeva Year 2015
Supervisor Erkki Mattila
Title of Thesis Agile Methodologies in Large-scale Software Projects
No. of pages + app. 62 + 6

Agile methods are widely used nowadays in software development both in
small- and large-scale projects. However, it can be rather challenging to apply
them to the bigger projects. Moreover, there are no precise instructions of how
to use the agile methods in a big organisation. Therefore this topic is vital.

The goal of this thesis was to render the reader an overview of what the agile
methods are, and how can they be applied to large-scale projects. In the theo-
retical part, the origin and the general concept of the agility in software devel-
opment were explained. The statistics of the methods’ usage in today’s software
development was presented as well.

In the middle part, the key points of scaling the agile methods were presented.
After that, the most popular agile methods were compared and analysed re-
garding their suitability for large software projects.

The last section included the example from the author’s own experience of how
the agile methods were used in large projects, and based on theoretical and
empirical knowledge certain improvements were suggested in order to raise the
effectiveness of the methods.

A descriptive literature review research method was used when gathering and
analysing the information from web resources, books and conference presenta-
tions. In the real case study, a qualitative method was used to describe the data
from the project and to make conclusions. Possible further research could be
conducted by implementing the suggested solutions to the real working envi-
ronment and research the outcomes.

Key words agile, incremental and iterative, Scrum, Kanban

CONTENTS

1 INTRODUCTION .. 7

2 FUNDAMENTALS OF AGILE SOFTWARE DEVELOPMENT 8

2.1 Roots of Agile Methods .. 8

2.2 History of Agile Methods .. 9

2.3 Definition of Agile ... 11

2.4 Applying of Agile Methods to Modern Software Development 12

2.4.1 Software Crisis .. 13

2.4.2 Development of New Methodologies ... 14

2.5 Benefits of Agile and its Current Usage ... 15

2.5.1 Adoption .. 16

2.5.2 Scaling .. 17

2.5.3 Most Popular Methods and Tools .. 18

2.5.4 Positive Outcomes .. 19

2.5.5 Failures in Adoption and Scaling ... 20

2.6 Overview on Agile Methods' Formation and Spreading 21

3 AGILE METHODS IN LARGE PROJECTS .. 23

3.1 Can Agile Work? .. 23

3.2 Disadvantages of Agile .. 26

3.3 Key Points in Scaling Agile .. 27

3.3.1 Principles over the Methods .. 27

3.3.2 Customization of Agile ... 28

3.4 Software Lifecycle .. 29

3.4.1 Requirements Specification and Documentation 30

3.4.2 Software Design .. 33

3.4.3 Software Implementation and Testing ... 34

3.4.4 Software Maintenance ... 35

4 COMPARATIVE DESCRIPTION OF AGILE METHODOLOGIES 37

4.1 Scrum .. 37

4.1.1 Methodology Overview .. 38

4.1.2 Strengths and Weaknesses .. 39

4.2 Extreme Programming ... 40

4.2.1 Methodology Overview .. 41

4.2.2 Strengths and Weaknesses .. 42

4.3 Kanban .. 42

4.3.1 Methodology Overview .. 43

4.3.2 Strengths and Weaknesses .. 44

4.4 Feature-Driven Development ... 44

4.4.1 Methodology Overview .. 45

4.4.2 Strengths and Weaknesses .. 46

5 CASE STUDY: CHALLENGES AND SOLUTIONS FOR SCALING AGILE .. 48

5.1 Project Description ... 48

5.2 Challenges and Possible Solutions .. 51

6 DISCUSSION ... 57

REFERENCES ... 59

APPENDICES ... 62

LIST OF FIGURES

Figure 1. Difference between Agile and Waterfall Value Propositions

(VersionOne Inc. 2014b) ... 16

Figure 2. Agile Requirements Definition and Management (Moccia 2012) 32

Figure 3. Burndown Table for Sprint 1 .. 49

Figure 4. Burndown Chart for Sprint 1 .. 50

Figure 5. Burndown Chart for Sprint 2 .. 51

6

SYMBOLS AND ABBREVIATIONS

IID Iterative and Incremental Development

DSDM Dynamic Systems Development Method

XP eXtreme Programming

FDD Feature-Driven Development

ADT Application Development Trends (McKendrick 2013)

RDM Requirements Definition and Management

GUI Graphical User Interface

7

1 INTRODUCTION

Nowadays software is required in most of the areas of production and everyday

life. The market is large and constantly changing. Moreover, the technology is

developing rapidly. In this environment, software development companies need

to tailor their operating processes to correspond customers’ demands, to reach

the business goals and to be highly competitive.

Agile methods are created to meet these needs and to assist enterprises to

cope with the challenges of nowadays prompt software development. That is

why they are becoming prevalent among other development methods recently.

However, large number of companies which adopted and successfully applied

these methods is of rather small size. The guides for using agile methods are

mostly applicable to non-large projects. Consequently, big organisations strug-

gle and hesitate to adopt and use agile methods in their work.

It takes more effort to apply agile methods to the large enterprises, because

more employees and structural levels are influenced by the changes. Therefore

it is essential to investigate this topic. The author has own experience of work-

ing in an agile large-scale project, which gives a possibility to use real life expe-

rience. The main purpose is to explore how agile methods can be applied to

large software projects effectively.

The objectives of this work are to investigate what is the nature of agile meth-

ods, how and why they appeared and developed. Because the concept is rather

wide, the second objective is to collect various definitions of the software agility

given by different authors. This is done in order to create one collective and ful-

filling definition of what is agile software development. Furthermore, the objec-

tive of the work is to investigate if the methods are applicable to the large pro-

jects, and which of them are most suitable. It is also important to know, how to

combine methods and tailor them to the company’s needs. In order to explore

this topic, the real company case is described and analysed in the end of the

work.

8

2 FUNDAMENTALS OF AGILE SOFTWARE DEVELOPMENT

2.1 Roots of Agile Methods

The agile methods became the most noticeable change in software develop-

ment thinking during last two decades (Fowler 2005). However, their history did

not start then, but much earlier. Agile methods have strong roots, which go back

to 1930’s. The ideas which now form the backbone of agile methodologies were

proposed long time ago as an alternative to the traditional methods. Those ide-

as appeared in different places independently, but many of them were not un-

derstood and were underestimated at that time (Laanti 2012).

According to Craig Larman, the foundation of modern agile methods was itera-

tive and evolutionary development. He states that "agile methods are a subset

of iterative and evolutionary methods". In his book "Agile and Iterative Devel-

opment: A Manager's Guide" he presents a history of "iterative development,

which lies at the heart of agile methods". (Larman 2003.)

Likewise, according to Larman and Basili (2003), the earliest recorded ideas

which are related to agile methods were the iterative and incremental ap-

proaches. They grew from the work of an American engineer Walter Shewhart,

where he proposed to use a short term ―plan-do-study-act‖ cycles for quality

improvement. (Larman & Basili 2003.)

The first record of using iterative and incremental approach in the project dates

to 1957, as noted in the paper of Larman and Basili. That project was not de-

veloping the software, but it is significant for the present research because a

few years later, in early 60’s, the same team was working on the large software

project of NASA called Mercury, which "ran with very short (half-day) iterations

that were time boxed". Interestingly, the team even used a few practices of ex-

treme programming - test-first development and planning and writing tests be-

fore each increment. (Larman & Basili 2003.)

9

One of the engineers who were working on the Mercury project, Gerald Wein-

berg, describes the process of the project and developers' opinion on waterfall

model as follows:

“We had our own machine and the new Share Operating System, whose

symbolic modification and assembly allowed us to build the system incre-

mentally, which we did, with great success.

 All of us, as far as I can remember, thought waterfalling of a huge project

was rather stupid, or at least ignorant of the realities… I think what the wa-

terfall description did for us was make us realize that we were doing some-

thing else, something unnamed except for “software development". (Wein-

berg 2011.)

Since then, there were also a number of projects using the abovementioned

and other agile related approaches in 70’s, 80's and 90's. Remarkably, the ma-

jority of them were working on developing large life-critical systems. Among

them were software systems for USA submarine, for ballistic missile defense,

US Navy weapon system; the primary avionics software system for NASA

space shuttle, compilers for a family of application-specific programming lan-

guages. (Larman & Basili 2003.)

As a conclusion, the incremental and iterative approaches were the foundation

for agile methods appearance. They were used primarily in large-scale projects

over decades before the ideas and principles of agile software development

were officially stated and recorded in the famous Agile Manifesto in 2001. (Beck

et al. 2001.)

2.2 History of Agile Methods

Table 1 in Appendix 1 shows the history of the appearance and the develop-

ment of the agile approaches. The table contains the descriptions of various

(mostly large and life-critical) projects where the agile methods were firstly suc-

10

cessfully applied to. It contains also some publications where the agile devel-

opment approaches and features were first described and formalized.

The dates/duration column of Table 1 (Appendix 1) shows the dates when the

project was executed or when the publication was written. The column pro-

ject/author/publication name, short description, country contains the name of

the project or writer and his/her publication, its short description and country of

origin.

The column named methods/approaches applied consists of the methods and

approaches which were used or described in the particular work. And the last

column additional info contains supplementary notes, whether the project was

big and beneficial or not and other things. It can be seen in Table 1 (Appendix

1) that iterative and incremental development (IID) and agile practices of early

years were mostly applied to large projects, because the complexity of the sys-

tem made usage of the waterfall system inconvenient at some points.

There are a few tendencies which can be distinguished throughout the devel-

opment of IID. The first method that appeared and later on was applied to the

most of the projects is iterations. Their length varies among the projects – from

half-day to 6 months or even longer. Some of them were not time-boxed at all.

But the main tendency can be determined: the length of the iterations decreas-

es with time, from several month long iterations to nowadays recommended 2-4

weeks iterations, even though it was chosen empirically for each certain project.

Second after iterations, the next tendency which appeared is using of incre-

ments. This tendency is distinguished in most of the projects since it appeared

first time in 1970. First there were sequences of intermediate systems of code,

and then teams started to produce independent versions, later on clear

measures of success appeared. The biggest reason for using increments is the

possibility to retreat.

Also the methods of specification and prioritization evolved throughout the time.

In early projects the prioritization was done from top-level control structures

11

downwards. Later on it was done based on risks; core architecture was imple-

mented on early stages.

Another important tendency is cycle-learning. Even the earliest projects were

taking advantage of what was learned in previous iteration. The learning came

from the development and using the system. The feedback has been always

essential part of learning.

The emphasis on cycle learning was growing, and in 1987 the whole process of

software development was regarded as learning and communication. That time

there started to develop the focus on individual developers as people, their skills

and communication between each other. About the same time contractor partic-

ipation became an important part of development process.

In conclusion, there were no rigidly clear tendencies in agile methods develop-

ment, because the new methods were implemented and tried out in real life,

some of them became successful and some did not. However, it is possible to

determine the main tendencies and the order of their appearance, which helps

to have deeper insight into the history of agile software development.

2.3 Definition of Agile

Agile software development ideology includes 4 values and 12 main principles

(Beck et al. 2001). Basically they do not dictate to development team what to

do, they just point the direction. Agile software development is a multidimen-

sional concept, it is significantly wide. When the definition of agile software de-

velopment is given, depending on from which point of view it is described, the

different aspects of agility are emphasized.

Table 2 (Appendix 2) contains systematized definitions of software development

agility adapted from Laanti (2012) according to Kettunen (2009). The definitions

are presented in chronological order. They were given by various authors at

different times. They were analyzed and there was added third column that indi-

12

cates which aspects are stressed in each definition. Authors reveal different

sides of the concept, although some of the aspects repeat in several definitions.

All the aspects that were indicated in definitions were studied and based on

them collective definition of agility was composed. The definition is presented

below and the aspects of agility in this definition appear in the order of their rep-

etition frequency. The aspects were grouped according to the area of their ap-

plication.

Agile software development is a time-boxed iterative and incremental light-

weight approach, which is rapid, flexible and adaptive to changes in require-

ments or environment, oriented on individuals and communication among them.

In agile development self-organized cross-functional teams in highly collabora-

tive environment make own decisions; it implies constant planning, testing and

integration; which uses constant user/stakeholders’ feedback, quickly responds

to it and constantly learns from it, improving the process.

When applied rationally, all aspects of agile development mentioned in the defi-

nition above provide faster software development and frequent deliveries, high-

er user satisfaction. They also allow the software to meet the needs of stake-

holders, and the company to benefit in constantly changing business market.

2.4 Applying of Agile Methods to Modern Software Development

Agile methods are widely used today in software development enterprises as

well as in industrial companies. According to many reports, they bring business

values to the company and help to cope with nowadays market demands.

However, there are certain disadvantages of using these methods, and some

companies have concerns about adoption of agile development tools. In addi-

tion, some of them are struggling to scale agile methods to bigger scale.

13

2.4.1 Software Crisis

Some time has already passed since the first computer was invented, and since

then computing technology has been developing faster and faster, and nowa-

days it already grows exponentially. Along and together with technology, intelli-

gent products and services are evolving. Moreover, digitalization of data is in-

creasing all the time. All these factors generate growing demand for software.

It happened that hardware and its capabilities were developing rather fast, and

as the result they required more and more complex software to be created. But

existing methods for writing software was not sufficient and not rapid enough.

This created a difficulty and certain problems for software engineering already

in the early years of computer science. This phenomenon got a name of soft-

ware crisis as early as 1968, and was described by Feller and Fitzgerald as sit-

uation when the software is too long to develop; it costs too much and does not

work very well. (Feller & Fitzgerald 2000.)

This problem needed a solution. As the software product complexity increased,

the complexity of software projects rose as well. Consequently, software pro-

jects demanded new software process models, which would bring the needed

solutions, help to increase productivity and to minimize risks connected with

software development.

Changing requirements posed one of the biggest risks for the software devel-

opment. As software became more complex, there was much more lines of

code in the program. Changes in requirements may appear at any point of the

process, and the more software project is growing, the more difficult it is to

make changes in it. Consequently, software engineering needed new process

methodologies which are flexible and responsive to changes.

In conclusion, increase in software complexity and technology capabilities cre-

ated a need for a light-weight, flexible ways to create software. It is a general

tendency nowadays which can be seen not only in software development, but in

other industries as well.

14

2.4.2 Development of New Methodologies

As mentioned in previous section, there was a need for new software process

models, and they started to appear and develop. There were two factors which

contributed to it – increase in software product complexity and in software pro-

ject complexity. Some heavy-weight methodologies already existed and were

used at that time, and as can be seen from Table 1, first new lightweight ele-

ments were added to the existing approaches. As was mentioned before, the

first iterative and incremental approaches appeared in 1959.

Methodologies and frameworks which are still used and popular nowadays ap-

peared in 1990’s. Among them are Scrum, Dynamic Systems Development

Method (DSDM), eXtreme Programming (XP), and Feature-Driven Develop-

ment (FDD). They all contain different techniques and approaches. However,

there is something that they all have in common – they are all incremental and

iterative, and as the result flexible and highly responsive. In 2001 an ―umbrella‖

term agile methods was invented by a group of initiative software engineers of

America. They described the main principles of agile software process, which

was called Agile Manifesto.

When agile methods first appeared, they were applied to single projects. How-

ever, there was a need to scale methods to the large projects and big organiza-

tions. For that the method was changed or altered. For example Sutherland

(2005) in his presentation in Agile Conference in Denver described how Scrum

was used for a large-scale project. This type of Scrum has its own name, so-

called C Scrum, and it included overlapping project phases with tightly integrat-

ed builds, which were made several times per working day. There were also

tightly coupled teams, and the administrative control and pressure were signifi-

cantly reduced.

To sum up, agile methods appeared as a solution for the problem of developing

software and coping with increasing complexity and requirements. However,

this process has not finished, today technology is developing even faster, but at

the same time software development models are developing as well, they are

15

being complemented and edited. The same happens when already adopted

agile methodology needs to be scaled to the bigger level.

2.5 Benefits of Agile and its Current Usage

These days software industry is highly competitive, the market is developing

rapidly, and consequently, software enterprises have to work fast and be highly

flexible. Agile methods' principles meet these objectives. They are said to be

profitable for software companies. According to Schwaber, Laganza and D'Silva

(2007), agile methods decrease time-to-market, increase quality of software and

reduce the waste. They also increase predictability and minimize risks.

Figure 1 which is displayed below shows the difference between traditional (wa-

terfall) and agile software development in four features: visibility of the project,

its adaptability, business value and risks. As can be seen, in waterfall method

visibility of the project is high at the start, but during the development process it

decreases almost to zero, and the project becomes visible again only when it is

ready.

Figure 1 illustrates that agile development allows the visibility to be high

throughout all project process. Moreover, the project is able to adapt to changes

throughout the entire project, while in waterfall model it decreases stably as the

project advances. The business value of agile project grows since the start of

the project and remains high all the time because of frequent releases. At the

same time, the risks of the project decline hyperbolically already in the begin-

ning of the project due to user testing and flexibility of the development process.

16

Figure 1. Difference between Agile and Waterfall Value Propositions

(VersionOne Inc. 2014b)

The research into some up-to-date data was made to analyze the prevalence

and usage of agile methods these days. The data was taken from Agile Survey

2013 (VersionOne Inc. 2014a). Overall, 3501 people took part in this survey,

and most of them hold positions of project managers, scrum masters, and team

leaders in software development departments of their organizations. What is

important, ¾ of the respondents are coming from organizations where the num-

ber of employees is between 100 and 1000. This means that the respondents

work in broad development environment and they are involved in large projects.

2.5.1 Adoption

The most significant number is general usage of agile methods by the IT enter-

prises. This number doubled since 2012, when only 35% of the respondents

applied agile methods to their work. In 2013 there were already 76% of them.

17

More people are recognizing that agile methods are generally beneficial to their

business in comparison with previous years. Particularly, 11% more than in last

2 years people admit that agile methods help them to complete their projects

faster.

Moreover, people say that agile methods help to reach the target why they were

applied to their business. They also distinguish 3 main benefits that they ex-

pected to acquire when they adopt agile methods: they want to be able to man-

age frequently changing priorities; they want to increase productivity and project

visibility.

The respondents were given a list of the reasons to adopt agile, and the top 3

reasons they chose were to accelerate time to market (23%), more easily man-

age changing priorities (16%), and to better align IT and business objectives

(15%). When an organization decides to adopt agile practices, initiative most

commonly come from the management level (in 61% cases). Less often it

comes from the developers themselves (17%) or from executives (16%).

Looking at these results, general current tendency is spreading of agile meth-

odologies wider and wider, most of the software enterprises already use differ-

ent kinds of them. Enterprises adopt agile methods because they help to solve

problem arising in their performance, connected with today’s changeable mar-

ket situation. As the manager can see the development process both from in-

side and outside, initiative to use new process methods usually come from

them.

2.5.2 Scaling

As survey concludes, software professionals have got wider knowledge about

agile practices and now scaling them to the broader projects and within their

organizations. According to the numbers, 88% of the survey respondents are

knowledgeable with agile practices, which is 7% bigger than in the last year’s

survey. Majority of the participants use agile practices in their organizations al-

ready from 2 to 5 years.

18

During this time, they have seen some success in several teams where agile

methods were applied. As the result, nowadays they scale agile practices more

broadly in their workplaces based on the success they have got and on their

wider knowledge. Today already 57% of respondents apply agile practices to

the projects where are 5 and more distributed teams, and 38% have 10 and

more teams. Last year this number was only 30%. These numbers indicate that

there is a tendency of scaling agile methods to the bigger projects and embrac-

ing them to the enterprise level.

2.5.3 Most Popular Methods and Tools

The survey states that Scrum and its variants remain the most popular method-

ology used by companies during the last several years. In 2013 73% of the re-

spondents use it. The second most popular methodology after Scrum is Kan-

ban. It is rather new in software development industry and it has gained popu-

larity during the last couple of years and continues to spread.

As the survey sums up, the respondents utilize a wide variety of different agile

management tools and techniques. The most popular and wide-used in 2013

were daily standup meetings, iteration planning, unit testing, retrospectives, re-

lease planning, burndown/team-based estimation, velocity tracking, coding

standards, continuous integration, automated builds, dedicated product owner,

integrated development/quality assurance.

All these mentioned techniques were used by 50-100% of respondents in 2013.

More than 85% of respondents use daily standups, and 75% are using iteration

planning, retrospectives, and burndown charts. Furthermore, all of these meth-

ods has been used more than in past years, except for unit testing, usage of

which has declined.

Kanban was used by 39% of respondents in 2013, and this number continues to

grow. Interestingly, about half of all respondents who use Kanban or its variant

called Scrumban said that they were primarily using these methodologies only

for business processes in their organization.

19

To conclude, agile methodologies are flexible, because the developers may

choose which methods and tools they would like to use and even alter them to

the certain degree. It is often said that agile methodologies need customizing to

be more suitable for the certain team or organization. However, at the moment

Scrum and Kanban seem to be the most popular among various agile method-

ologies. Furthermore, statistics show that the key Scrum processes are the

most used nowadays. Based on these results can be concluded that Scrum and

Kanban meet the current needs of the organizations.

2.5.4 Positive Outcomes

When the agile methodologies had been adopted and a few projects were com-

pleted using them, respondents analyzed their enterprise’s situation and distin-

guished the real improvements. In general, after they completed their first agile

projects, most of the respondents agreed that the project was completed faster

than when they used traditional approaches.

Among the other benefits named by the survey respondents are the following:

“Ability to manage priorities, increased productivity, improved pro-

ject visibility, improved team morale, enhanced software quality, re-

duced risk, faster time-to market, better alignment between IT and

business objectives, simplified development process, im-

proved/increased engineering discipline, enhanced software main-

tainability/extensibility, and easier management of distributed

teams.” (VersionOne Inc. 2014a.)

These answers display that there are real benefits of using agile methods, and it

concerns large-scale projects as well. The methodologies are advantageous for

big projects because there are typically distributed teams in them. Additionally,

commonly the bigger the project is, the more complicated it is to develop, and

agile methods simplify the development process, reducing risks and improving

the product quality at the same time.

20

2.5.5 Failures in Adoption and Scaling

Even though there are many successful stories in adopting and using agile,

there are also negative experiences. It is important to analyze them as well to

have deeper insight into the problems and learn from them. Such analysis was

done by Agile Survey (VersionOne Inc. 2014a), and the results will be summa-

rized in this section.

Firstly, when the organization is considering adopting agile, they have certain

concerns and doubts. The most common of them are the lack of up-front plan-

ning, which remains the top concern during the last few years (30% in 2013).

The next biggest concern is the loss of management control. Among the rest

are management and developers’ opposition, lack of documentation, lack of

predictability, and lack of engineering discipline, inability to scale, regulatory

compliance, quality of engineering talent and reduced software quality. (Ver-

sionOne Inc. 2014a.)

It can be seen that some of the options were also mentioned in the success sto-

ries, which proves that some of the concerns are unjustified. For instance, one

of the biggest concerns is the loss of management control. But in the data dis-

playing actual improvements from using agile, it is mentioned that agile meth-

ods helped to improve engineering discipline and team morale, as well as it

made management of distributed teams easier.

There was also a concern about reduced software quality, but from the real

success answers can be seen that software quality actually enhanced. Howev-

er, that is true that in agile it is much more complicated to make long-term pre-

dictions. But on the other hand, in traditional methods, when the project is near-

ly finished and it fits into schedule, there always might come some requirements

changes or some urgent fixes, and in traditional methods fixing takes much

longer and there is no chance for the project to be on time anymore.

The rest of the problems which are lack of up-front planning, lack of documenta-

tion remain open and there is no direct evidence that any outcomes balance this

21

lack. However, looking at the general benefits from using agile, it can be seen

that productivity is increased and risks are reduced, and such results may justify

the lack of other organizational things.

Finally, a concern about inability to scale needs a separate look within this work.

As the survey states it is possible to scale agile to the organization level. Even

though, there are some factors that become barriers to the further adoption.

Most respondents stated that their adoption or scaling of agile failed because of

inability to change organizational culture. The next most common barrier after it

was general resistance to change, followed by trying to fit agile elements into a

non-agile framework. The other barriers are availability of the personnel with

right skills, management support, project complexity, customer collaboration,

confidence in ability to scale and budget constraints.

In conclusion, it can be seen from the real professionals’ experience that agile

methodologies most of the time meet the expectations of the people using

them. Some of the issues which are concerned most before adopting agile

methods seem to be unjustified when looking at benefits which were gained.

When scaling agile methodologis to the larger workspace, enterprises meet dif-

ferent obstacles, which need to be concerned before taking actions, as well as

the risk management should be done beforehand.

2.6 Overview on Agile Methods' Formation and Spreading

To sum up, agile methodologies, which recently gained popularity among soft-

ware developers, have their roots in the early 1930’s. Separate elements which

later became core in various agile methodologies, were used in single projects.

However, most of these projects were large and even nationally significant in

USA. Agile methods appeared as an alternative to traditional methods, and the

main goal for creating them was to overcome software crisis.

22

Later on in Agile Manifesto all these ideologically related methods were sys-

tematized and they all got one collective name. They all include different pro-

cesses and tools, but they all have certain common aspects and values. There-

fore, the agile development has very complex definition, which was composed

in this chapter from various points of view. Since then they continue to gain

recognition by software developers.

Nowadays still many different agile methodologies are used, and the most

popular at the moment are Scrum and Kanban. When an organization decides

to adopt a new development process, or they have already adopted it and want

to scale it to the further levels, they meet some barriers, because the changes

in organization are significant. However, according to real software develop-

ment organizations’ experience, agile methods prove to be beneficial for them

and they help to reach the goals that were expected to reach.

Agile methodologies have also one noteworthy common specialty, they should

be followed quite strictly, but at the same time they give space for independent

activities. It means that all the methods may and should be customized for the

certain organization and even development team. Hence, used methods and

appearing obstacles are individual for each enterprise which decides to apply

agile methodology, and may lead to different outcomes.

23

3 AGILE METHODS IN LARGE PROJECTS

The previous chapter included references about big software projects, while

describing the history of appearance of agile methods and their usage nowa-

days. This means that agile is used in big projects. However, it is not clear yet

how it is used and how beneficial it is for the enterprise. Scaling agile methods

to the large projects needs lots of consideration, and there should be some

proof that it can work smoothly in large and geographically distributed project.

There are also certain disadvantages of using agile methods. Some of them are

balanced by the advantages and benefits that the development model brings to

the business. Consequently, there are some methodologies and tools which

appear to be more and less suitable for the large-scale software development.

When adopting agile, all the stages of software development are affected: re-

quirements collection, planning and design, implementation, testing and

maintenance. These issues must also be considered when one is going to apply

agile methods to the big project.

3.1 Can Agile Work?

From the survey conducted in 2013 it can be seen that agile methods have be-

come prevalent in today’s software development and in achieving the goals of

the organization (VersionOne Inc. 2014a). However, there are still some com-

panies, which have doubts and concerns about adopting new agile approaches

and let them replace the older traditional methodologies. Part of these concerns

makes the belief that agile methods would not work properly in large organiza-

tions and it is impossible to scale them to the bigger projects.

Agile methods are built around iterative principles, where small cross-functional

teams are working closely communicating with each other. When imagining this

scheme in larger scale, it may seem too complex and even chaotic, and makes

24

people feel unsecure about scaling it. It has been said that when agile methods

are scaled, teams lose the sight of the entire project.

Consequently, there appears a question which requires a trustworthy answer

before adopting agile – can it be scaled and work for big projects? American

software and research company called Attunity, in their article ―Agile develop-

ment can be ideal for large-scale projects‖ argues that agile can scale upwards

and it really brings benefits to the enterprise when scaled (Attunity Ltd. 2013).

In the beginning, agile methods were designed like this that they can be flexible

and scalable, and they can be adjusted according to the needs from little to

large projects. Scrum, Kanban and Lean methodologies appeared to strengthen

the strategy of project management. The article argues that using leverage ad-

vanced processes and effectively adjusting them is the key to maximizing agile

(Attunity Ltd. 2013).

Here are the real-life examples that agile methods can work in the big projects

and enterprises:

One of the largest manufacturers of agricultural machinery in the world decided

to transform their development department, which included hundreds of devel-

opers around the world into agile. As the result, the number of developers using

agile started from 100 and grew to 1200 and their engagement improved signifi-

cantly. The company also claims that they improved time-to-market, declined

time to production and decreased warranty expenses by half. (McKendrick

2013.)

BMC Software, a company specializing in business service management soft-

ware had over 900 developers which were geographically distributed from India

to Houston to Israel. After a year they reported that they started to deliver the

product to the market in shorter time and better quality than before, team

productivity increased as well. The critical functionality was delivered to the cus-

tomers more frequently. BMS also was nominated an ADT Innovator’s award in

the Application Engineering category. (McKendrick 2013.)

25

Hewlett-Packard LaserJet Firmware decided to adopt agile to their software de-

velopment process about 6 years ago. Their teams were situated in 6 different

locations and there were more than 400 developers. At that time there was not

a large variety of literature about agile methods, especially applied to large en-

terprises. The adoption was a success, and the company even published a

book based on their own experience. In their presentation in Agile Leadership

Conference they told that the costs for software development had been reduced

considerably and the business goals were reached. (Gruver, Young & Fulghum

2012.)

These examples prove that agile methods are beneficial and used by large

companies, and geographical distribution of the employees is not a barrier.

Even more, it is believed by some people that agile is not only the desirable de-

velopment approach nowadays, but it becomes a necessity. McKendrick writes

that in our age of consumerization and rapidly accelerating changes, agile is

capable of bringing success in long run (McKendrick 2013).

Nowadays the situation in information technology industry sector in many cases

even creates the need for agile software. Such currently important benefits as

faster time-to-market, high responsiveness, better collaboration with customers,

supporting employee engagement were mentioned as vital nowadays for suc-

cessful software business. Agile methods are implemented to reach these tar-

gets.

It is a trend nowadays as well that organizations scale agile to the higher levels

of the organization and even to the managing and governing departments.

Thus, agile methods not only for the software development. In fact, Kanban has

originally appeared as technology process and was later on adopted by pro-

grammers. Agile at enterprise scale is becoming a mainstream (McKendrick

2013).

26

3.2 Disadvantages of Agile

The real life examples prove that agile methods bring considerable advantages

to the large enterprises. However, along with the benefits, these methods may

rise some problems or difficulties as well, which should be anticipated.

In large projects they might have slightly different effects. For instance, there is

lack of emphasis on documentation. If the project is long-term, there may be

changes in employee, managing or whole organization level, this creates diffi-

culties for the new people to understand the job completed before they came to

the company.

The other disadvantage that may appear is that the decisions upon the work are

taken by the developers themselves, hence the main roles are given to the sen-

ior programmers, and there is no place for the juniors. It also might be difficult to

assess the effort needed for completion of the project when the project is being

launched, because of lack of planning.

Moreover, agile software development demands the active user involvement.

That makes the project dependable on the user representative's time, as this is

one of the key factors of success. If the customer is not sure in the beginning of

the project which outcome they want to get, this might get the project to the

wrong way. It is known, that user testing significantly increases the quality of

software, but it needs to be done quite often and as soon as the new features

were released. Therefore the project becomes dependable of the users' time as

well.

When using agile in a large project, there is a change of it to become ever-

lasting. One of the main features of agile is its flexibility. It can take the new re-

quirements or changes into work any time. However, this creates problems, es-

pecially for large projects, because requirements tend to expand when the pro-

ject outcomes can be seen even partly. As the result, it may not be completed in

time and creates needs for new negotiations of prices and deadlines with the

customer.

27

Integrated testing raises the costs for resources, because the testers needed

not only in the end of the project, but throughout all software lifecycle. Further-

more, short iteration which requires 100% completion of features might be ra-

ther tiring for the developers. However, this problem is solved by finding an op-

timal sustainable development pace.

3.3 Key Points in Scaling Agile

After some real present-day examples were given, it is proved that agile meth-

ods can be scaled and be beneficial for large IT projects. Even though the pro-

cess of scaling is distinctive for each company, there are some common issues

that have to be taken into account.

First of all, agile software development is more a philosophy and a way of think-

ing rather than working instructions. The core of it is the main values of the or-

ganization. Therefore, the main point is to change the organization's principles

and point of view on the software development.

Secondly, the right set of agile methods is chosen and applied to the project.

These methods already exist and are explained in corresponding literature.

However, it does not mean that when they are applied, they will be benefitial for

the project. They need to be tailored for the current working process first.

3.3.1 Principles over the Methods

Gary Pollice in his article ―Does agility scale? Wrong question!‖ states that the

question "can agile be scaled to large projects" is raised incorrectly. The core

principles of agile development, which are described in Agile Manifesto, are the

values, not the methods of development. The document does not mention any-

thing about the scale of the project or its complexity, therefore it can work effec-

tively for any kind of software development companies. And therefore the ques-

tion is formulated wrongly. (Pollice 2009.)

28

Likewise, in enterprises values and goals are defining the business, not the

tools and methods. Agile principles were designed to assist in reaching the

goals of the business, no matter how big it is. That means, when using or scal-

ing agile methods, it is essential to concentrate on the specific project rather

than on development process/technology. (Pollice 2009.)

3.3.2 Customization of Agile

All agile methodologies have common basic principles and values, but still there

is a variety of them. Some methods appear to be more suitable for large pro-

jects than others. When the software enterprise grows bigger, the number of

developers increases and the communication channels tangle.

Such a system needs more strict and formalized ways of work and manage-

ment. Then there is a need for methods which allow developers to solve the

arising problems quickly, to make decisions on the system fast, and to be able

to communicate easily with each other.

Some examples of real enterprises were analysed to see which frameworks and

methods brought success to the large projects. For instance, Salesforce.com

applied Scrum with elements of XP to their software development process. The

methods were customised to the projects as well, and this brought them suc-

cess, which they told about in Agile 2007 Conference (Greene & Fly 2007). One

more example is Norwegian Pension Fund software project, which ran in 2007-

2011 and employed about 180 people. In their development process they used

Scrum (Gjertsen 2011). One large project launched by Swedish Police was us-

ing Kanban, and was described in Henrik Kniberg's book (Kniberg 2011).

Gary Pollice pointed out the techniques which are more widely used in big scale

projects (Pollice 2009). All of them belong to the XP methodology. Planning

game makes the planning of iterations and sprints easier regardless of the tools

of acquiring the requirements and length of iterations. Pair programming gives

good results and quality of code until the developers are not distributed or have

29

own responsibilities. Refactoring, test-driven development, customer tests, cod-

ing standards, sustainable pace are also widely used in large projects.

There are some methods, which do not appear to be useful in large-scale us-

age. For example, so-called whole team method might create complications,

because often the developers are distributed geographically, and it might be a

problem to create enough space in one office to let all the team members work

in one room. Teams might be divided into subgroups, and keep whole team

meetings inside their subgroup.

Collective code ownership might also not be useful in large projects. It takes

considerable effort to all developers to understand the code of other subgroups.

Metaphors used in planning might be hard to create, when the project is too

large and complicated as well.

To sum up, agile frameworks can be applied to the project no matter what its

size is. However, adopting and scaling agile needs to be considered carefully

beforehand and tailored to the process, because the main thing is to focus on

principles over mechanics.

3.4 Software Lifecycle

There also appear questions as if the requirements specification, documenta-

tion and design exist in agile methodologies at all. However, if knowing the na-

ture of agile projects, it can be seen that these stages of software development

do not disappear from the software lifecycle. They appear in transformed way to

be able to suit the agile principles of development.

Requirement specification and planning transform from being a stage of the

process to the constant process. It means that they are executed consistently

throughout the project development.

30

3.4.1 Requirements Specification and Documentation

One of the core values of agile software development is working software over

comprehensive documentation. According to Christine Li (2012), many agile

teams and followers argue that there is no need for formal documentation at all.

Verbal communication and prototyping is sufficient, and creating documentation

is just a waste of effort and resources. For instance, in extreme programming

the requirements are conveyed verbally straight to developers, using some

short notes to be able to memorize what was the requirement about.

Consequently, it becomes unsure if the project can work without documentation

and if the small notes and index cards are sufficient. There are debates about

this topic among the professionals and there is no unified opinion on it.

Tony Heap, an agile coach and concurrently a business analyst, states that

modelling/specifications should be written so much that they are sufficient for

the current situation, and not more. However, usage of agile methods and par-

ticularly writing specifications is very dependable on the specific project. Con-

sequently, it is rather challenging to formalize how much specifications should

be done, when and how. According to his own experience, he believes that ear-

ly investment into requirements specifications can be a waste. He also suggests

that requirements should be written as late as possible, because requirements

specifications have a nature to be based on conjectures, not on knowledge.

(Heap 2011.)

Apparently, large agile projects have more developers involved which may be

located in different places. Such teams need more detailed and formalized re-

quirements specifications, and more coordination through the project. This im-

plies that these issues and agile values should be combined and compromise

should be found.

The gap which appears between the requirements start to appear and the actu-

al development increase risks of the project. Moreover, in agile development

requirements should always outpace the development team. To overcome the-

http://www.excella.com/blog/author/christineli/

31

se difficulties there was created requirements definition and management

(RDM) system in one of the most popular agile frameworks - Scrum. The sys-

tem is presented in the figure 2.

The requirements which are directly used by development team for work are

stored in the product backlog. The requirements are picked up from there when

planning a sprint. It can be used also as a repository of requirements for the

future use.

In the beginning of the process, the requirements backlog is created. It consists

of the requirements which should be defined in order to fill the product backlog.

They can be visualized, defined by user stories or as functional requirements.

The requirements team also works in sprints as well as developers team. At this

point prioritization of requirements is done. Jason Moccia says, describing the

need of documentation at this point:

“In many cases, organizations have documents that need to be created to

pass certain "tollgates", or organizational milestones. These items can al-

so be put in the requirements backlog, but they may not end up in the

product backlog. Instead, such documents often become reference mate-

rials for the development team to use.” (Moccia 2012.)

When the requirement team composed a product backlog, the development

team is involved in the process to refine the items in the backlog. That helps to

reach more collaboration and this stage of RDM is called decomposition.

32

Figure 2. Agile Requirements Definition and Management (Moccia 2012)

There are also other methods and aspects that are used in requirements speci-

fications. For instance, some professionals use Excel for product backlogs be-

cause it is rather simple to manipulate. This corresponds to the agile principle

that the focus should be on content over the form. The files are placed to

shared network drives in order that all the team members have constant access

to them and they are able to modify it. It is also possible to filter the content in

Excel files, which becomes useful at work.

In one example of managing requirements was described a functional specifica-

tion (FS) method, in which all the requirements are described in an Excel doc-

ument. There is a tab which contains all the requirements, and such fields as

requirement ID, priority, short description are used at minimum. In the working

process more tabs may be added. Then for each feature a spreadsheet is cre-

ated, which describes the functionality in detail. They appear there in use cases

form, the scenario is divided into two columns: "When..." and "Then...", which

denote to the starting conditions and the response to these conditions. There

may be several responses to one condition, then they are places in separate

33

cells one after another. The author notes that these use cases may be used by

the testers as well, as there are ready tests results described. (Heap 2011.)

For large projects, all the changes that are added to the requirements or prod-

uct backlogs should be noted. It allows to keep track of changes and increase

process visibility.

3.4.2 Software Design

Similarly with requirements specification, the design in agile is done throughout

the project and as much as it is sufficient for the current process stage. Howev-

er, design is still an important issue, because poorly designed software is more

expensive to repair in the future.

However, the incremental software architecture is not sufficient in large-scale

projects. In the beginning of the project the design and modeling is done, alt-

hough it uses Just barely good enough (JBGE) artifacts. This means that the

design is kept as simple as possible. The common modeling practices are ap-

plied at this point as well.

In this stage the customer participation is important, some organizations are

practicing user experience design, where the design is reviewed and comment-

ed by the potential users. This reduces the risks and increases collaboration.

Prototyping is widely used in user experience design as well.

Then, during the development process, incremental design is applied. Because

the design should be ready before each new iteration starts, design develop-

ment is done in advance. The architect should know various modeling tech-

niques to be able to adjust to the certain project. Among various practices, UML

diagrams are applied in agile modeling, as well as acceptance tests, user sto-

ries, free-form diagrams, user interface prototypes, storyboards, class responsi-

bility collaborators and other.

34

To sum up, agile methodologies allow all the methods which developers find

useful if they add real value. They prescribe that workproducts including design

patterns should not be developed for the sake of following a process formula.

(Larman 2003.)

3.4.3 Software Implementation and Testing

There are various agile practices applied when writing the code in agile pro-

jects. They all correspond to agile principles and core values. The process of

coding in large agile projects varies depending on which methodology the team

uses. It can be pair programming, whole team working in one room, collective

code ownership.

There are some common features referring to coding process which are applied

in most agile methodologies. One of them is high collaboration. Developers find

solutions by communicating and sharing ideas. Code refactoring is used often

to keep the code clean, understandable and high quality. Some enterprises use

code standards. The development happens in iterations, during which develop-

ers implement certain features.

Similar to the other stages of software development, testing is based on agile

principles and is integrated into software development process. Therefore, test-

ing is not a separate process as well. Testing in agile projects is said to be the

main way to ensure the continuous progress of the project. All team members

should be capable of module or unit testing, even though there are usually sep-

arate professional testers in the team, or special testing team.

Testing in agile projects allows feedback from earliest stage of the project, be-

cause the software is ready for testing almost from the beginning. The team

employs different levels of testing to uncover various types of information.

In agile projects the use of test automation becomes rather important, one of

the reasons is that they provide rapid feedback (from few minutes to few hours).

Automated unit tests are used to check the behavior of individual features,

35

methods or objects and their iterations. Automated acceptance tests are used to

check the performance of whole system. However, sometimes these tests

check only the business logic, skipping the graphical user interface (GUI).

Manual testing is also important in agile projects, although it takes longer time

to get feedback. It requires the developer to be on site. Usually manual tests are

exploratory and are useful in finding problems in software quickly. They also

help to discover opportunities to improve and missing features.

System integration and its testing are critical for large projects. That is why ef-

fective agile teams often include an independent test team which works in paral-

lel with the development team and verifies their work constantly (Ambysoft Inc.

2015). They perform system integration testing. This allows more time for soft-

ware implementation for software team. The test team typically has more so-

phisticated platform for testing.

3.4.4 Software Maintenance

It may seem that agile methods are not applicable to software maintenance por-

tion of the lifecycle. However, David D. Rico proves that agile methods bring

ponderable benefits to software maintenance. Among other, using agile practic-

es allowed to reduce the personnel responsible for maintenance, to eliminate

code complexity and stagnation obstacles, and to apply 67% defect reduction.

(Rico 2015.)

Agile projects release software rather often, in large projects usually once in a

few months. Consequently, maintenance stories start to appear in parallel with

new features stories after each release. Therefore, just like other project stages,

maintenance is done with the flow of the project. There are several techniques

how support and maintenance are done in agile projects.

One of these techniques is a common sprint backlog, which includes both fea-

ture stories and bugs and support stories. All the stories are prioritized and im-

plemented according to their priority. To be effective, this technique requires

http://www.ambysoft.com/essays/agileTesting.html#IndependentParallelTesting

36

that the product owner understands well the importance of features and critical-

ness of bugs to be able to prioritize the backlog.

If the product owner is not capable of finding compromises between features

and bugs, another technique is applied, where two separate backlogs are cre-

ated. These lists are prioritized separately and maintained by people who have

wide knowledge about the area. When planning a new iteration, people respon-

sible for both backlogs discuss the most important items and insert them into

the iteration task list.

The other possible technique is allocating capacity by time or by sprints. The

team may decide that they spend certain amount of days only for new features

from the sprint, and rest of the days for bug fixes. As an alternative, they may

only implement features for instance in the next two sprints, and the third sprint

is allocated only for maintenance tasks. However, these techniques are usually

avoided, because they allow implementing low-priority tasks first or deficient

workload. One more technique, which is often avoided by the same reasons, is

always to fix the bugs first.

Having a separate team for support and maintenance is a popular technique,

which is suitable for large-scale projects. Large projects typically get many bug

reports and also they have enough people to create a separate team, allowing

the development team implementing new features without disruptions. Howev-

er, the technique has its disadvantages. For example, learning loop is never

closed, because the development team will not learn from its errors, as the oth-

er team fixes them. Moreover, real progress of the project is not known, and

priorities are not managed properly.

Analyzing the abovementioned techniques, the first two techniques appear to

be most reasonable to apply to large-scale projects. However, each technique

is used in consideration with the project specialties.

37

4 COMPARATIVE DESCRIPTION OF AGILE METHODOLOGIES

All the projects are different, even if they are conducted within the same com-

pany. The number of developers teams and people in each team varies, the

teams might be geographically distributed or located in one place. Each com-

pany also has own business and project goals. It means that the same method-

ology which effectively works in one project can lead to the failure in another.

However, initially agile methodologies were designed to be flexible. As men-

tioned before, the main agile principles are taken without alterations, but the

actual methods and tools for planning, development and testing should be cus-

tomized for the project, taking all the details into account. Therefore it is im-

portant to acquire a full understanding of various agile methodologies and be

able to compare them.

The most popular and widely used methodologies were compared in different

aspects in order to see which of them are most suitable for large projects. At

first, core practices and values of the methodology were described. Subse-

quently, they were compared in the following aspects: iteration length and team

size, strong and weak sides, which phase of the project the methods are fo-

cused on, scalability and advised project size. The methodologies are present-

ed in the order of their popularity nowadays according to the Agile Survey (Ver-

sionOne Inc. 2014a).

4.1 Scrum

Scrum is the most used IID methodology these days. The features that distinct

Scrum from the others is that it makes emphasis on self-directed teams, daily

progress measurement. Scrum also tends to avoid the perspective process,

which means that there is no planning or design made for the long perspective.

Scrum proposes empirical approach to software development. It assumes that it

is impossible to define exactly what the customer wants. Moreover, they can

change their mind during the project. Therefore, the team concentrates on the

38

quick responding to changes and on delivering the good quality software quick-

ly.

4.1.1 Methodology Overview

Some of key Scrum practices include self-organising and self-directed teams

with recommended amount of 3 - 7 people in a team. Also once the set of tasks

for the iteration has been chosen, no additions to it can be done. The teams

hold short stand-up meetings every day, where all the team members have to

answer a set of special questions. At the end of each iteration the demo is pre-

sented to the external stakeholders. In addition, there is client-driven adapt

planning done in each iteration. The key emphasis in Scrum is on empirical ra-

ther than defined process. (Larman 2003.)

Scrum lifecycle consists of four main phases: planning, staging, development

and release. Planning stage is carried out in the beginning of the project. At this

point, the vision of the project is created, the funding is found and budget is

planned. The initial product backlog is created and needed estimations are

done as well. After that, exploratory design and prototypes are created.

When the aims of the planning phase are satisfied, staging phase starts, where

more detailed planning is done for the first iterations. Here more requirements

are gathered and tasks are prioritised enough to start the iteration. More design

and prototypes may be done as well.

After the iteration is planned, the development phase follows. The system is

being implemented, and it is released in a series of iterations. Before each itera-

tion the sprint planning is done, the tasks are taken according to their priorities

from the product backlog and they are added to the sprint backlog. The team

holds daily fixed-time (15-20 minutes per team) meetings every day discussing

the sprint backlog. After each sprint, the sprint review is done. Quality assur-

ance appears in every iteration. During the iteration team members update

sprint backlog daily. After the system has been released and the needed docu-

39

mentation is written, marketing and sales tasks are carried out, as well as the

other corresponding issues.

Core values of scrum are commitment, focus, openness, respect and courage.

The team should be committed to reach the goals of the iterations, and they do

the decisions how to reach these goals by themselves. Scrum master and man-

agers commit not to add new work during the iteration and provide the team

with needed resources, as well as to make sure that the blocks for work are re-

moved.

Focus means the team should concentrate on reaching the goals of the iteration

without distraction, and scrum master focuses on providing resources and re-

moving blocks. Openness is expressed in daily scrum meetings, when all the

team members get to know about the work of each other. In addition, the back-

logs are open to all people who are involved in development with a possibility to

modify it.

The next value is respect, which means that individuality of all developers is

respected, and correlated problems are solved in self-organized teams. The last

value, courage, means that the managers have the courage to trust the devel-

opers and not to tell them how to work. In their turn, developers are responsible

for the decisions and organizational issues themselves.

The recommended iteration length in Scrum is 30 days. Iterations in Scrum are

called sprints. Compared to the other agile methodologies, this length appears

to be quite common.

4.1.2 Strengths and Weaknesses

The methods used in Scrum allow high collaboration and communication level

throughout the development process. Among the disadvantages of the Scrum is

weak documentation and poor management control of the project.

40

In some sources Scrum is referred as a framework rather than a method of

software development. Volfram Boris (2012) calls it an agile management

framework, which is often accompanied by practices from other agile methodol-

ogies. Therefore, it is hard to determine which phase on the project Scrum fo-

cuses on.

Scrum describes in detail the release cycle which is composed of 30-day

sprints. It describes the scheme of delivering the software evolutionary. It also

includes some methods of evolutionary planning and design. The workproducts

of Scrum (including requirement, product and sprint backlog, burndown charts,

etc.) are aimed to manage sprint planning and progress measure management.

At the same time, it does not specify the integration and acceptance tests is-

sues.

Scrum can be scaled to so-called "scrum of scrums". If there is a large project

and many development teams are involved, the scrum masters of each devel-

opment groups hold every day scrum meetings, where they answer the certain

set of questions as well. Scrum is advised for use in any size projects, from

small to very large and complex.

4.2 Extreme Programming

Extreme programming is a well-known agile methodology as well. According to

Larman:

“It emphasizes collaboration, quick and early software creation, and

skillful development practices. It is founded on four values: communica-

tion, simplicity, feedback, and courage.” (Larman 2003.)

Extreme programming includes several precisely described techniques. They

are used in a tandem in order to get the desired result.

41

4.2.1 Methodology Overview

The core XP values imply that the developers communicate with the customers

and each other at work, where they locate in a common room, and the design is

kept simple and clean. The feedback is acquired by testing, which is done from

the first days of development, and the developers are able to respond to chang-

es quickly. The developers are supposed to have the courage and motivation to

develop software fast and adapt to changes.

Generally XP involves a constant practice of highly disciplined practices. In total

XP recommends twelve core practices. They are: planning game, small and

frequent releases, system metaphors, simple design, test-driven development,

frequent refactoring, pair programming, team code ownership, continuous inte-

gration, sustainable pace, whole team together and coding standards. Larman

states that many of these practices work in synergy, and therefore it is risky to

combine XP with the other methodologies by eliminating some principles. (Lar-

man 2003.)

Most evolutionary approaches avoid detailed up-front specifications, but they

usually recommend recording some details or requirements at least for the next

iteration. In contrast with them, XP emphasizes oral communication for planning

and design stages of the project. In XP so-called story cards are used to write

down the name of the feature that needs to be implemented in the system.

When the iteration starts, the developers take the story card and ask the on-site

customer for further details.

XP lifecycle consists of five phases. First of them is called exploration, where a

few story cards are created, as well as prototypes and rough estimations. The

second phase is planning, where the customers and developers complete story

cards and estimations and plan the next release. The stories are discussed and

picked for the next iteration based on the priorities and current status.

In implementation phase developers implement the agreed set of features dur-

ing the iteration, actively collaborating and working in pairs in one common

42

room. They constantly do testing and get feedback from the customer. The fol-

lowing stages of lifecycle are productionizing and maintenance. In the first one,

the documentation, training and marketing issues are dealt with. In maintenance

stage enhances and fixes are made and major releases are built. The iterations

in XP are usually relatively short, from one to three weeks.

4.2.2 Strengths and Weaknesses

XP is noticeable for the fact that it describes precisely the development practic-

es. As Larman states:

“A refreshing quality of the original XP description was the statement of

known applicability.” (Larman 2003.)

However, it also has its weak sides. While it is focusing precisely on specific

programming processes, it gives less attention to overall view and management

practices. Other disadvantages are weak documentation, lack of discipline and

mandatory presence of customer on site.

XP is mostly focused on coding and testing stages of the project, as the name

of the methodology refers itself. The design is very brief and oral in many cases.

XP is aimed at relatively small team projects, usually with delivery dates under

one year. It had been proven on projects involving roughly 10 developers or

fewer, and not proven for safety-critical systems (Larman 2003). Nevertheless,

recently it has been applied to larger projects as well.

4.3 Kanban

Kanban is based on agile and lean software development, one of the key prin-

ciples of which is flow. The main aim is to create a continuous and predictable

delivery stream of the features. For this purpose Kanban visualize which fea-

43

tures are currently in the process or queued. It also contains mechanisms which

allow decrease flow disruptions and waste of effort.

Kanban was invented in Toyota factory in Japan, and later on Kanban principles

started to be applied to software development processes. Kanban is the least

directive agile methodology as it contains only three rules. Hence, Kanban is

not advised to be applied as a first agile experience of the enterprise. Moreover,

because of its specialty, it is often combined with other methodologies, most

often with Scrum (VersionOne Inc. 2014a). The team adopting Kanban should

have certain level of self-discipline and self-organization.

4.3.1 Methodology Overview

First of three Kanban's concepts is to visualize the software development pro-

cess. Usually a blackboard or projector is used for this purpose. The board con-

tains a table, which displays the current state of the project in all levels. For ex-

ample, there can be five columns: planning, analytics, development, testing and

release. The tasks are written on cards and moved through columns throughout

the project.

Second concept is the restriction of work in progress. Every column in the table

described above should have restricted number of cards, which can be done

simultaneously. This decreases the excessive switching among tasks and re-

duces the risks connected with this problem.

The third concept of Kanban is optimizing the process. The visualized process

is constantly monitored and customized in order to make the workflow smoother

and faster. For example, the restriction numbers can be changed, or it can be

seen where the work process gets stuck, and more workers can be assigned to

this stage of the project.

During the work process, the time which was taken by one task card when it

entered the Kanban board and till it was moved do the ―done‖ column. Then it is

44

analyzed and decisions on how to decrease this time are made. Iterations in

Kanban are not mandatory; however they can be applied if needed.

4.3.2 Strengths and Weaknesses

Kanban increases the flow of work and it also makes the problems visible quick-

ly, which arise in the working process. A Kanban team is only focused on work

which is in progress at the moment. Kanban describes the planning and soft-

ware implementation organization without specifying the actual practices for

these phases.

The practices prescribed by Kanban cover the project workflow generally; they

do not specify the actual testing and maintenance stages. Moreover, Kanban

leaves many other issues unspecified, including the team size, leaving the

space for creativity. However, as mentioned earlier, Kanban is often combined

with other methodologies which define the actual working processes more de-

tailed.

Kanban is advised to be used in larger projects, as it does not prove to be effec-

tive in short production run. It takes time before the team adapts to the continu-

ous workflow, eliminates the bottlenecks and determines the suitable customi-

zations.

4.4 Feature-Driven Development

The next agile methodology following Kanban and lean development by popu-

larity is Feature-Driven Development (FDD). As its name states, it is a model-

driven software development, which is based on object-oriented component.

The method proposes relatively more planning than the other compared meth-

odologies. In FDD documentation is rather meaningful as communication way

as well.

45

4.4.1 Methodology Overview

Feature-driven software development consists of five basic activities. First pro-

cess is the development of overall model. The project starts with the high-level

description of the whole system and its context. For this activity initial require-

ments and features are used. This stage of the project is controversial to most

of agile methodologies, for instance Scrum and XP, where up-front design and

analysis are avoided. However, this process is made iterative and highly collab-

orative in FDD rather than long and very detailed.

The main goal of the first process is to create shared understanding of the sys-

tem domain, its key concepts, interactions and relationships. As Stephen Palm-

er states in his article ―An Introduction to Feature-Driven Development‖, the ob-

ject model developed at this stage is concentrated on breadth rather than depth.

Depth is added iteratively during the following stages of the project. The model

created at this stage becomes essential in the software development, later dis-

cussions and requirement clarifications are made around it. (Palmer 2009.)

The second activity of FDD is building of detailed and prioritized feature list. The

model created in previous stage is used for it. FDD feature list contains a three-

level or more complicated hierarchy. First the domain is decomposed into so-

called subject areas. After that, business activities are distinguished in each

subject area. The steps in each business activity form a basis of a feature list.

A feature is referred here as a small, client-value function, which is expressed in

the form of an action, a result and an object, for instance, ―calculate the total of

a sale‖ (Palmer 2009). The features should take no more than two weeks to

implement. If it takes more time, it is divided into sub-features.

The next activity in FDD is planning by features. When the feature list is com-

pleted, the development plan is created and all features are assigned to the de-

velopers as classes. One more aspect that distinguishes FDD from the other

agile methodologies is individual code ownership. But ownership is regarded as

responsibility rather than exclusivity, according to Stephen Palmer (2009). The

46

other developers are allowed to change the owner’s code if needed. However,

the code owner is responsible to check if the change was made correctly.

After planning, design by features is done. The set of features that can be im-

plemented within two weeks are chosen and the design packages are made for

them by the corresponding class owners. Detailed sequence diagrams are cre-

ated for each feature, class and method prologues are written, and after that

design inspection is held.

After the design, the class owners write the code implementing the features.

Then they do unit testing and code revision, and promote their code to the main

build.

Iterations in FDD are usually rather short. Recommended length of iterations is

between a few hours and two weeks.

4.4.2 Strengths and Weaknesses

There are a few aspects in FDD that distinguish it from the other iterative and

incremental approaches. They may bring both advantages and disadvantages

to the project.

The organization of features in the list in FDD is more sophisticated than in XP

or Scrum, which use the flat list of items. This aspect of FDD helps to manage

larger systems and gives advantages in large projects, which need higher or-

ganizational level. When the domain model and feature list are created, the

team starts to create own vocabulary, which is called ubiquitous language (Ev-

ans 2003). As Palmer believes:

“The ubiquitous language the model provides helps phrase features

consistently. This helps reduce frustration in larger teams caused by dif-

ferent domain experts using different terms for the same thing or using

the same terms differently.” (Palmer 2009.)

47

Individual class ownership brings certain advantages as well. For instance,

there is always an expert in the team, who is able to explain how the class

works. Class owner can also make urgent changes to the class faster than any-

body else, and to make sure that the class’ integrity was not damaged after the

changes made by other programmers. Own class can be a reason to be pride of

for the developers. However, individual code ownership may be a disadvantage

too, depending on the project context.

FDD promotes stronger documentation than other agile methodologies, which

allows multitasking. Documentation is used as a communication tool among the

team members. Customers are involved through reports as well. FDD also uses

UML diagrams contrasting to the other popular agile methods.

FDD approach focuses detailed on design and implementation of the software,

and other project phases need other supporting approaches. As mentioned ear-

lier, FDD is advised to be applied to large-scale projects, it is said to be not ap-

plicable to small projects due to its basic activities and principles.

48

5 CASE STUDY: CHALLENGES AND SOLUTIONS FOR SCALING AGILE

The author of this paper has own experience of working in an agile team pro-

ject. The project was executed by a company, which remains anonymous due

to the legislation issues.

The project scale was large, there were several developer teams, separate test-

ing team and the teams were distributed geographically. The project had adopt-

ed agile and was looking for ways to discover the most effective methods of

work in agile framework. Theoretical basis and research conducted in previous

chapters will be used to determine possible methods to enhance the software

development process in agile environment, complemented by real life experi-

ence acquired by the author.

5.1 Project Description

The project was using a mix of Scrum and Kanban methodologies. Particularly,

there were two developer teams, about ten people in each, Scrum master and

product owner. The project used one common backlog, which contained both

new features and bugs that needed fixing. Backlog and sprint backlogs were

maintained in a form of Excel file situated on shared network drive. In this case,

Excel file replaced the big blackboard typically used in Kanban.

Backlog items had a few states, through which each item was going during the

development process. ―Blank‖ status means that the task is free to be taken.

When the task is chosen and developer is assigned to it, the task is moved to

―ongoing‖ state. If the task implementation process is stuck, it is moved to ―hold‖

state. When the task is implemented and tested, it gets ―completed‖ state. All

the items in the backlog were prioritized.

The teams were holding daily meetings, which were restricted to fifteen minutes

in time per team. In the meeting, each team member told the progress of his/her

work and most problematic issues were discussed as well. Monthly meetings

49

were held to present demo to the client. The teams were working in a few work-

ing rooms which were close to each other.

While the author was working there, the experimental test was done in order to

see how new methods could be implemented and which obstacles might ap-

pear. Two developers participated in the experiment as a small team. Totally

there were three sprints. Firstly, the backlog was created for each sprint, con-

taining the main features needed to be implemented. When planning the first

sprint, the features were decomposed into small tasks which can be completed

in a few days. The tasks were prioritized and assigned. After that, each task

was pre-estimated by hours, and the sprint was formed.

During each sprint, the burndown chart was used to monitor the progress. Fig-

ures 3 and 4 represent the burndown table and chart for the sprint 1. As can be

seen from the figure 3, the length of the sprint was one week. Leftmost column

contains decomposed tasks, where first developer was responsible for module

2 and second for module 1. The initial estimations for each task are shown in

second column and measured in working hours. In the end of each working day,

both developers entered the estimated time left to complete each task. The pro-

gress row is the sum of all the hours left to complete the sprint. The ideal burn-

down row shows how many hours are left for completing the sprint to gain the

optimal work progress, regarding that each developer works 7.5 hours per day.

Figure 3. Burndown Table for Sprint 1

50

Based on the table in figure 3, burndown chart was created. In figure 4, blue line

represents the ―ideal burndown‖ row from the figure 3, and red line shows the

actual progress of work, taking data from the ―progress‖ row. Figure 4 shows

that first two working days had slower progress, but unfamiliarity of developers

with the modules could be a reason for it. After that, the speed of progress was

rather high. In the end, both progress and ideal burndown lines decelerate a lot

because the days 24.5 and 25.5 were a weekend.

Figure 4. Burndown Chart for Sprint 1

Generally, the burndown chart shows fairly rapid progress. However, it disclos-

es problems in estimation; the time needed for tasks was overestimated. Look-

ing at figure 3, it is possible to observe which exact tasks were overestimated.

However, when planning the second sprint, this fact was not analysed. The

burndown chart for the second sprint is displayed in figure 5. Comparing the

burndown charts of the first and second sprints, it can be seen that estimation

accuracy problem was not solved.

51

Figure 5. Burndown Chart for Sprint 2

The team also held daily meetings. The work was done in one common room,

which was very helpful. It facilitated communication and sharing of knowledge a

lot. Each team member kept abreast of developments and knew what the other

one is doing at the moment. They also helped each other to solve problems and

when the trouble was overcome, they shared the ways of solving it.

Collective code ownership and close collaboration were especially useful in crit-

ical situations. Once one team member got ill, and the other developer was able

to continue his work after finishing his own without obstacles, because he had

sufficient knowledge about other member’s module, its current state and prob-

lems.

5.2 Challenges and Possible Solutions

During the experiment the team members worked without major outside disrup-

tions, as there were no bug reports or changes in specifications. However, there

still were challenges in the development process. For instance, at some point

52

both team members got sick and the work progress stopped completely. There

were also wrong time estimations which can be seen from the burndown charts.

Furthermore, in all three sprints the work halted in the testing stage. One of the

reasons was lack of testing automation, and the fact that some existing tests

were obsolete.

The problem which arises when team members get sick or cannot work and as

the result work is delayed is rather common in agile projects. In this case, both

team members could not work and the progress stopped completely. As the

sprint was rather short, only one week, the team did not manage to finish it in

time. That is why short iterations should be avoided in large projects as well.

However, this is rather rare situation in large projects when the work stops total-

ly, as the teams are typically bigger. But even if one or two team members can-

not work, it is a risk for the project, and such situations should be prepared for.

As learnt from personal experience, close developers’ collaboration, working in

common room and collective code ownership are alleviating the problem. When

the other team members know exactly what the missing worker was doing and

which problems he was solving, they are able to take his duties. Moreover, the

team should contain professionals who are able to do various tasks and have

expertise in several areas of the project rather than only one.

The wrong workload estimation was a clear problem in the experiment. There

was too much time set for certain tasks, which is, however, better than when the

time is underestimated. Accuracy in estimation needs practice and comes with

experience. Cohn states that estimation should be done collaboratively by the

team, including the people who will actually implement the estimated tasks

(Cohn 2005). In our experiment, the estimation was done only by the two team

members, without the team leader or mentor.

There are also several existing practices which are used for prioritization and

estimation. According to Cohn, the most popular of them are expert opinion,

analogy and disaggregation. He also believes that they work best when com-

bined.

53

Despite the fact that expert opinion is an important opinion, there are wide ex-

pertise areas and large variety of tasks in big projects, which creates a need for

opinion of different professionals when estimating. Analogy would be useful in

the case under consideration, because the team does estimation through many

months and years. They gain experience with time and become able to com-

pare the difficulty of tasks. As they empirically know, how much time the tasks

actually took, the accuracy of estimation rises.

Disaggregation, which means decomposing the feature into smaller tasks and

estimating them separately, was a part of the experiment. It appeared to be

useful for the future feature implementation. When decomposing, the developer

understands the nature of the task better and an approximate plan of its imple-

mentation appears in his head. This technique could possibly be adopted for the

company’s project. However, the estimators should be careful not to go too

much into details, especially in large agile project, because this wastes time and

is against nature of agile methods.

Planning poker is a method, which combines all three abovementioned tech-

niques, and is the best estimation practice according to Cohn (2005). In plan-

ning poker, the whole team is taking part in estimation; each member gets a

card with numbers from an estimation scale. One member explains the feature

to be estimated to everybody, and all members ask questions to make the issue

clear. After that, each member chooses the number card and uncovers it simul-

taneously with the others. If someone has too low or high number than most of

the team, he explains his position. After agreement is done, the poker round is

repeated until most of the members have same average estimation.

In the case under consideration, planning poker can be fairly time consuming.

Because the project has been running for rather long time, the team members

know each other and the project quite well, estimation can be done faster and

more effectively just by the group discussion, where each team member has to

say his opinion and quickly justify it. In case that people struggle with telling

54

their opinion to everybody, planning poker or some other ―gaming‖ techniques

might be useful.

In agile projects the estimation should not be precisely accurate, as it consumes

too much time and effort. In the experiment, it would have been less work dis-

ruptions, if the team would have done pre-planning and roughly plan the next

sprint beforehand. If the team completes all the tasks before the end of the

sprint, they can pick new tasks with the highest priority from the sprint backlog.

This is one of Kanban principles.

Moreover, one of the important methods of agile software development is cycle

learning. It should have been done after the first sprint in order to discover the

ways of more accurate time estimation.

It is visible from the burndown tables and charts that the work progress deceler-

ated in testing stages in all three sprints. Testing automation effectiveness was

discussed in the previous chapters. In this case it would help to solve the prob-

lem, and the solution was being developed already.

One more issue that declined work progress during the experiment was the un-

awareness of the new workers of how the modules work. The project is large

and new people in the team struggle to understand something that was created

several years ago. In this case close team collaboration helps. Moreover, de-

spite the tendency of agile methods to avoid writing documentation, in such sit-

uation the documentation is needed and sometimes essential. However, the

principle of agile development which prescribes to write ―just enough‖ documen-

tation should be followed.

Ethical and moral issues are also important in agile software development. Dur-

ing the experiment, there was a case when the team member could not com-

plete a task, and was behind the schedule. He stopped entering his work pro-

gress into the burndown table, the table was not checked by a team leader for

some time, and the developer did not ask for help. As a consequence, the sprint

progress considerably decelerated.

55

The situation reveals communication problems within a team, low morale and

lack of control from the management. As was mentioned before, even though

agile methods promote less control and more team’s independence, large pro-

jects require certain level of control. One of possible solutions is to control that

the project visibility is constantly high. It is still recommended that team is self-

decisive and trusted, because it raises developers’ morale. Furthermore, it is

important to raise team’s communication level and encourage people to work.

Team members should not hesitate to ask for help or speak about their prob-

lems, and this requires good relationships within the team.

One of the challenges that the developers teams were meeting when they

adopted agile was that bug reports were coming rather often in the middle of the

sprint, and some of them were urgent. One of the rules of Scrum is that there

should be no interruptions and task additions during the sprint. But in this case

Scrum is combined with Kanban, and also each method can be tailored to be

more effective.

In Kanban methodology, there is a limited set of tasks, which are urgent and

should be picked by developers as soon as they finish their current task. The

sprint can be arranged in the way that there is some spare time in it, for in-

stance, 30 hours of 2-week sprint remain free when the sprint is planned. Dur-

ing the sprint, if urgent bug reports come, these hours are used to fix them. If

there are no unpredicted situations during the sprint, the team uses this time to

do the first few tasks with highest priority from the backlog. At the same time,

sprints should become more flexible to allow this modification. To acquire this,

decomposition of tasks can be done, which, however, requires some practice in

the beginning.

Geographical distribution of the teams appears to be a challenge in certain cas-

es. High collaboration and communication between team leaders is supposed to

smooth the difficulties. Here might be used so-called ―Scrum of Scrums‖, where

the team leaders or Scrum masters of each team are holding daily meetings

with each other, where they share the progress of their teams’ work, discuss the

56

responsibilities and other possible issues. Video conferences would be useful in

this case. When using Scrum of Scrums, the company becomes agile in higher

levels, and it becomes important to keep the whole company’s morale at high

rate and to make the company’s goals understood and respected by all the em-

ployees.

In conclusion, it takes lots of effort to make the whole company become agile. It

means large-scale reorganization and requires careful consideration and wise

decisions. Some methods work for the certain enterprises and projects and

some of them fail and need to be changed and customised. However, compa-

ny’s business goals should be clear and inspiring, and employee morale should

be built correctly. The analysis of real example shows that it is essential to ana-

lyse the challenges which appear during the work, learn from them and find so-

lutions, improving the development process constantly.

57

6 DISCUSSION

The present work introduces the arguments showing that agile methods can be

scaled to large companies and be applied effectively. Official statistics and sev-

eral examples from real life were given in order to prove it.

The research of the literature about agile methods and their origins showed that

the ideas which now form the basis of agile methods are not new. They

emerged already in the second quarter of the twentieth century. These ideas

were used in the form of iterative and incremental development approaches by

the companies creating complex and life-critical systems. Various techniques

were appearing throughout time and along the development of IT industry. The

agile methodologies which are widely used nowadays appeared mainly in

1990’s – 2000’s, and the main agile principles and values were summarized in

Agile Manifesto in 2001.

The projects being developed by different enterprises vary a lot. Consequently,

the methods used for each project should be chosen according to the business

goals, project boundaries and other specifications. Moreover, agile methods

should be tailored for the certain project and altered according to the needs. For

instance, the length of the iterations and the size of the teams can be chosen

regarding the situation. However, the main principles of agile software devel-

opment should be followed.

During the research, the most suitable methodologies for the large projects

were determined. They are Scrum, Kanban and FDD. Statistics and real experi-

ence show that hybrids of them are effective in software development. Further-

more, the work analysed the agile techniques used in different project stages

and determined which of them suit for the large projects better than the others.

However, the research covered only some agile methods and techniques which

are most popular nowadays. Moreover, the statistics presented by VersionOne

(2014a) may have inaccuracies, and the number of respondents in the surveys

was limited.

58

The description and analysis of the real case in this work were based only on

the author’s own knowledge and experience. Moreover, the solutions proposed

in that chapter are based both on theory and practice. Some of them were al-

ready being implemented when the author was working on the project, for ex-

ample testing automation. However, some of the proposed solutions would

need to be executed in real project environment in order to see how they would

work. There are other ways to reorganize work and make it more effective as

well. Agile software development requires trying and learning from own experi-

ence and mistakes.

Nowadays the software industry develops rather rapidly, as well as the market

demands. The companies have to improve their development processes con-

stantly, adapt new technologies and development techniques and methods.

New methods are appearing often and it is important to be keep track of the

new tendencies and be able to apply them effectively.

Currently there are not many guides and manuals about applying agile methods

to large-scale projects. This work researched the key points of adopting and

scaling agile methods to the large software enterprises. However, the conclu-

sions made in this work might be more efficient in the project described in the

paper and less efficient in different environments and projects, because every

company has own specific situation.

59

REFERENCES

Ambysoft, Inc. Roles on Agile Teams: From Small to Large Teams. Referenced
20 March 2015.

 http://www.ambysoft.com/essays/agileRoles.html.

Attunity, Ltd. 2013. Agile Development Can Be Ideal for Large-scale Projects.

Referenced 22 December 2014.
http://www.attunity.com/learning/articles/agile-development-can-be-ideal-
large-scale-projects.

Beal, V. Agile Software Development. Referenced on 3 December 2014.

http://www.webopedia.com/TERM/A/agile_software_development.html.

Beck, K. et al. 2001. Manifesto for agile software development. Referenced 23

November 2014. agilemanifesto.org.

Cohn, M. 2005. Agile Estimating and Planning. Addison-Wesley.

Evans, E. 2003. Domain Driven Design: Tackling Complexity in the Heart of

Software. Addison Wesley.

Feller, J. & Fitzgerald, B. A Framework Analysis of the Open Source Software

Development Paradigm. Presentation in Proceedings of the Twenty-First In-
ternational Conference on Information Systems in Brisbane, 2000 by Associ-
ation for Information Systems.

Fowler, M. 2005. The new methodology. Referenced 25 November 2014.

http://www.martinfowler.com/articles/newMethodology.html.

Freedman, R. 2009. The roots of agile project management. Tech Decision

Maker. Referenced 21 November 2014.
http://www.techrepublic.com/blog/tech-decision-maker/the-roots-of-agile-
project-management/.

Gjertsen, M. How to get at multi team agile project going a presentation based

on the experience from PERFORM. Presentation of Statens Penjonkasse on
23 March 2011. Doi: http://konference2011.agilia.cz/data/mette-gjertsen.pdf.

Greene, S. & Fly, C. 2007. Salesforce.com Agile Transformation. Agile 2007

Conference. URI: http://www.slideshare.net/sgreene/salesforcecom-agile-
transformation-agile-2007-conference.

Gruver, G., Young, M. & Fulghum, P. 2012. A Practical Approach to Large-

Scale Agile Development: How HP Transformed LaserJet FutureSmart
Firmware. Addison-Wesley Professional.

Heap, T. 2011. An Agile Functional Specification. Referenced 17 March 2015.

://www.its-all-design.com/an-agile-functional-specification/.

60

Kettunen, P. 2009. Agile Software Development in Large-Scale New Product
Development Organization: Team-Level Perspective. Helsinki University of
Technology. Faculty of Information and Natural Sciences. Department of
Computer Science and Engineering. Doctoral Dissertation.
http://lib.tkk.fi/Diss/2009/isbn9789522481146/.

Kniberg, H. 2011. Lean from the Trenches: Managing Large-Scale Projects with

Kanban. USA: The Pragmatic Programmers.

Laanti, M. 2012. Agile Methods in Large-scale Software Development Organiza-

tions: Applicability and Model Adoption. University of Oulu. Faculty of Sci-
ence, Department of Information Processing Science. Academic dissertation.

http://herkules.oulu.fi/isbn9789526200347/isbn9789526200347.pdf.

Larman, C. 2003. Agile and Iterative Development: A Manager's Guide. Addi-

son-Wesley Professional.

Larman, C. & Basili V. R. 2003. Iterative and Incremental Development: A Brief

History. Referenced 20 November 2014.
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-
and-basili-ieee-computer.pdf.

Li, C. 2012. What Is The Best Structure For Agile Software Requirements? Ref-

erenced 10 March 2015. http://www.excella.com/blog/what-is-the-best-
structure-for-agile-software-requirements/.

McKendrick, J. 2013. Yes, Agile works in larger enterprise projects, too. Service

Oriented. Referenced 25 November 2014. http://www.zdnet.com/article/yes-
agile-works-in-larger-enterprise-projects-too/.

Moccia, J. 2012. Agile Requirements Definition and Management. Referenced

18 March 2015.
https://www.scrumalliance.org/community/articles/2012/february/agile-
requirements-definition-and-management.

Palmer, S. 2009. An Introduction to Feature-Driven Development. Referenced 2

April 2015. http://agile.dzone.com/articles/introduction-feature-driven.

Pollice, G. 2009. Does agility scale? Wrong question! The Rational Edge. Ref-

erenced 24 January 2015. https://www.ibm.com/developerworks/ru/library/r-
edge/jun09/agilepractices/.

Rasmusson, J. What is Agile? Agile in a Nutshell. Referenced 28 November

2014. http://www.agilenutshell.com/.

Rico, D. F. Agile Methods and Software Maintenance. Referenced 23 March

2015. http://davidfrico.com/rico08f.pdf.

61

Schwaber, K., Laganza, G. & D'Silva, D. 2007. The Truth about Agile Process-
es: Frank Answers to Frequently Asked Questions. Forrester Report.

Sutherland, J. 2005. Future of Scrum: Parallel Pipelining of Sprints in Complex

Projects. Agile Development Conference Proceedings. Presentation in 2012
Agile Conference in Denver on July 24 2005. URI:
http://doi.ieeecomputersociety.org/.10.1109/ADC.2005.28.

VersionOne, Inc. 2014a. 8th Annual State of Agile Survey. Referenced 20 De-

cember 2014. http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf.

VersionOne, Inc. 2014b. Agile Software Development Benefits. Referenced 7

December 2014. http://www.versionone.com/agile-101/agile-software-
development-benefits/.

VersionOne, Inc. 2015. 9th Annual State of Agile Survey. Referenced 7 April

2015. http://info.versionone.com/state-of-agile-development-survey-
ninth.html.

Volfson, B. 2012. Agile Software Development. Version 1.2. Referenced 15 No-

vember 2014. http://adm-lib.ru/books/10/Gibkie-metodologii.pdf.

Weinberg, G. M. 2011. Iterative development: Some history. Referenced 27

November 2014. http://secretsofconsulting.blogspot.fi/2011/11/iterative-
development-some-history.html.

62

APPENDICES

Appendix 1. Table 1. History of Development of Agile Methods and

Their Roots (Larman & Basili 2003)

Appendix 2. Table 2. Definitions of software development agility

(adapted from Laanti 2012, according to Kettunen

2009)

Appendix 1 1(3)

Table 1. History of Development of Agile Methods and their Roots (Larman &

Basili 2003)

Dates/
dura-
tion

Pro-
ject/author/public
ation name, short
description, coun-
try

Methods/approaches applied Additional information

1959-
1963

Mercury project,
NASA,
USA

IID:

- very short (half-day) iterations;
- time-boxed iterations;
- development team conducted

technical review of all changes.
Extreme Programming:

- test-first development;
- planning and writing tests before

each micro-increment.

One of the first recorded
projects using IID in
software development,
with successful outcome.

1970 IBM FSD, USA Developing from top-level control
structures downward.
Building the system via iterated ex-
pansions.
Generating a sequence of interme-
diate systems of code and functional
sub-specifications so that at every
step, each intermediate step can be
verified to be correct.

Another early IID propo-
nent. However, it was
not avoiding a large up-
front specification step,
had no specified iteration
length, no emphasize on
feedback and adapta-
tion-driven development
from each iteration.

1972 IBM FSD

Project organized in 4 time-boxed
iterations about 6 months each. Sig-
nificant up-from specification effort.
Feedback-driven evolution in re-
quirements.
IDD used as a way to manage com-
plexity and risks of large-scale de-
velopment.

IID was a key success
factor of the project,
which was high-visibility
life-critical system of
more than 1 million lines
of code—the command
and control system for
the first US Trident sub-
marine.

1972 TRW, USA
$100 million
TRW/Army Site
Defense software
project for ballistic
missile defense.

Five relatively long iterations.
Significant up-front specification
work.
Iterations were not strictly time-
boxed.
Each iteration is refined in response
to preceding iteration's feedback.

Middle
1970's

IBM FSD.
Part of the US Na-
vy’s helicopter-to-
ship weapon sys-
tem, a four year
200-person-year
effort involving mil-
lions of lines of
code.

System incrementally delivered in 45
time-boxed (each is one month)
iterations.

The earliest example
found of a project that
used an iteration length
in the range of one to six
weeks.
As Mills wrote, ―Every
one of those deliveries
was on time and under
budget.‖

1975 Development of
extendable compil-
ers for a family
of application-
specific program-

17 iterations in 20 months (a little bit
more than a month per iteration).
Developers take advantage of what
was learnt during earlier develop-
ment. Learning comes from both.

They analyzed each
iteration from
both the user’s and de-
veloper’s points of view
and used the feedback.

 ming languages on
a variety of hard-

development and using the system.
Incremental, deliverable versions of

to modify both the lan-
guage

Appendix 1 2(3)

ware architectures. system.
Key steps: start with a simple im-
plementation of a subset of the soft-
ware requirements and iteratively
enhance the evolving sequence of
versions until the full system is im-
plemented.

requirements and design
changes in future itera-
tions.

1976 Tom Glib (worked
on Mercury pro-
ject), "Software
Metrics"

Suggests to implement a complex
system in small steps with clear
measure of successful achievement.
Each step has a ―retreat‖ possibility
to a previous successful step upon
failure, which gives the opportunity
of receiving feedback from the real
world before throwing in all intended
resources, and to correct possible
design errors. Continuous user par-
ticipation and replanning, design-to-
cost programming within each stage.
Development in a closed loop with
user feedback between iterations.

Material was probably
the first with a clear fla-
vor of agile, light, and
adaptive iteration with
quick results, similar to
that of newer IID meth-
ods.
"The danger
in the waterfall approach
is that the project moves
from being grand to be-
ing grandiose, and ex-
ceeds our human intel-
lectual capabilities for
management and con-
trol."

1977 IBM FSD Integrating all software components
at the end of each iteration into its
software-engineering practices
("integration engineering").

Integration engineering
spread to the 2,500 FSD
software engineers, and
the idea of IID as an
alternative to the water-
fall stimulated substan-
tial interest within IBM
and its competitors.

1977-
1980

IBM FSD
NASA’s space shut-
tle software.

Series of 17 time-boxed iterations
over 31 months (1.8 month per itera-
tion).
Feedback-driven refinement of spec-
ifications.

Avoided the waterfall life
cycle because of the
frequently changing
requirements.

1982 The $100 million
military command
and control project.

An IID approach that does not usual-
ly
include time-boxed iterations.

The earliest reference to
a very large application
successfully using evolu-
tionary prototyping.

1987 TRW
A four-year project
to build the Com-
mand Center Pro-
cessing and Dis-
play System Re-
placement
(CCPDS-R), a
command and con-
trol system.

The team time-boxed six iterations,
averaging around six months each.
The approach was consistent with
what would later become the Ra-
tional Unified Process: attention to
high risks and the core architecture
in the early iterations.

1987 Bill Curtis and col-
leagues ―On Build-
ing Software Pro-
cess Models
under the Lamp-
post‖

Successful large softwaredevelop-
ment emphasizes a cyclic learning
process and communication. High
attention to people’s skills, common
vision, and communication issues,
rather than viewing the effort as a
sequential ―manufacturing process.‖

The publication reported
results on research into
the processes that influ-
enced 19 large projects.

1988 DoD-Std-2167A The contractor is responsible for
selecting software development

Appendix 1 3(3)

methods (for example, rapid proto-
typing) that best support the
achievement of contract require-
ments.

1988 Tom Gilb "Princi-
ples of Software
Engineering Man-
agement"

The Evo method:
- frequent evolutionary delivery, em-
phasis on defining;
- quantified measurable goals and
then measuring the actual results
from each time-boxed short iteration.

The first book with sub-
stantial
chapters dedicated to IID
discussion and promo-
tion.

1993 Easel Co Projects using small, cross-
functional teams produce the best
results.

Appearance of Scrum.

Early
1990's

Project to build a
new-generation
Canadian Automat-
ed Air Traffic Con-
trol System
(CAATS)

Using a risk-driven IID method,
a series of six-month iterations.

The project was
a success, despite its
prior near-failure apply-
ing a waterfall approach.

Middle
1990's

Rational Corp. Promotion of the daily build and
smoke test, a widely influential IID
practice institutionalized by Microsoft
that featured a one day micro-
iteration.

Creation of Rational
Unified Process.

1996 Chrysler C3 Using pair programming, releases in
short development cycles, code re-
view, unit testing.

Appearance of Extreme
Programming.

Appendix 2 1(3)

Table 2. Definitions of software development agility (adapted from Laanti 2012,

according to Kettunen 2009)

Publication Definition Focused attributes

Aoyama
1998

Quick delivery, quick adaptations to
changes in requirements and sur-
rounding environments.

- frequent deliveries
- adaptive to changes

Cockburn
2001

Being effective and maneuverable;
use of light-but-sufficient rules of
project behavior and the use of hu-
man and communication-oriented
rules.

- flexible
- light methods
- people- and communica-
tion-oriented

Highsmith
2002

Ability to both create and respond to
change in order to profit in a turbu-
lent business environment.

- adaptive to changes

Larman 2003 Rapid and flexible response to
change.

- accelerating development
- adaptive to changes

Schuh 2004

Building software by empowering
and trusting people, acknowledging
change as a norm, and promoting
constant feedback; producing more
valuable functionality faster.

- people-oriented
- adaptive to changes
- accelerating development
- taking advantage of feed-
back

Subramaniam &
Hunt
 2005

Uses feedback to make constant
adjustments in a highly collaborative
environment.

- communication-oriented
- feedback-driven changes

Ambler 2007 Iterative and incremental (evolution-
ary) approach to software develop-
ment which is performed in a highly
collaborative manner by self-
organizing teams with "just enough"
ceremony that produces high quality
software in a cost effective and
timely manner which meets the
changing needs of its stakeholders.

- iterative
- incremental
- highly collaborative envi-
ronment
- self-organizing teams
- adaptive to changes

IEEE 2007

Capability to accommodate uncer-
tain or changing needs up to a late
stage of the development (until the
start of the last iterative develop-
ment cycle of the release).

- adaptive to changes
- iterative

Wikipedia
2007

Conceptual framework for software
engineering that promotes devel-
opment iterations throughout the
life-cycle of the project.

- iterative

Wikipedia Group of software development - iterative

Appendix 2 2(3)

2012-13 methodologies based on iterative
and incremental development,
where requirements and solutions
evolve through collaboration be-
tween self-organizing, cross-
functional teams.

- incremental
- self-organizing, cross-
functional teams
- highly collaborative envi-
ronment

Larman &
Vodde
2009

Be agile …. the Merriam-Webster
dictionary defines agile as a ready
ability to move with quick easy
grace ….
Agile means agile — the ability to
move with quick easy grace, to be
nimble and adaptable. To embrace
change and become masters of
change — to complete through
adaptability by being able to change
faster than your competition can.

- accelerating development
- flexible
- adaptive to changes

Appelo
2011

Agility is about staying successful in
ever-changing environments (page
376).
Agile has never been some specific
set of practices (page 377) but ra-
ther has its roots in complexity theo-
ry (page 11) — and solutions de-
pend on the problem’s context.

- adaptive to changes

Leffingwell
2011

Adaptive (agile) processes … as-
sumed that — with the right devel-
opment tools and practices — it was
simply more effective to write the
code quickly, have it evaluated by
customers in actual use, be ―wrong‖
(if necessary), and quickly refactor it
than it was to try to anticipate and
document the requirements up front.

- fast
- frequent deliveries
- taking advantage of feed-
back
- quickly responsive to the
feedback

Rasmusson
2014)

Agile is a time boxed, iterative ap-
proach to software delivery that
builds software incrementally from
the start of the project, instead of
trying to deliver it all at once near
the end.

- time-boxed
- iterative
- incremental
- frequent deliveries

(Beal 2014) Agile development is a phrase used
in software development to describe
methodologies for incremental soft-
ware development. Agile develop-

- incremental
- highly collaborative envi-
ronment
- team decisions

Appendix 2 3(3)

ment is an alternative to traditional
project management where empha-
sis is placed on empowering people
to collaborate and make team deci-
sions in addition to continuous plan-
ning, continuous testing and contin-
uous integration.

- continuous planning
- continuous testing
- continuous integration

