
 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kari Sainio 
 

Virtual Orienteering Game For Smartphones 
 

Developing Proof of Concept   

Helsinki Metropolia University of Applied Sciences 

Master’s Degree 

Information Technology 

Master’s Thesis 

17 September 2015 

 



 Abstract 

 

 

Author(s) 
Title 
 
Number of Pages 
Date 

Kari Sainio 
Virtual Orienteering Game for Smartphones 
 
68 pages  
17 September 2015 

Degree Master’s Degree 

Degree Programme Information Technology 

Instructor(s) Ville Jääskeläinen, Principle Lecturer 

Orienteering is a relatively famous sports activity in Nordic countries. Today technology 
provides attractive means for transition from traditional orienteering to virtual orienteering. 
Virtual orienteering can be thought as orienteering without using a traditional printed map 
and compass. On the other hand smartphones contain technology for implementing virtual 
orienteering. 
 
There are different smartphone platforms and types, making application development chal-
lenging because several code bases and variations are needed. One way to avoid devel-
oping an application to several platforms is to use platform agnostic application frame-
works. Game engine is one example of such application framework, which supports the 
deployment of the application to different platforms. A game engine can be used for im-
plementing a virtual orienteering game application. Game engine, such as Cocos2d-x is 
one famous open source based engine that supports application development to several 
smartphone platforms.  
 
The purpose of this study was to study available technology for virtual orienteering and 
create an implementation of proof of concept. The aim for the proof of concept was to 
demonstrate that Cocos2d-x game engine could be used to implement a virtual orienteer-
ing game deployed to several different smartphone platforms. 
 
The study goes through the theory of orienteering and virtual orienteering, including de-
scription of restrictions and usage of traditional orienteering maps and how publicly availa-
ble online maps could be utilized. Satellite navigation system technology and its usage are 
also described. Device sensor technology in the form of magnetometer is also covered. 
General game development principles and requirements for the proof of concept game are 
discussed, an example and simplified source code snippets are provided. Information on 
how necessary adaptations could be made to Cocos2d-x to support iOS and Android sys-
tems is also provided.   
 
A proof of concept game of virtual orienteering was implemented successfully. The game 
demonstrated that Cocos2d-x is a valid choice for developing virtual orienteering or other 
location based applications. It was also shown that Cocos2d-x adequately supports differ-
ent screen sizes and different platforms. 

Keywords Orienteering, Cocos2d-x, iOS, Android, GNSS, Magnetome-
ter, Compass, Map 



 

 

 

 

Contents 

Abstract 

Table of Contents 

List of Figures/Tables 

Abbreviations 

1 Introduction 1 

1.1 Background 1 

1.2 Technology Challenge 2 

1.3 Objective 3 

1.4 Research Method 3 

2 Definition of Orienteering 5 

2.1 Classic Orienteering 5 

2.2 Virtual Orienteering 7 

2.3 Summary 9 

3 Virtual Orienteering Technology 10 

3.1 Map Technology 10 

3.1.1 Online Web Maps 12 

3.1.1 Orienteering Maps 16 

3.1.2 Artificial Maps 17 

3.2 Electronic Compass 18 

3.3 Location Technology 20 

3.4 Summary 22 

4 Orienteering Game Development Principles 24 

4.1 Instructional Design 24 

4.2 Gameplay Design 25 

4.3 Summary 26 

5 Cocos2d-x Game Engine 27 

5.1 Cocos2d-x 27 

5.2 C++ with Cocos2d-x 28 

5.3 Structure of Cocos2d-x Game 29 

5.4 Limitations of Cocos2d-x as to Virtual Orienteering 31 



 

 

 

5.5 Apple iOS Platform 33 

5.6 Android Platform 35 

5.7 Design Principle for Missing APIs and Features 37 

5.8 Summary 37 

6 Implementation of Virtual Orienteering Game 38 

6.1 Requirements for Proof of Concept 38 

6.2 Development Environment 39 

6.3 Device Variability 39 

6.4 Support for Different Screen Resolutions 40 

6.5 Game Menu System 43 

6.6 Map Implementation 44 

6.7 Orienteering Track Implementation 49 

6.8 Using Game Engine Physics 50 

6.9 Location Implementation 52 

6.9.1 iOS Location API 52 

6.9.2 Android Location API 53 

6.10 Compass Implementation 56 

6.10.1 iOS 57 

6.10.2 Android 57 

6.11 Summary 58 

7 Results and Analysis 61 

8 Conclusions 64 

References 66 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

List of Figures/Tables/Listing examples 

 

Table of figures 

Figure 1. Sprint orienteering map (orienteering.org) ...................................................... 6 

Figure 2. Mercator projection (Microsoft, 2015:Bing Map) ........................................... 12 

Figure 3. Tile Matrix Set (OSC, 2010:10) .................................................................... 14 

Figure 4. Artificial game map created with Tiled (Tiled: 2015) ..................................... 18 

Figure 5. Android device orientation in natural portrait orientation ............................... 19 

Figure 6. The principle of satellite navigation (Mistra, Enge, 2009:23) ........................ 21 

Figure 7. iOS architecture (Apple Developer, 2015) .................................................... 34 

Figure 8. Android System Architecture (Android, 2015) .............................................. 36 

Figure 9. Different scenes of the game ....................................................................... 43 

Figure 10. The placement of map tiles on screen........................................................ 48 

Figure 11. A fan orienteering track .............................................................................. 49 

Figure 12. Screenhot of the map scene ...................................................................... 62 

 

Table of tables 

Table 1. Virtual orienteering games (IOF, 2015: Software for Orienteering) .................. 7 

Table 2. Mobile Virtual Orienteering Games (IOF, 2015) .............................................. 8 

Table 3. Supported device resolutions. ....................................................................... 40 

 

Table of listings 

Listing 1. Selecting resolution (Hussain et al, 2014) .................................................... 42 

Listing 2. Creating game menu (Hussain et al, 2014) .................................................. 44 

Listing 3. Fetching tile from tile server ......................................................................... 46 

Listing 4. An example of HTTP request ....................................................................... 47 

Listing 5. Calculating x and y coordinates of map tile .................................................. 48 

Listing 6. Calculating x and y coordinates from latitude and longitude......................... 50 

Listing 7. Drawing a circle ........................................................................................... 51 

Listing 8. Applying physics engine .............................................................................. 51 

Listing 9. Reading location in iOS system ................................................................... 53 

Listing 10. Android location manager .......................................................................... 54 

Listing 11. An example of JNI interface ....................................................................... 55 

Listing 12. Reading location in Android ....................................................................... 56 

Listing 13. An example of reading Android sensor ...................................................... 58 

 



 

 

 

Abbreviations 
 
 
ADK Android Development Kit 

A-GPS Assisted GPS 

ART Android Run-time 

DPI Dots Per Inch 

GLONASS Globalnaya Navigazionnaya Sputnikovaya Sistema 

GNSS Global Navigation Satellite System 

GPS Global Positioning System 

GIS  Geographical Information 

HAL Hardware Abstraction Layer 

HTTP Hyper Text Transfer Protocol 

HUD Heads Up Display 

IDE Integrated Development Environment 

JNI Java Native Interface 

KML Keyhole Mark-up Language 

LCD  Liquid Chrystal Display 

MEO  Medium Earth Orbit 

NDK Native Development Kit 

NMEA National Marine Electronics Association 

WLAN Wireless Local Area Network 

WMTS Web Map Tile System 

XML Extensible Mark-up Language 

  



 

 

 

1 

 

1 Introduction 

 

Game application category is one of the biggest application categories for mobile de-

vices and the number of sports applications in smartphones is growing. Both applica-

tion categories utilize different environmental censor technology such as device orien-

tation and magnetometer. A suitable technology can be found as built-in in today’s 

smartphones. Combining sports and games can create an interesting area for applica-

tion development where virtual orienteering games can be seen as one example. 

GNSS (Global Navigation Satellite System) based location system has become one of 

the most important features in mobile devices by enabling car navigation.  Also a mag-

netic compass censor starts to be common in even mid-range smartphones. For virtual 

orienteering game development a combination of these two technologies provides a 

good playground. 

 

A similar user experience can be provided to different smartphone users with different 

models by doing a multiplatform application. Typically developing an application for a 

smartphone is done using its own programming language (e.g. Apple having Objective-

C/Swing, Android having Java and Windows Phone having C#). Application developer 

needs to study platform dependent frameworks and user interface design. Each system 

requires its own code base, which makes the maintenance of the software more diffi-

cult. Application developers need to focus considerably on a certain platform and this 

may lead to a big group of dedicated application developers because each platform 

may need its own developers. This might not be a competitive solution after some time 

and might delay time-to-market for the application release because the same applica-

tion cannot be distributed at the same time to different platforms. 

 

1.1 Background 

 

Nowadays Smartphones and tablets play an important role by providing platform for 

various applications. Sports applications have evolved a lot and they typically utilize 

different kind of censor functions that are used to provide feedback to the user about 

his performance. Censors such as 3D acceleration and location awareness are used in 

the applications in this category. Among the sports applications orienteering can be 



 

 

 

2 

 

seen as one example. Basic elements of classic orienteering consist of the combined 

usage of a compass and a map. Checkpoints placed and found in nature and their 

markings on the map form an orienteering track. Orienteering can also be worked out 

as virtual where checkpoints do not physically exist in nature but on the screen of a 

device. For this reason a smartphone provides a good platform for developing virtual 

orienteering games with the flavour of sport and fun.  

 

OrientGame (http://www.orientgames.com) is a mobile orienteering application that has 

been developed in the past for virtual orienteering. It has been developed for each plat-

form (iPhone, Android and Windows Phone) separately using their own native frame-

works and programming languages. The first versions of these applications have been 

developed as outcomes of Metropolia mobile programming courses. One of the prob-

lems in the past development is the different user experience due to different kind of 

user interfaces provided. Also several code bases are required to maintain the applica-

tion.  

 

Several cross-platform development tools can be used for smartphone application de-

velopment. One genre of such tools is mobile game engines that provide a way for cre-

ating games in a fast pace that can be deployed simultaneously to several major plat-

forms with a relatively low adaptation work. Adapting a game engine to suit a virtual 

orienteering game creates an interesting challenge to study.  

 

1.2 Technology Challenge  

   

The technical challenge was to find the way how a famous cross platform mobile game 

engine Cocos2d-x could be used for developing a virtual orienteering game.  

 

Cocos2d-x itself does not provide necessary support for virtual orienteering such as 

acquiring user location, reading compass information and providing a suitable map. 

These features can be seen the basic functions in all orienteering games. In addition, 

portability of the same code base and user interface for several smartphone platforms 

is beneficial. 

 

Cocos2d-x game engine provides good capabilities for developing graphics intensive 

and user interactive applications. When comparing to the major existing mobile soft-



 

 

 

3 

 

ware platforms such as Android they already provide good built-in and non-agnostic 

frameworks for developing location aware and map utilizing applications per se. How-

ever, these built-in functions and frameworks do not work directly with other platforms 

such as iOS and vice versa. 

 

1.3 Objective 

 

This study evaluated how virtual orienteering game could be developed using a general 

game engine. It will show an answer the following question: 

 

How Cocos2d-x game engine can be used for developing a multiplatform virtual orient-

eering game application? 

 

The outcome of this study contains theory and technology of virtual orienteering and an 

implementation of a proof of concept game. The actual proof of concept game was 

developed with Cocos2d-x game engine that can be used with two different platforms: 

Apple iOS and Google Android. The game application itself is a small mini game that 

proofs the functionality and portability of Cocos2d-x game and makes it possible to 

further develop the game or its variations. 

 

1.4 Research Method 

 

The project progressed following a normal software development process and it con-

sists of three main parts. First, introduction to virtual orienteering is given. Secondly, 

the applicability of Cocos2d-x game engine for virtual orienteering had been explored 

and suggestions for necessary add-ons presented. Thirdly, an application has been 

created that is suitable for virtual orienteering and demonstrates the suitability of Co-

co2d-x usage. The step-by-step project path included the following stages: 

 

1. Virtual Orienteering Technology evaluation and scoping 

2. Cocos2d-x game engine feasibility 

3. Implementation of virtual orienteering 

 



 

 

 

4 

 

This study contains the following chapters.  Chapter 2 introduces orienteering in gen-

eral. Chapter 3 describes technologies that can be used for virtual orienteering. Chap-

ter 4 specifies the requirements and design principles for the virtual orienteering game. 

Chapter 5 analyses the suitability of Cocos2d-x and modifications needed. Chapter 6 

describes the implementation and Chapter 7 evaluates the success of the prod-

uct/software. Chapter 8 analyses the next steps and future development ideas.  

  



 

 

 

5 

 

2 Definition of Orienteering 

 

Orienteering as sports has been first practiced in military (IOF, About Orienteering) and 

in Finland it has been a hobby and sport activity for the last 60 years. From the begin-

ning its objective has been to complete an orienteering track as fast as possible using a 

map and a compass. The orienteering track is drawn on the map and specific flags 

indicating checkpoints on the map are placed on terrain. (Nikulainen et al, 1995: 2-1, 

translated from Finnish). International Orienteering Federations states: 

 

Orienteering is a sport that combines both a physical and a mental element. The 
basic idea in orienteering is to proceed from course start to finish by visiting a 
number of control points in a predetermined order with the help of map and com-
pass. In order to choose the best possible route, orienteers look at the character-
istics of the terrain, and the winner is determined by the fastest time to complete 
the course. What is unique to orienteering is that an orienteer must navigate and 
make quick decisions while running at high speed. (IOF, 2015: About Orienteer-
ing) 

 

Orienteering is nowadays a wide spreading sport having International Orienteering 

Federation consisting six regions containing 79 member federations (IOF, 2015: About 

IOF). World championship competitions are held every year. In addition to the competi-

tion, orienteering is also performed as hobby without competition and several different 

forms exist. 

 

2.1 Classic Orienteering 

 

Classic orienteering can be thought as progressing in terrain by using an analogic 

compass with a printed map. In this sense foot-orienteering term is used. An oorient-

eering map contains two-dimensional projection of the terrain where the objects on the 

map have been drawn using specific graphical symbols. International Orienteering 

Foundation (IOF) has approved 1977 international instructions on how maps are 

formed and created (Häggman, Mäkinen, Oikarinen, 1980: 58, translated from Finnish). 

IOF maintains map information and the current specification is available at their site 

(IOF). 

 

Orienteering can be divided into several types or forms. One of the types is classic ori-

enteering and is performed in non-urban terrain such as that found in the woods of 

Nordic countries. The terrain for classic orienteering is typically challenging and maps 



 

 

 

6 

 

used contain accurate and small details. The scale of the map is typically 1:10 000 i.e. 

one centimeter corresponds 100 m in the real terrain. Mastering classic orienteering 

requires a good map and corresponding terrain reading skills.  In addition personal 

good shape helps moving on terrain fast and efficiently. Orienteering track lengths used 

in race orienteering vary but are typically somewhere around 4-9 km depending on the 

class. Different classed are used which are identified based on age, sex and in some 

cases ranking is used for elite athletics. Figure 1 illustrates a sprint orienteering map of 

Kristiansten festning. 

 

Figure 1. Sprint orienteering map (orienteering.org) 

 

Sprint orienteering has become popular in the recent years. In the sprint orienteering 

maps are considered more urban and somewhat simple due to the urban terrain. Spe-

cially created maps are used in sprint orienteering that suite better for park kind of ter-

rain found typically in central Europe. An example of a sprint type of orienteering map 

is given in Figure 1. Track lengths in sprint orienteering are typically a few kilometers. 

The idea behind the sprint orienteering is to bring orienteering visible to spectators and 

easier for cameras to follow. Running speed in the sprint orienteering is biased and is 

approaching a normal track and field running speed. 



 

 

 

7 

 

 

Other kinds of orienteering types or forms exist but common for all types is the need 

and capability to read terrain, map and direction and all sort of combination of these. In 

all cases, the idea is how to get from point A to point B in the most efficient and fastest 

way. In that sense an analogy with car or even aviation navigation can be considered. 

All orienteering is not just foot orienteering but also bicycle, skis and even cars can be 

used. Among these different variations exist and navigation on the sea or even aviation 

can also be thought of as a sort of orienteering. 

 

2.2 Virtual Orienteering 

 

Virtual orienteering needs a strict scope because it can be defined in several ways. For 

some people it can be orienteering without actually moving in real terrain and it in-

cludes just sitting on the sofa playing something. For others it can be augmented reality 

where an additional device can provide information about the terrain and environment 

(reference). In this context virtual orienteering is defined to be orienteering using a mo-

bile device and its capabilities. Neither normal paper map nor additional compass is 

used.  

 

Different implementations of the virtual orienteering exist and orienteering software 

available for personal computers and smart phones can be found, as listed in Table 1.   

 

Name Description 

CatchingFeatures Catching Features is an orienteering game you can play at 
home. Use it for rainy-day training or rest-day enjoyment. 
Several different modes of play are available.  

GPSSeuranta Complete solution for GPS tracking. 

Orienteering Way A real time orienteering game. Navigate the main hero 
through control points in 2D region using map and compass. 
You have to be smart and crafty to finish competitions fast 
enough to unlock next races. 

pcM Orienteering 
Game 

 

pcM Orienteering Game is a fun game that lets you navigate 
an orienteering course laid out on a map. It will test your map 
reading and route making skills, measuring your time based 
on your route choices. 

Rasor lite Online radio orienteering simulator 

Virtual Orienteering Virtual Orienteering is a game played outdoor inspired from 
Orienteering sport. The game concept is to use a GPS capa-
ble mobile device to replace the printed map and real control 
check-posts. 

Table 1. Virtual orienteering games (IOF, 2015: Software for Orienteering) 



 

 

 

8 

 

 

Several applications can be found in the major application stores using the key word 

‘orienteering’ (April 2015). In addition, using different key words one can find a count-

less number of navigation related applications. Table 2 lists a few virtual orienteering 

applications (Google Play, 2015): 

 

Name Description Platform 

Map-n-Compass Virtual orienteering game 

with KML based tracks and 

maps possible. 

iOS 

OrientGame Virtual Orienteering Game 

using build-in maps and 

Web based tools for creat-

ing tracks. 

iOS, Android 

Orienteering Companion Virtual Orienteering with 

own imported maps. 

iOS 

SpotHunter Finding spots on build in 

maps. XML based filed 

uploaded for the check 

points. 

iOS 

Orienteering for Begin-

ners 

Virtual 3D environment to 

learn orienteering. 

Android 

MOBO Mobile Orienteering using 

maps and NFC for punch-

ing the checkpoints. 

Android, iOS, Windows 

Phone 

Virtual Orienteering Mobile orienteering using 

map and GPS to locate 

checkpoints.  

Android 

Table 2. Mobile Virtual Orienteering Games (IOF, 2015) 

 

This thesis will focus on the virtual orienteering using the public map of the smartphone 

and virtual checkpoints (i.e. non-existing checkpoint flags) placed on the device map. 

The map can be also virtual and not corresponding to any real world terrain. Suitable 

map technology used for virtual orienteering is covered later in the study. Furthermore 

other technologies found important in virtual orienteering are discussed. 



 

 

 

9 

 

 

2.3 Summary 

 

Traditional orienteering uses a printed map and compass where on the contrast virtual 

orienteering does not. Virtual orienteering is not a new thing and there are existing ap-

plications available through application stores. Smart devices or smartphones have 

evolved onto the technical level that they can be used for virtual orienteering and the 

traditional orienteering map can be replaced by an electronic map.  

  



 

 

 

10 

 

 

3 Virtual Orienteering Technology 

 

Before jumping to the implementation virtual orienteering requires several technological 

solutions and challenges to be solved. First, the most of the orienteering performed 

with the co-operation of map although exceptions exist. The quality of the map and 

used production technology has an important role. A good map can tell to the user ac-

curate information about the terrain and help to navigate through terrain in the optimal 

way. Second, as compass indicates the right heading it can be used to place the map 

in the right direction. When the map quality is not good or accurate maintaining the 

right direction in terrain is vital. Without the map compass role becomes dominant as it 

can be used to maintain the right direction and different means to measure distance 

can be applied. Third, with the use of the current location technology can user location 

estimated accurately. This is important because it can be used to indicate where the 

user is on the map. These three technologies mentioned form the base for implement-

ing a virtual orienteering game. 

 

3.1 Map Technology 

 

Today’s orienteering relies heavily on good quality maps. The maps are designed in a 

way that the reader can interpreted the location and objects in terrain and can find cor-

responding match on the map. In general level map types can be divided into three 

most common types: Thematic, Topographic, and Cadastral. Thematic maps show 

specific topics and their geographic relationships and distributions.  Weather forecast is 

one example of the thematic map type.  Cadastral maps show how land is divided into 

real property. Topographic maps show physical characteristics of land in area (Harvey, 

2008:13).  A map suitable for orienteering is typically based on a topographic map. A 

topographic map describes land or terrain in a detailed manner. Physical characteris-

tics of a topographic map contain curves describing the altitude of terrain, notable ob-

jects such as rocks, hills and buildings.  Additionally other characteristics of land such 

as rivers, lakes and swamps are drawn.  

 



 

 

 

11 

 

International Orienteering Foundation has defined standard´s of how an orienteering 

map should be created and what graphical objects should be used to describe the ter-

rain. This also helps map users to interpret the map in a correct way. 

 

A map is 2-dimensional representation of 3-dimensional terrain where projections are 

used to make this conversion. They are used for transforming a 3-dimensional world 

globe to a 2-dimensional map and are abstractions of the earth’s surface (Harvey, 

2008:55). As several projection types exist such as Mercator, Sinusoidal, Equidistant 

Cylindrical and Azimuthal is the Mercator projection is one of the most used. It is suita-

ble for small and large areas but only in navigation (Harvey, 2008:55). Some web map 

examples of Mercator projection usage are Google Maps and Microsoft Bing Map. 

Mercator preserves the shape and distance relationship of small areas (Harvey, 

2008:55). Also a straight line in Mercator projection can be seen as constant compass 

bearing (Harvey, 2008:77). Mercator projection makes it relatively good for orienteering 

as it includes the good attributes. Microsoft also states that the shape of buildings in 

aerial imagery does not get distorted because Mercator projection preserves the shape 

of relatively small objects (Microsoft, 2015:Bing). 

 

Mercator projector is a cylindrical projection, which means that north and south are 

always straight up and down, and west and east are always straight left and right. 

In that sense this feature makes it fit well for orienteering because maps are the forms 

of quadruples. The Mercator projection goes to infinity at the poles and does not actual-

ly show the entire world (Microsoft, 2015:Bing). The maximum latitude shown is ap-

proximately 85.05 degrees (Microsoft, 2015:Bing). To visually understand how Merca-

tor projection works it is easy to note that e.g. Finland looks as quite a big country in 

relation to others (Figure 2) because on map the area is shown wider when compared 

to e.g. the U.K.  

 



 

 

 

12 

 

 

Figure 2. Mercator projection (Microsoft, 2015:Bing Map) 

 

Map technology as such is a large topic and deeper analysis of map technology is left 

out of the scope of the present study. For smartphones and other connected devices 

there are several different map technologies that can be used. There are also online 

and offline maps that both have their pros and cons. The following chapters describe 

basic map technologies that can be considered for virtual orienteering. 

 

3.1.1 Online Web Maps 

 

Nowadays the Web is full of different kind of online maps. Their quality is typically not 

suitable for accurate orienteering. However, they form a good basis for a map covering 

large areas of the globe. The map information can be downloaded on demand and for 

the area of interest.  This makes it attractive to be used in virtual and mobile orienteer-

ing because from the application perspective that can be used anywhere on the globe. 

Google Maps, Microsoft Bing Maps and Nokia HERE maps are examples of online 

Web maps suitable for navigation by car and tourism. Map information is publicly down-

loadable and can be used by agreeing with the license, which fee is typically free when 

the amount of usage of map information is kept low. Over the last years these online 

maps have been augmented with walking and bicycling route properties. Furthermore 



 

 

 

13 

 

different Geographical Information (GIS) has been introduced e.g. rush hour indicators 

for certain roads and weather forecasts. More accurate online map information is avail-

able by online map provider OpenStreetMap.  OpenStreetMap base its information for 

community activity where basically anyone can update information (OpenStreetMap: 

2015). It is more detailed than e.g. HERE maps by having map details also for non-car 

users. 

 

One common technology used to deliver online map information is to split a map to 

several tiles i.e. a map is constructed from one or combination of several tiles. Open 

Geospatial Consortium Inc. (2010) has standardized a way (Web Map Tile Service, 

WMTS) how a map tile service can be implemented. The idea behind the map tiles is 

that the graphics in a map have been constructed already in the server and the tiles are 

delivered as picture images. Images are either taken from a satellite picture or gener-

ated cartographic images from the terrain with different scales or zoom levels. Different 

zoom levels are provided so in case a user wants to dig into deeper details another 

image with higher accuracy is available. Because online web maps are typically taken 

from wide areas it makes sense that the map information is available online by demand 

and does not require a lot of storage space in the device where the map information is 

used. This makes the service usable through the whole world because only the area in 

interest can be downloaded to the device. Figure 3 shows how map tiles are construct-

ed and how zoom level affects to the map scale level. 



 

 

 

14 

 

 

Figure 3. Tile Matrix Set (OSC, 2010:10) 

 

Microsoft Live Map projections and zoom levels define a well-known scale. Level 0 

allows representing the whole world in single 256 x 256 pixels. The next level repre-

sents the whole world in 2 x 2 tiles of 256 x 256 pixels. Furthermore, this continues to 

deeper level in powers of 2. (OSC, 2010:105). Online map providers such as Bing 

maps (based on Nokia HERE maps) and OpenStreeMap use similar scaling and zoom 

levels. 

 

An example of an online tile map implementation can be found in Microsoft documenta-

tion. Microsoft Bing map uses pre-rendered 256 x 256 pixel map image tiles at many 

scales that can be retrieved and displayed fast (Microsoft, 2015:Bing).  At the base 

level of 1 Microsoft Bing map can be displayed as 512 x 512 of total pixels tiled image 

(i.e. combination of 4 tiles) and going to level of 2 is the map having 1024 x 1024 of 

total pixels image (i.e. combination of 16 tiles) and so on and so forth. Geographic co-

ordinates (latitude, longitude according to WGS 84 datum) can be converted to world 

pixel coordinates used by tile maps in the following formula (Microsoft, 2015:Bing): 

 

sinLatitude = sin(latitude * pi/180) 

pixelX = ((longitude + 180) / 360) * 256 * 2 level 



 

 

 

15 

 

pixelY = (0.5 – log((1 + sinLatitude) / (1 – sinLatitude)) 

/ (4 * pi)) * 256 * 2 level 

map width = map height = 2 level tiles 

 

As the Earth is not a perfect sphere but a bit oval the result of this formula is non-

accurate but sufficient for the virtual orienteering application’s purpose. Pixel x and y 

coordinates resolve to the nearest tile in the system. The given latitude or longitude 

does not necessary correspond the tile’s top left most corner but some point of the in-

dividual tile. To find the actual world coordinate to be placed on the tiled map requires 

additional computation to find which tile pixel corresponds to the world coordinate. 

 

Map tiles can be retrieved using HTTP Requests. Nokia HERE map tiles can be re-

trieved using the following HTTP Request: 

 

http://l.aerial.maps.cit.api.here.com/maptile/2.1/maptile/newest/terrain.day/z/x/y/size/pn

g8?app_id=XXXXX&app_code=YYYY"; 

 

Where parameters are: 

l = load balancing; number of request 1…4 

z = zoom level 

x = requested tile x coordinate 

y = requested tile y coordinate  

size = tile size in pixel e.g. 256 

app_id = individual registration code from Nokia HERE 

app_code = individual registration code from Nokia HERE 

 

Online maps can be adapted to virtual orienteering. Integration to a game can be done 

relatively easily because one can use necessary tiles based on latitude and longitude 

information.  Online maps however do not specify a high detailed presentation of ter-

rain but could be used for beginner level orienteering or in terrain, which is relatively 

simple like urban area. Calculating ground resolution of the tile map can be performed 

using the following method: 

 

The ground resolution indicates the distance on the ground that’s represented by 
a single pixel in the map. For example, at a ground resolution of 10 meters/pixel, 
each pixel represents a ground distance of 10 meters. The ground resolution var-
ies depending on the level of detail and the latitude at which it’s measured. Using 



 

 

 

16 

 

an earth radius of 6378137 meters, the ground resolution (in meters per pixel) 
can be calculated as (Bing:2015): 

 

ground resolution = cos(latitude * pi/180) * earth circumference / map width 
= (cos(latitude * pi/180) * 2 * pi * 6378137 meters) / (256 * 2 level pixels) 

 

In addition, Google maps provide an API where centre of the map tile can be explicitly 

defined using latitude and longitude information (Google Maps: 2015). Furthermore, tile 

size can be specified. In Google case a map can be constructed from one whole image 

and not as combination of fixed size tiles. Usage of Google maps API is easier be-

cause there is no need construct map from several tiles as whole map area can be 

fetch using one request. However there is limitation of image size so large areas can-

not be fetched with one request but similar tiling mechanism is required.  

 

3.1.1 Orienteering Maps 

 

As orienteering is a sport where the intention is to complete a course of control points 

in the shortest possible time (IOF, 2009:1) a map plays important role. That is why an 

accurate and legible map is a reliable guide for the choice of the route (IOF, 2009:1). 

Because of the competition or tactical sport it is vital that the map shows the terrain in 

the most reliable way. All competitors need to interpret the map in a similar manner. 

International Orienteering Foundation (IOF) has standardized the method how orient-

eering maps can be produced. Whereas typical online maps show only major roads 

and buildings, an orienteering map provides a detailed topographic map. An orienteer-

ing map must also contain magnetic north lines and peripheral text is placed in a man-

ner that helps orientate the map to north (IOF, 2009:2). Accuracy is important if a posi-

tioning system is used together with orienteering map (IOF, 2009:2). For this reason it 

is self-evident that an orienteering map would be the best solution for a virtual orient-

eering game, also. Orienteering maps are created for a special purpose such as com-

petition. The coverage of orienteering maps is not 100% of the globe terrain and there-

fore these maps can be used in certain areas only.  It should be noted that typical ori-

enteering maps are formed on a very small surface of the Earth. This means that the 

difference between different projection types has less influence because Earth surface 

can be estimated as plane. Local maps can be formed by taking pictures of the area 

from above or by using precise laser scanning. This means that the projection comes 

quite automatically as the picture is taken or scanned from the visible terrain. 



 

 

 

17 

 

 

In Finland orienteering maps are copyright and basically each orienteering team or city 

manages their own terrain and produces maps of them. It is possible to create a map 

from one’s own playground or neighbourhood. Guide provided by Lonka (Lonka: 2012) 

gives information about how this kind of a map can be created for easy orienteering. 

Creating a professional map is costly due the amount of work and tools to be used. In 

Finland individual maps are typically sold separately in different kind of occasions to 

cover the expenses and gain money for the orienteering team. A typical tool used for 

creating an orienteering map is software called OCAD. The OCAD is a commercial tool 

that can use basic low detailed map as the base and special orienteering symbols can 

be drawn on top of the map. To use this kind of orienteering map in the virtual orient-

eering game would require the capability to distribute and license map information to 

the virtual orienteering game user.  

 

 

3.1.2 Artificial Maps 

 

Various games based on construction of areas as such typically use artificial maps that 

are based on an imaginational environment that some game artist has worked on. This 

kind of map would provide an interesting way of creating a map for the virtual orienteer-

ing game. One example for game map creation is the Tiled application. Maps created 

with Tiled can be used with Cocos2d-x game projects. One example of this can be 

seen in Figure 4.  The idea behind artificial game maps is typically to use ready bitmap 

symbols and replace these symbols on the map several times. The map area contains 

a sheet that describes object placements from which the game engine can then form a 

map on the fly during the progress of the game. One of the reasons for this is to reduce 

the needed memory on the device. Basically a presentation of real life map could be 

created in a similar manner. In that case the terrain would be drawn with standardized 

symbols. 

 



 

 

 

18 

 

 

Figure 4. Artificial game map created with Tiled (Tiled: 2015) 

 
Producing an artificial map is left out of the scope of this study but that would make an 

interesting and new way how a virtual orienteering game could be done. 

 

3.2 Electronic Compass 

 

Today’s mid-range and high-range smartphones contain magnetic field censors.  Elec-

tronic compass or magneto meter measures the strength of Earth’s magnetic field and 

in smartphones they provide raw data and computed bearing (Schirme, Höpfner, 

2015:12).  Thus, it can be used for implementing an electric compass which could be 

furthermore utilized in virtual orienteering game. Different mobile platforms have differ-

ent ways of providing magneto sensor readings to the applications. 

 

Android is based on Linux technology and provides low-level API for finding out device 

direction in relation to Earth. This information can be used for implementing an elec-

tronic compass. Android sensors are virtual devices that provide data coming from a 

set of physical sensors. (Android Source:2015). Android platform provides Geomagnet-

ic Field sensor and Un-calibrated Magnetometer (Android, 2015:Position Sensors). 

Android uses the combined information of geomagnetic field and orientation sensor to 



 

 

 

19 

 

provide device orientation and bearing. Orientation sensor gives information about de-

vice orientation in three-dimensional coordinates. In addition geomagnetic field can be 

read per each coordinate axes separately. For actual magnetic north reading this in-

formation requires calculation that device heading information can be read correctly. 

Additional calculation is required of the device orientation and correcting values per 

each coordinate with the magnetic field sensor.  Android reports the device orientation 

based on reference frame i.e. natural portrait orientation (Figure 5). However, it is pos-

sible to change this reference e.g. in cases that device is used in landscape mode and 

magnetic north is wanted to be pointed differently. 

 

 

Figure 5. Android device orientation in natural portrait orientation 

 

Apple iOS system supports two different ways for reading device direction. Magnetom-

eter can tell in which direction device is pointing what is called as heading information. 

Location API can tell direction where device is moving and this is called course (Apple 

2015:Location and Maps Programming Guide). In an orienteering game application the 

heading of the devices has a more important role, as it corresponds compass directly. 

Course information can be used for a tracking device for later purposes. Apple iOS 

 
 

x-axis (pitch) 

z-axis (heading) 

y-axis (roll) 

 

 



 

 

 

20 

 

makes reading of heading information much easier than with Android by providing a 

high abstraction level without direct API access to the magnetometer. 

 

3.3 Location Technology  

 

Accurate location technology is based on GNSS (Global Navigation Satellite System) 

although different other low accurate systems are used. These low accurate systems 

are typically based on the location of a cell tower or WLAN station and dependant on 

the area. Accurate location determination is needed for virtual punching when a check-

point is found in the virtual orienteering as it forms the base for the orienteering. In vir-

tual orienteering, however, the intention is not to use location technology to guide the 

player but to keep track of the smartphone and the user. This is needed for marking the 

visiting of the virtual checkpoint. Strictly speaking smartphone location technology is 

categorized as sensor technology and is closer to digital radio technology. 

 

Today navigation and location determination is based on satellite navigation a.k.a. 

GNSS that covers the whole globe. The root of satellite navigation can be thought to 

have begun together with the space age which can be thought to have begun in 1957 

when Sputnik I was launched by the Soviet Union (Mistra, Enge: 2009:19). This caused 

both United States and Soviet Union to allocate lots of resources to space race (Mistra, 

Enge:2009:19). The initial idea for the satellite navigation came when Sputnink I 

launched: 

 

The pattern of Doppler shifts in the signals transmitted by Sputnik I measured 
from a single ground station at a known position was enough to determine the 
satellite’s orbit. Now the deduction: If the satellite orbit were known, a radio re-
ceiver measuring Doppler shifts could determine its position on the earth. (Mistra, 
Enge, 2009: 19) 

 

GNSS and GPS satellite positioning system is based on a similar idea. GPS contains 

several satellites that have orbit with altitudes 5000 - 20.000 km and do 2 – 4 orbits per 

day. The orbit of its satellites is called Medium Earth Orbit (MEO). MEO constellation is 

24 satellites in GPS and a set of same satellites are visible several hours per day. Lo-

cation determination in GPS is based on three-dimensional coordinates for defining 

spatial position and accurate time.  Synchronization of time between the satellite and 

receiver is important for measuring true transit time of the signals transmitted by the 

satellites. GPS satellites contain very accurate clock and receivers typically use inex-



 

 

 

21 

 

pensive quartz oscillators. The bias in the receiver clock affects all observed satellite 

transit times equally. Pseudo ranges are called the measurements of the transmit times 

related to received time (receiver clock with bias). Because receiver bias is not known 

the time is the fourth unknown among the spatial coordinates. (Mistra, Enge, 2009:19-

23) Introduce Figure 6 here. 

 

 

Figure 6. The principle of satellite navigation (Mistra, Enge, 2009:23) 

 

In GPS and GNSS generally by knowing where the satellites are located up in the sky 

at a certain time one can measure accurate receiver’s location based on reversed in-

formation. Figure 6 shows how Pseudoranges are utilized when calculating the coordi-

nates of the GNSS receiver. Among the measurements GPS requires specific radio 

and receiver technology that is left out of this study. GPS can provide position accuracy 

5 m horizontal and 7.5 m vertical (Mistra, Eng, 2009:24). By using Differential GPS 

accuracy can be achieved even better. In Differential GPS receiver can obtain second 

(x,y,z) 

 
 

 
 

 
 

 
 

 

 
 

 

b 

 

(x
(k)

, y
(k)

, z
(k)

) 

ρ
(1)

 

ρ
(K)

 

ρ
(k)

 

{ρ
(k)

}: Pseudoranges (measurements) 

{(x
(k)

, y
(k)

, z
(k)

} : Satellite positions (known) 

ρ(k) = √((x
(k)

-x)
2

 + (y
(k)

-y)
2

+(z
(k)

-z)
2

) – b 

k = 1, 2, ..., K 

If K≤4, solve for user position (x,y,z) 

and receiver clock bias b 



 

 

 

22 

 

(or multiple) signal from other GPS source placed elsewhere and by comparing two 

measurements can subtract errors caused by climatic and other errors occurring when 

signals are transmitted from a satellite to GPS receiver. Differential GPS is very accu-

rate and can be used in overlay applications used in TV sports to highlight where dif-

ferent objects or persons locate. 

 

In the worst case when a GPS receiver is started without knowledge of the previous 

location it will take at least 20 seconds to tune itself to the frequency of transmitting 

satellites. After this it will take 30 seconds to receive transmitted data from the satellite. 

The total time for the first satellite fix will take approximately 1 minute at minimum. If 

different kind of disturbances occur i.e. receiver going under tree or building then re-

ceiver needs to wait another 30 seconds for data retransmit.  If the receiver has prior 

knowledge of its location is can utilize this knowledge and make assumption of the sat-

ellite locations and their initial transmitted data. (Van Diggelen, 2009:33) 

 

Modern smartphones uses A-GPS (Assisted GPS) to find its location. A typical and 

non-assisted GPS receiver basically needs first to find the visible satellites by scanning 

the frequencies of all satellites. After finding the right satellite transmitting frequency the 

data is transferred slowly using low bit rate of 50 bps (bits per second). A-GPS tech-

nology improves this by speeding up by offering immediately the available satellite fre-

quencies and transmitting data with higher speed than 50 bps. In this technology simi-

lar data than transmitted by satellite can be sent much faster to smartphone and its A-

GPS receiver. This makes an A-GPS receiver to fast acquire necessary satellites be-

cause in the transmitted data is also send information about the visible satellites. Now 

an A-GPS receiver does not need to spend time for first finding the right satellites and 

then decode the information transmitted in slow bitrate. It can basically jump directly to 

listening to visible satellites and tune up to their frequency to listen to information to find 

a more accurate position. This makes location acquiring much faster and an A-GPS 

receiver (smartphone) can find its location in a few seconds. When thinking ofa virtual 

orienteering game and starting the game the player does not need to wait a long time 

for the game to locate itself.  

 

3.4 Summary 
 



 

 

 

23 

 

For virtual orienteering different maps can be used and there are different technologies 

available. Topographic maps form the basis for the normal orienteering maps. Howev-

er, their availability is limited and typically copyright exists. Furthermore, online maps 

available through the Internet provide basically free of charge usage and full globe 

coverage making them ideal to be used in virtual orienteering and for demonstrating 

the concept. On the other hand, to have more gaming experience artificial maps would 

provide a more interesting way to perform virtual orienteering. 

 

As magnetometers start to be common in almost all range smart phones it is quite easy 

to use them in virtual orienteering and have them play the role of the compass. A mag-

netometer may not be as reliable as an analogical compass but gives an interesting 

demonstration to be used in a virtual orienteering game. 

 

In practise all modern smartphones have some sort of capability to sense location. 

GNSS provides good accuracy to locate the device and to make possible to use virtual 

checkpoints that are triggered when the device is in a specified area anywhere on the 

globe. GNSS is also very sensitive technology and it should be highlighted that its ac-

curacy depends on several factors. These factors are e.g. being covered in the woods 

or locating near a high building in city area, not forgetting the quality of the receiver.     

  



 

 

 

24 

 

 

4 Orienteering Game Development Principles 

 

For a proof of concept the first target was to create a virtual orienteering game that 

concentrates utilizing the capabilities of Cocos2d-x game engine and secondly to find 

out how platform dependent censors can be integrated. A commercially playable fin-

ished and polished game is left out of the scope of this study. This sets certain condi-

tions that may be different when comparing to typical game development i.e. creating a 

story, script and other design and so forth and so on. Typical game development and 

design is not always straightforward. Game design can be though as building a recipe 

and selecting ingredients. Scott refers to this as making chili (Scott, 2014:18): to make 

a game interesting there is not always a need to make good graphics but playability is 

important. A good quality of ingredients helps but at the end of the day it is a matter of 

designing an interesting game. 

 

Designing a virtual orienteering game for a mobile device has certain challenges. On 

the one hand it is a kind of serious navigation application. On the second hand it is a 

fun game that is meant for people who are not necessarily so interested in orienteering 

itself. A serious game development can be split to actual game design and instructional 

design (Iuppa, Borst, 2010:123). In addition as Rogers tells game will be created fol-

lowing own passion albeit different tips can be found around (Rogers, 2014: loc1164). 

This design principle is followed with the game design. The following chapters discuss 

game design principles that are applied for an orienteering game, as it can be imple-

ment as a serious game. 

 

4.1 Instructional Design  

 

The actual game design can begin when it is known how a game will be functioning 

and presented to the user. Iuppa and Burst (Iuppa, Borst, 2010:124) describe how in-

structional design specifies a document how a player can go through in playing the 

game, the order in which the steps have to be taken, the worst-case scenarios for fail-

ure, and as well the best case scenarios for success.  By following this guidance, in-



 

 

 

25 

 

structional design specifies how a game can be played. This is important because 

there is no actual customer who could specify how the game should work. 

 

Classic orienteering is performed with a map and a compass. Player’s aim is to do ori-

enteering on the map by going through a track containing one or more checkpoints. In 

an orienteering game application the intention is that these checkpoints are virtual ones 

(i.e. not visible for the player in terrain like in typical orienteering). When the last availa-

ble checkpoint has been reached the player has finished the game. Orienteering can 

be thought as climbing on ladders where there is a need to take each step to reach up 

the roof and in the right order. The following steps can be included to describe the 

game steps: 

 

1. The player starts the application and enters the game main menu. 

2. The player can select a new game from the game menu. 

3. A new game is started. 

4. In a classic orienteering a track time is started when a so-called K point is 

reached (i.e. the first checkpoint). Player’s current location is selected as the 

starting point. 

5. When a player reaches the first checkpoint time will start and the score will dis-

play the past checkpoints. 

6. After this player will go to each checkpoint in a free order.  

7. When the player has checked the last orienteering control point the game will 

stop and return to the main menu. 

 

In the proof of concept phase the game was kept very simple and not all exceptions 

were handled i.e. the game can be paused but if it is restarted it is not necessarily 

keeping the last know state. The game target is to find all check points as fast as pos-

sible. There are lots of possibilities how the game can continue or reward the player. 

For the sake of simplicity, the game was left on a short mini game level. 

 

4.2 Gameplay Design 

 

Gameplay design specifies the details for the game that it can be implemented and 

boundaries can be set. Because the virtual orienteering game was kept simple not too 

much time was spent on high grain graphical design or the usability design. The target 



 

 

 

26 

 

was to create an orienteering game skeleton that can be used later on for building a 

commercial game keeping actual game design minimal. Designing a gameplay can be 

though as an art and a science (Iuppa, Borst, 2010:187). To make a game more fun is 

science as the player is performing certain stories and environments and art because 

of a sort of choreography is needed (Iuppa, Borst, 2010:187). 

 

For the sake of simplicity has the game menu system kept at minimum. Only mandato-

ry selections are possible that the game can be started, paused and restarted. The 

actual orienteering part of the game utilizes a downloadable online map around the 

location of the player. As the used map is utilized directly from the provider as is no 

design is spent. Checkpoints used to construct the orienteering route are drawn on the 

screen as images having an orienteering flag symbol. A track can be drawn as a line 

connecting all checkpoints together but that can be left out to enable free orienteering 

i.e. going through the checkpoints in a random order. The game could have time indi-

cator that shows how long the game has been on-going and a scorecard to show the 

progress. However it was decided not to use time indicator in the latter version. The 

player’s location is indicated on the screen as a graphical symbol to make it easy for 

the player visualizes his own place on the map in relation to the checkpoints. This kind 

of feature also helps player’s who do not have much experience in orienteering and to 

lower the barrier to use the game. 

 

4.3 Summary 

 

A virtual orienteering game can be thought of a serious game. When designing a seri-

ous game good procedure is to split design into instructional design and actual game 

design. These are separate designs where an instructional design creates a manu-

script on how the game will be played before jumping to the actual game design. The 

game design includes details and describes more thoroughly the game mechanisms 

and technical considerations. Before starting to implement an orienteering game some 

time was spent with the principles of game design by going through processes that 

help the actual implementation to be successful. The principles included the steps how 

the game will operate. 

  



 

 

 

27 

 

 

5 Cocos2d-x Game Engine   

 

The usage of smartphones for a gaming device has been growing rapidly. Independent 

game developers and start-up companies can create amazing mobile games and dis-

tribute them easily through different application stores. These mobile games are al-

most simultaneously released in different stores and different platforms to increase 

revenue. (Shekar, 2014: 1). Game developers benefit of using tools that support easy 

and fast application development. One of the tools is Cocos2d-x game engine that is 

used in several companies such as Zynga and Disney (Hussain, 2014: 246). Cocos2d-x 

is a cross-platform tool i.e. the same source code can be run on several devices having 

it attractive choice for developers. Furthermore this tool can be used to implement 

applications that are not directly amusement games but more of serious ones. Consid-

ering this makes it attractive also for developing a virtual orienteering game.  

 

5.1 Cocos2d-x  

 

Today there are several famous developer tools for creating mobile games called game 

engines suitable for mobile game development. A game engine is a software frame-

work that provides common game-alike functions for building games (Cocos2d-

x.org:Chapter 2). It is a piece of software that provides APIs for different purposes. 

Game engines such as Cocos2d-x, Unity and Moai to name a few, all support cross-

platform development. Unity is probably the most known platform at the moment and 

games can be programmed with same Javascript and deployed to several different 

platforms. The case is similar with Moai, which has been implemented with C++ but 

also provides Lua scripting to program games  (Tufró, 2013:loc 13).  

 

Cocos2d-x is a cross-platform and an open source game development framework im-

plemented in C++ code and can be deployed for several mobile devices such as An-

droid, iOS and Windows Phone. A typical C++ program is constructed from several 

modules (Bronson, 2010: 44). This can be seen also in applications created with Co-

cos2d-x because necessary modules are compiled based on the desired platform. Co-



 

 

 

28 

 

cos2d-x is specialized for designing 2D games although latter versions of 3.x include 

features to support 3D game development. Cocos2d-x has also other versions that are 

used for certain purposes such as Cocos2d-js, which is a game engine that can be pro-

grammed with JavaScript. Another variant is Cocos2D, which is targeted for Apple iOS 

devices only. The structure of all of these variant engines is quite similar because Co-

cos2d-x is based on a portable version of Cocos2D. The intention of Cocos2D is to sup-

port iOS game development as it has been implemented with Objective-C, which is the 

major programming language for iOS systems. Basically both share similar functions. 

As Cocos2d-x is developed as a continuous open source project (Cocos2d-

x.org:Chapter 1) it is evolving all the time. It has been developed since 2010 and cur-

rently version 3.8 has been published (Cocos2d-x.org:Chapter 1).  A dedicated open-

source community maintains the code base and is adding new features to Cocos2d-x. 

In the latest versions support for 3D gaming has been added. 

 

Cocos2d-x supports different screen sizes. This is one of the most important features 

when designing an application for several different devices. Typically the developer 

needs to program an application to support different screens sizes, however, it is easy 

to program Cocos2d-x to find out bounds of the screen and make necessary adjust-

ments automatically. When screen objects are placed on the screen in a relative man-

ner it does not matter what the screen size actually is. Among screen size dots per 

pixels (DPI) play on important role. An application designed for high DPI does not nec-

essary look good if the screen size is big but DPI is low and vice versa. For this pur-

pose it is possible to develop an application that figures out the screen size and its 

density and applies dedicated and scaled screen objects to a specific device. This re-

quires that an application developer will create high and low density graphics for each 

necessary object on the screen that are selected on runtime to fit on the available 

screen. In practise testing for this should be done with all supported screen sizes to 

see the real world situation. 

 

5.2 C++ with Cocos2d-x 
 

Cocos2d-x games are programmed with C++ programming language, which can be 

difficult because the programmer needs to take care of the memory management. In 

C++ programming language memory management allocation and de-allocation of dif-



 

 

 

29 

 

ferent objects is needed and specific functions are used for this purpose.  This is one 

reason why programming with C++ is sometimes challenging and different instability 

problems may occur in the software caused by memory leakages. These memory leaks 

can happen when the objects being allocated are not de-allocated causing system 

memory to run out. Typically in C++ programming language new and delete operations 

are used. Cocos2d-x uses autorelease pools and retain counts which can be seen in-

herited from the iOS version of Cocos2D. Memory can be allocated either in a static or 

in normal C++ language dynamic way. In Cocos2d-x static way of memory allocation is 

recommended (Engelbert, 2013: loc 668-669).  In the static way special Cocos2d-x 

factory methods provided by the base classes are used. In the normal dynamic way 

typical C++ language new and delete operations are used.  

 

In general C++ programming language provides a relatively portable and common 

ground for all platforms. In the case of iOS and Android development it is a perfect 

choice as iOS Objective-C code can be mixed directly with Cocos2d-x C++ and with 

Android Native Development Kit (NDK) can be used.  

 

5.3 Structure of Cocos2d-x Game  
 

Cocos2d-x is a structured game engine i.e. it contains a collection of classes and meth-

ods optimized for 2D games. So called container objects are used to maintain individu-

al game screens. They are important objects because they manage collection of sprites 

and other containers inside of them (Engelbert: 2013:loc 557). The main part of any 

video game is to render things on the screen (Muzykov, 2012: 44). For this reason a 

sprite object plays an important role in any video game and is the base element of any 

Cocos2d-x game. The sprite is an object of a rectangle image or a texture that can be 

placed anywhere on the screen with depth called Z order. This Z order will tell the dar-

ing order of the objects on the screen keeping the object with the highest Z order 

number as the top most.  Cocos2d-x Sprite class has been derived from Node class 

(Jordán: 2015, 27). This makes it easy to combine them together as a typical game 

consists of several sprites that do overlap and collide. Sprites are graphical objects that 

Cocos2d-x engine will take care of after they have been programmed and placed on 

the screen. OpenGL is used for drawing and hiding low-level graphics functions in or-

der to make programming games easier for the programmer. In general game engines 



 

 

 

30 

 

specify game loops that are used to control graphical objects with some actions and 

respond to user actions. In that sense game engine can be though as programmable 

logic or automation system where different events causes engine to react and control 

all objects. Sprites objects live their life in the automated system based on a pro-

grammed behaviour or a user interaction. This is the case also with Cococs2d-x based 

games. 

   

A typical Cocos2d-x based game is formed out of a collection of suitable sprites, which 

are placed on the screen. Intention is not to draw any vector graphics. Controlling of 

tens or hundreds of sprites individually is a complicated work and that is why Cocos2d-

x implements layer and node (collection) classes to help bundle objects together. 

Sprite objects can be aggregated to layers and nodes that are easier to manage as 

entities. If a game character is formed from multiple sprites like an animated charac-

ter, it is easy to control the whole aggregation of sprite objects (graphical object 

formed from several sprites) as a one instead of individual sprite objects. This charac-

teristic makes Cocos2d-x well suitable for virtual orienteering game because when a 

game map is constructed from a number of map tiles and orienteering track is formed 

out of multiple checkpoint objects (sprites), which can easily manipulate the whole 

collection of sprite objects. This is important when the whole map including a track and 

user sprites is needed to scale or rotate. Scaling or rotating of sprite is an example of 

Cocos2d-x actions (Hussain et al, 2014:loc 835).  An action can be attached to the 

node containing all layers of sprites (Hussain et al, 2014:loc 835). In this manner one 

action can be used by a combination of sprites.  

 

Cocos2d-x uses scenes to build up game screens. A scene can be though as an indi-

vidual playground for different drawable game objects (sprites) used in the game. 

When thinking of old handheld LCD (Liquid Christal Display) game terminals from the 

80’s they typically contained only one scene. Nowadays a typical game contains several 

scenes such as an opening, a main menu, the actual game and an end title. Each sce-

ne is typically constructed by connecting layers and nodes together. Each node then 

again contains objects that can be grouped together using other nodes. Director is a 

special class in Cocos2d-x. It is a singleton object that is used for managing scenes 

and controlling the whole application itself. Change from one scene to another is per-

formed with the director. An example of this is when the game is ending and end 



 

 

 

31 

 

screen is displayed. The director also provides caching of objects so that it is not nec-

essary to load them from a device permanent storage every time they are needed. 

 

In addition, Cocos2d-x provides means for drawing other type of graphic objects like 

text and menu items. Due to the nature of the game engine it has ways of how interac-

tion of graphics objects can be detected and different effects created. Furthermore, 

Cocos2d-x contains a lot of other features that can help creating several different game 

styles. To name two of them are the support for audio playback and the different effects 

of the screen such as particle handling. A high number of particles can be used for cre-

ating effects like snowing, campfire or different water effects movement. 

 

In a virtual orienteering implementation the purpose is to use the most beneficial fea-

tures and minimal subset of Cocos2d-x. These are high performing graphics that are 

needed to display a map, an orienteering track and HUD (Head Up Display). HUD can 

be used to display information such as a compass, spent time and information about 

the orienteering track (scores). To support multiple platforms and screen sizes Co-

cos2d-x supports implementation that this can be achieved. This can be seen a very 

valuable feature when application is developed for multiple platforms. 

 

5.4 Limitations of Cocos2d-x as to Virtual Orienteering 

 

Cocos2d-x is missing three important features that are needed to create a virtual ori-

enteering game. These features need to be added before the actual game can be im-

plemented.  

 

The first and most important feature is to create support for a map suitable for virtual 

orienteering. Cocos2d-x supports sprite images that can be used as background imag-

es as a map could be constructed using background image. Because the map forms 

the base for orienteering it needs to be created first. On top of a map (background 

image) overlapping sprite objects can be used to augment the information of the map. 

Cocos2d-x supports a so called tiled map. Tiled map information is provided separately 

and it is created using an external tool. A tiled map file is provided as collections of 

small images that are scripted to be places on map to form a bigger map. This would 

reduce the memory needed to store large area maps. This approach could be used if 



 

 

 

32 

 

an artificial tile map was used. However, to construct a real world orienteering map a 

tiled map makes no sense. Due to the complexity of real world orienteering maps and 

their limited and licenced availability existing Web online maps will used. Licensing and 

copyrights restrict also the usage of a scanned image of the real world map which us-

age is discarded. 

 

Both iOS and Android provide their own frameworks to implement a map as they both 

support proprietary APIs for using their own build in maps. However the implementa-

tions of these are done at higher level than Cocos2d-x is meant for. Adapting Cocos2d-

x to use platform dependent map would take too much effort and probably result 

would be as many implementations as platforms. Implementation of own map layer 

should be selected because then suitable map implementation can be designed to be 

platform agnostics as it is based on Cocos2d-x capabilities. Alternatively as a map layer 

is implemented as own layer that can be replaced later on.   

 

Knowledge of the location of the player is important. There is no ready support at the 

moment in Cocos2d-x where a device location could be read. A virtual orienteering 

game needs to track the location of the user so that virtual punching of checkpoints 

can be made possible. For this reason additional location functions were implemented. 

Typically smart phones or devices have a GPS/GLONASS chip on board that makes the 

implementation of reading location information relatively easy. Cocos2d-x does not 

offer location API or framework like native iOS and Android devices. This means that 

some mechanism needs to be built for the virtual orienteering game so that this loca-

tion information is available for the game designed for Cocos2d-x. Reading location 

information needs to be implemented agnostically independently on the used platform. 

The best way is that location information can be read as latitude and longitude coordi-

nates that make locating the user on the map easy. Location information is also used 

to find right online map tiles. Online map tiles can be fetched from the service provider 

based on the information of the world coordinates. 

 

The third missing feature important for orienteering is the lack of API for reading mag-

netometer of the device. Magnetometer is a specific feature for a given platform. Its 

API needs to be implemented separately per device platform. Android platform pro-

vides 3D magnetometer that needs additional handling to get reliable measures. In the 



 

 

 

33 

 

iOS side so called heading information is given directly by its location API. Not all de-

vices provide magnetometer information so it is important that the virtual orienteering 

game is not dependent on the magnetometer or compass. 

 

5.5 Apple iOS Platform 
 

Apple iOS platform is a closed development environment. That means that Apple does 

not share the source files of the system. In addition Apple is the only manufacturer of 

the iOS based devices. Good thing in this system is that the devices are always similar 

ones and basically all devices support the same operating system version. Apple iOS 

platform can be programmed with Objective-C programming language and nowadays 

also with Swing language. Swing is relatively new and is left out of the scope of this 

study. Objective-C is compliant with C and C++ languages. Actually, Objective-C is 

based on C with object-oriented extensions (Nahavadinpoor, 2013: loc 224). That 

means that although iOS is basically written using Objective-C the development is 

somewhat possible to do with C or C++ languages. This is a huge benefit when doing 

application with Cocos2d-x as it is fully C++ implementation. Apple development is 

done using XCode IDE tool that supports these languages directly. Because XCode 

IDE is needed in practise this means OSX based computer like Mac Book Pro. (Apple 

Developer:2015) 

 

 

Debugging in iOS environment requires use of iOS product and a specific developer 

agreement that is renewed on yearly basis.  Debugging is done with a real world iPh-

one or iPad. Apple IOS development program provides a license to debug software in a 

limited amount of specially licensed devices. Apple maintains the development envi-

ronment and provides software distribution channel through its AppStore. (Apple De-

veloper: 2015) 

 

A typical iOS application is built on top of layers found in iOS architecture (Figure 6). 

The Cocoa Touch forms the basics of an iOS application. This layer provides functions 

for most of the typical applications seen by the user and provides basically all controls 

for the user. Apple also provides guidance on how iOS applications should behave. 

This means that certain frameworks have limited customization and are based on de-

sign patterns. Typically an application created using these layers has the same look 



 

 

 

34 

 

and feel. Build-in applications found in the iOS are good examples of Cocoa Touch 

based applications. The Media Layer contains graphics and other technologies to im-

plement multimedia services. Such applications like camera, video and music playback 

are examples of applications utilizing this layer. Cocos2d-x partly overrides this layer by 

providing own methods for handling graphics directly using OpenGL layer. OpenGL-ES 

is well supported by the iOS system and benefits the hardware level graphical acceler-

ation. The Core Services layer provides e.g. location and networking functions that are 

also important for virtual orienteering game. The Core OS layer provides the lowest 

level functions to the application. This is typically the layer that is not used or available 

for normal iOS application developer. (Apple Developer: 2015). All these layers and 

their functions are provided for the Objective-C or Swing based applications. 

 

 

Figure 7. iOS architecture (Apple Developer, 2015) 

 

Cocos2d-x application hides the iOS architecture, which is hardly visible and basically 

all functions are override by game engine specific functions. As Cocos2d-x has evolved 

from Cocos2d that was originally used to develop iOS games only it seems that starting 

of the version 3.x has Cocos2d-x development community hidden iOS related functions 

and creating more platform agnostic version of it. To develop Cocos2d-x application 

there is little that a developer would need to know about iOS internals to make a game. 

In practise only the main class of iOS application is used and that is used only to 

launch Cocos2d-x application. (Engelbert, 2013: loc 459) 

 



 

 

 

35 

 

5.6 Android Platform 
 

Android platform is based on Linux and currently Linux kernel 3.x is used by the latest 

Android 4.x and 5.x platforms. Android is an open platform and its source files are 

available on Android developer site for device manufactures and developers. Most of 

the programs developed for Android are made with Java language and with Android 

Development Kit (ADK). Android Development Kit contains necessary source files and 

tools for compiling and debugging applications. Emulator environment is available for 

those not having a suitable device. Development of C++ based programs on Android is 

possible using separate Native Development Kit (NDK) (Sylvain, 2010: loc 262-263). 

As Cocos2d-x is done with C++ it covers graphics intensive libraries for Android creat-

ed with Native Development Kit. On Android Cocos2d-x contains an abstraction layer 

on top of OpenGL-ES functions. This makes it possible to do e.g. game programming 

directly with C++. Android supports OpenGL-ES functions also in Java. So it is possible 

to do games using Java only. (Android, 2015: developer pages) 

 

Low-level API access is restricted and controlled on Linux access level. These are e.g. 

Linux based device drivers. Android platform is based on Security Enhanced Linux (SE 

Linux) that restricts pure Linux use by providing additional access control for the appli-

cations. Most of the HAL (hardware abstraction layer) APIs can be accessed only 

through Java virtual machine called Dalvik (Android 4.x and earlier) or ART (Android 

Runtime) in the newer versions of Android 5.x (Lollipop). Figure 8 shows the relation of 

the HAL layer and other components of Android architecture. ART is run with a more 

privileged mode than normal application software and that is why it is mandatory to use 

that to gain access to certain APIs. To use e.g. different sensors from C++ language 

one needs to use Java Native Interface (JNI). That provides bridge between C++ and 

Java virtual machine. JNI methods are used to provide necessary APIs for virtual ori-

enteering game that is built with C++ on top of Cocos2d-x game engine. (Android, 

2015: developer pages) 



 

 

 

36 

 

 

Figure 8. Android System Architecture (Android, 2015) 

 

Android software can be built almost with any PC running Linux, Windows or Mac OS-

X. ADK is provided for all of these platforms and it is freely available. On target debug-

ging can be done basically with any Android device by enabling its developer features. 

A specific registration of a device is not needed. ADK provides also necessary emula-

tors that can be used to test with different Android versions, screen sizes and skins. 

(Android, 2015: Developer Pages) 

 

In Cocos2d-x application Android architecture is also hardly visible and basically all 

functions are override by game specific functions. As with iOS to develop Cocos2d-x 

application there is little that a developer would need to know about Android system to 



 

 

 

37 

 

make a basic game with it. In that sense game development is similar as with iOS de-

velopment. 

 

 

5.7 Design Principle for Missing APIs and Features 
 

Implementation of missing and required APIs needs to be done for each platform sepa-

rately. Luckily Objective-C used by iOS can be compiled with the same C++ compiler 

used by Cocos2d-x, which comes along with XCode IDE (Engelbert, 2013: loc 436). In 

the Android environment the story is a bit different. As mentioned Android does not 

allow usage of C/C++ level functions but provides public Java based ones. This means 

that a specific C++ wrapper is required to be done for converting Java based APIs so 

that they can work in C++. Java programming language supports native interface (JNI) 

that helps of calling Java methods from C/C++ programming language. The intention 

is, however, that at the game level same C++ based classes and methods can be used 

in both systems and by using C++ define macros one can force compilation to select 

right source files or snippets to the used platform. Cocos2d-x supports built-in compiler 

directives that through the source code platform dependent source is selected when 

needed. (Cocos2d-x, 2015: Developer Pages) 

 

5.8 Summary 
 

Cocos2d-x is a general game engine designed for 2D games (SlackMoeri et al, 

2015:2). In addition it provides many interesting features that makes it an ideal candi-

date to be used for developing a virtual orienteering game. The most beneficial fea-

tures are effective graphics handling, support for different screen sizes and several 

platforms. To use Cocos2d-x in virtual orienteering it is necessary to create additional 

functionality that supports reading of a device location, an orientation to magnetic north 

and also a way to support for display scaling and large area moveable maps on the 

screen. Android and iOS have different architectures and they use different program-

ming languages for the development. With the help of Cocos2d-x it should limit the 

platform maintenance work of the application because most of the application can be 

programmed or implemented with one design using C++ programming language only. 

  



 

 

 

38 

 

 

 

6 Implementation of Virtual Orienteering Game 

 

The following chapters describe how the virtual orienteering game proof of concept was 

developed. The implementation demonstrates how to benefit of Cocos2d-x when im-

plementing a virtual orienteering game. The intention was not to implement a final 

game to be published in any application store but to evaluate and prove the benefits of 

game engine usage. This can be beneficial when the game will be further developed 

for the commercial or other purposes. A virtual orienteering game can be though as a 

serious game application where all fun does not come from the user game experience 

but also from learning the principles of basic orienteering. 

 

6.1 Requirements for Proof of Concept 
 

For developing a proof of concept requirements for the virtual orienteering game were 

set. Requirements came from the actual game design. By fulfilling the requirements it 

was easy to evaluate the success. As the purpose was to evaluate the suitability of 

Cocos2d-x the intention was to keep the implementation at the bare minimum. As an 

outcome, additional requirements were studied and also ideas for further developing 

the game onto a level that it can be published in different application stores were identi-

fied. Furthermore, the intention was not to design all graphics but use available images 

for demonstration purposes. 

 

To evaluate the success and to give guidance for the implementation the following 

mandatory requirements were set: 

 

1. Basic navigation and menu structure will be in place in order that the user can 

start the game and can understand how to initiate the game. 

2. Game should have start and stop functions with the possibility to pause and re-

start the game. 

3. Freely available tile map service will be used. This is due to the fact that most of 

the orienteering maps are licensed. The quality of the maps for orienteering 



 

 

 

39 

 

does not matter because in practise any type of map from virtual to real orient-

eering map can be used later on. 

4. Checkpoints are placed virtually in the terrain. The application will indicate when 

a checkpoint is found i.e. when the player has approached a checkpoint. GNSS 

based location is used to indicate when the user is in the right place. 

5. Virtual checkpoints are placed on the map screen of the application. 

6. Electrical compass indicator will be implemented and displayed. 

7. Game can be run at least on iOS or Android based devices. 

8. Different screen sizes and resolution will be supported. 

 

Requirements in the list create the boundary for the game. They also present the 

idea of the game and what player’s target is. 

 

6.2 Development Environment 
 

To develop and debug applications for iOS devices an Apple OSX computer and iOS 

device are required. An Apple computer supports Android development because tools 

required for developing Android application support OSX. The development of the 

game was done using MacBook Pro having XCode IDE, Eclipse IDE and necessary 

platform dependent tools. Both XCode and Eclipse fulfils basic development. XCode 

provides comprehensive environment for all development needed for iOS systems. For 

Android systems additional tools such as Android Development Toolkit (ADT) contains 

tools for developing Java based applications and Native Development Kit (NDK) is 

needed for Android applications created with C++. In addition, Cocos2d-x sources are 

needed including necessary tools to make compiling possible.  

 

6.3 Device Variability 
 

Cocos2d-x supports implementation that is agnostic for used device i.e. the software 

can be compiled to several different operating systems and devices. Although Co-

cos2d-x supports many different devices the proof of concept implementation was re-

stricted to support two different major device architectures. These are Apple iOS (iPad 

mini as reference device), and Android (Samsung Galaxy Tab as reference). Devices 

used for on-target debugging need not to be relatively new and efficient ones. Because 

of the usage of compiled C++ code Cocos2d-x should run on those without major per-



 

 

 

40 

 

formance issues. Different devices will be tried based on availability and with possible 

test users around. Table 3 lists supported devices and resolutions that were done the 

proof of concept.  

 

Device  Resolution in pixels 

Apple iPad Retina 2048x1536 

Apple iPhone 6 1334x750 

Apple iPhone 5 1136x640 

Apple iPhone 4s 960x640 

Android LG Nexus 5 1080x1920 

Android Samsung 4 tab 800x1280 

Android Samsung tab 2.0 1024x600 

Table 3. Supported device resolutions. 

 

Not all devices support magnetometer or electrical compass. Example of lacking mag-

netometer was seen on Samsung Galaxy Tab 2.0 device.  In practise all newest iOS 

devices contain electrical compass but more variation can be found in the Android de-

vices. GNSS support can be found basically in all smart devices on the market at the 

moment. Difference can be found of the supported GNSS systems on the device. All 

devices support GPS but GLONASS and other newer systems may not be supported. 

Support for GNSS or magnetometer should be checked from the technical specification 

of the device. 

 

6.4 Support for Different Screen Resolutions 

 

A virtual orienteering game as any game needs to support different screen size and 

pixel density (see Table 3). Reason for this is to maintain correct user experience. The 

screen size and pixels density together define the available screen resolution. Two 

devices having the same display size may have a different pixel density and thus a 

different resolution. To scale an image correctly the pixel density needs to be adjusted 

so that similar amount of graphical information can be displayed at low and high-

density screens. Intention is that devices with different pixel density would show the 

graphics at the similar size although resolution could be coarse when compared to the 

higher density device. 



 

 

 

41 

 

 

Cocos2d-x provides in practise two approaches to support multiple screen sizes.  The 

first one sets the drawing area to a specific screen resolution and lets the engine’s 

OpenGL-ES based system to scale screen for a suitable size. This means that systems 

take care of zooming pixels automatically in a way that e.g. a target platform that has 

800x600 pixel density and system virtual density can be e.g. 320x400. In a high-

resolution device using a low-resolution mode this can be seen that individual pixels 

may become blurry due used antialiasing.  

 

The other way to find out available drawing area (screen size) can also be used. Avail-

able screen size can be read with the following C++ statement that gives the available 

pixel resolution (also a variable will be initialized with the same statement): 

 

auto screenSize = glview->getFrameSize(); 

 
 

Drawable area can be set with the following statements (768 x 1024 pixel area in this 

case): 

 
glview->setDesignResolutionSize(768, 1024, ResolutionPoli-

cy::NO_BORDER); 

 
 

As indicated the screen size (pixel resolution) is read from OpenGL-ES level which is 

common for all supported platforms. Based on a screen size and with the help of if-

then-else clauses a correct image can be used by the application when available reso-

lution has been interrogated beforehand. This is the case when different resolutions are 

supported. The following C++ code snippet (see Listing 1) shows how this can be done 

by selecting a right size of image for a given screen resolution: 

 



 

 

 

42 

 

 

Listing 1. Selecting resolution (Hussain et al, 2014) 

 

In the code snippet example (Listing 1) Cocos2d-x game engine uses a specific direc-

tory structure to select used graphical objects based on this information. Each directory 

is named based on a device resolution or some other naming. This means that an ap-

plication designer or a game artist can create two or more versions of the images to 

support low, medium or high-resolution displays on the devices (Engelbert, 2013: loc 

795). Cocos2d-x sprite system supports image scaling. This also means that it is pos-

sible to design graphical sprites of one size only with a low resolution and scale size up 

the image on the fly. Scaling size up of the sprite is simple and can be adjusted based 

on the available screen size information, which can be programmed using if-then-else 

clauses. In many cases high-resolution images need to be created separately by a 

game artist. Scaling up a low-resolution image automatically may cause image to be 

shown too blurred.  Furthermore, special design may be needed to make high-

resolution graphics to look good enough. Cocos2d-x supports also a mode where a 

screen pixel resolution is set static. This is another way to support different screen siz-

es and the game engine will take care of adjusting graphics to a right screen resolution. 

This approach would make a generating of necessary game graphics (such as different 

    std::vector<std::string> resDirOrders; 

     

    // check which assets the devices requires 

    if ( 2048 == screenSize.width || 2048 == screenSize.height )     

        // retina iPad 

    { 

        resDirOrders.push_back("ipadhd"); 

        resDirOrders.push_back("ipad"); 

        resDirOrders.push_back("iphonehd5"); 

        resDirOrders.push_back("iphonehd"); 

        resDirOrders.push_back("iphone"); 

         

        glview-

>setDesignResolutionSize(1536,2048,ResolutionPolicy::NO_BORDER); 

    } 

    else if ( 1024 == screenSize.width || 1024 == screenSize.height )  

        // non retina iPad 

    { 

        resDirOrders.push_back("ipad"); 

        resDirOrders.push_back("iphonehd5"); 

        resDirOrders.push_back("iphonehd"); 

        resDirOrders.push_back("iphone"); 

         

        glview-

>setDesignResolutionSize(768,1024,ResolutionPolicy::NO_BORDER); 

    } 

 



 

 

 

43 

 

menu items and sprites) less effort because then only one version would be required. 

Because the virtual orienteering game is a map-oriented application it is good to go 

with a support that utilizes the maximum available resolution to get as big a map area 

visible as possible. 

 

6.5 Game Menu System 
 

Each game requires some menus and a game screen so that a player knows when a 

game needs to be played. Figure 9 shows a game screen used in the application.  

  

 

Figure 9. Different scenes of the game 

 

Cocos2d-x defines game scenes that are used to describe each visual screen, which 

are controlled by a special director (SlackMoehrle et al, 2015:4). Each scene can con-

tain its own functions and can act autonomously. These scenes can be tied together 

with logic that is called a director. Within the director different scenes can be swapped 

based on user selection or other game logic. As an example a virtual orienteering 

game utilizes scene swap snipped below: 

 

auto scene = GameScreen::createScene(); 

Director::getInstance()->replaceScene(TransitionFade::create(1.0, sce-

ne)); 

 

Setup 

Back 

Select 
track 

setup 

Orienteer-
ing 

screen 

with map 

pause 

Pause 

Continue 

End 

Startup 

with 

image 



 

 

 

44 

 

In this case a special transition fade effect is used which means that 1-second time is 

used to fade out the old scene before a new one is brought up instead. Cocos2d-x pro-

vides very easy way to navigate between different screens. When comparing to iOS 

and Android native application one needs a bit more code to give a similar effect. The 

game menu can be created easily as Listing 2 shows. Selected images corresponding 

menu items are placed to certain callback methods that are called when the menu item 

is touched on the screen. 

 

 

Listing 2. Creating game menu (Hussain et al, 2014) 

To make the swapping of scenes natural a menu system was implemented. Cocos2d-x 

provides built-in functions to represent menus that can be placed on a desired scene. 

In practise menu items are graphical images. 

 

6.6 Map Implementation 

 

There are several options to implement a map used in virtual orienteering. For the 

proof of concept a tile based online map implementation was selected and the tile pro-

vider can be Nokia HERE or OpenStreetMap. By using an online map the information 

is available accurately on demand. An orienteering game can also be used anywhere 

independently on the location of the user. That is due the usage of the global map in-

formation. Typical online maps are not good enough for serious orienteering but they 

demonstrate well the idea behind. The implementation was done in such way that it is 

possible to change to any other implementation e.g. if offline orienteering specific maps 

will be used later on.  

auto resumeItem = MenuItemI-

mage::create("PauseScreen/Resume_Button.png", 

"PauseScreen/Resume_Button(Click).png", 

CC_CALLBACK_1(PauseScreen::Resume, this)); 

auto retryItem = MenuItemI-

mage::create("PauseScreen/Retry_Button.png", 

"PauseScreen/Retry_Button(Click).png", 

CC_CALLBACK_1(PauseScreen::Retry, this)); 

auto mainMenuItem = MenuItemI-

mage::create("PauseScreen/Menu_Button.png", 

"PauseScreen/Menu_Button(Click).png", 

CC_CALLBACK_1(PauseScreen::GoToMainMenuScene, this)); 

    auto menu = Menu::create(resumeItem, retryItem, mainMenuItem, 

NULL); 

    menu->alignItemsVerticallyWithPadding(visibleSize.height / 4); 

    this->addChild(menu); 



 

 

 

45 

 

 

The online map used is constructed from a set of tiles of 256 x 256 pixels. The right set 

of tiles is downloaded on demand based on a desired location. Tiles are available with 

different zoom levels which corresponds the details of the map. For the proof of con-

cept zoom level 17 was selected which shows roughly an area of 100 x 100 meters per 

one map tile (see table 2). With this accuracy creating a map of an area of 1 km x 1 km 

would require 10 x 10 = 100 tiles to be downloaded and in addition occupy 100 sprite 

objects. 

 

Zoom level Scale (meters /pixels) 

15 4.78 

16 2.39 

17 1.19 

18 0.60 

Table 1. Zoom levels and scale (Nokia HERE Developer, 2015:63). 

 

A map scale of zoom level 17 is used because that gives a relatively good view on the 

map. A zoomable map could be utilized but like in normal orienteering the map scale is 

always fixed and that approach has been selected. 

 

The implementation was done utilizing Cocos2d-x layer object that is easy to be re-

placed when needed with another layer object. In the software this is called TileMa-

pLayer. This layer object will take care of fetching necessary tiles online from the de-

fined tile map service. The map layer is constructed from a set of sprite objects. Each 

sprite corresponds one map tile of 256 x 256 pixel. Sprite tiles need to be placed to the 

layer in the right position that map is constructed correctly i.e. map is a construction of 

several tiles. For network operations Cocos2d-x provides two classes called HTTPCli-

ent and HTTPRequest. Using these methods a correct map tile is fetched by HTTP 

request from the server. A map provider request is used together with possible licens-

ing keys. A simplified method without any error handling is shown in the following code 

snippet (Listing 3): 

 



 

 

 

46 

 

 

Listing 3. Fetching tile from tile server 

 

Map tiles are fetched asynchronously and a callback method is called after each down-

load of a tile. This can be seen on Listing 4. An asynchronous request makes it possi-

ble to download tiles in background when part of the map is already shown to the user. 

The user will experience this by seeing map tiles appearing one by one on the screen. 

Callback method will place received map tiles to the matrix in the right order when re-

quest has been fulfilled. A code example is very simple and does not take care of the 

order of the received tiles. In case the tile server responses to the requests are not in 

the same order, the map may be constructed in a wrong order of the received tiles and 

user will see corrupted map. 

void TileMapLayer::fetchOnelineTileXY(int x, int y) 
{ 
     
    // request test image 
    auto request = new HttpRequest(); 
    auto xtiili = std::to_string(x); 
    auto ytiili = std::to_string(y); 
     
    std::string url = 
"http://2.aerial.maps.cit.api.here.com/maptile/2.1/maptile/newest/terrain.day/17/"+xtiili+"/"+ytiili+"/256/p
ng8?app_id=demo&app_code=demo"; 
    request->setUrl(url.c_str()); 
    request->setRequestType(HttpRequest::Type::GET); 
    request->setResponseCallback(CC_CALLBACK_2(TileMapLayer::onHttpRequestCompleted, this)); 
     
    log("TileMapLayer->HTTP request"); 
    auto client = HttpClient::getInstance(); 
    client->enableCookies(NULL); 
    client->send(request); 
    client->setTimeoutForRead(1000); 
     
    request->release(); 
     
} 



 

 

 

47 

 

 

Listing 4. An example of HTTP request 

 

Additional code is needed in order so that map tiles can be placed to the right position 

and a full map can be constructed. Figure 11 shows the principle how tiles are placed 

on a device screen. In the figure, a matrix of 16 x 16 map tiles is used. A map tile near-

est to the user location is placed in the centre of the device screen. Other tiles are 

placed in the relation to the centre tile. Not all tiles can be fit to the visible screen and a 

method for scrolling the map is needed. Figure 10 shows that a map area covers 4096 

x 4096 pixels, which in addition contains tile sprites. These are placed on the Coco2d-x 

layer object. By doing it this way the whole layer can be controlled as one entity e.g. it 

can be zoomed or scrolled in the screen easily as one object by changing its attributes. 

There is no need to control each individual tile sprites after they have been placed on 

the layer object. Origin point (0,0) specifies the left bottom corner of the device screen 

and Cocos2d-x visibleSize object holds information about the maximum coordinate 

of the top right corner of the screen.  

 

void TileMapLayer::onHttpRequestCompleted(cocos2d::network::HttpClient *client,  co-
cos2d::network::HttpResponse *response) 
{ 
    //log("HTTP Response : %ld %s", response->getResponseCode(), response->getHttpRequest()-
>getUrl()); 
     
    if (response->isSucceed()) { 
        std::vector<char>* buffer = response->getResponseData(); 
        auto *image = new Image(); 
        image->initWithImageData(reinterpret_cast<unsigned char*>(&(buffer->front())), buffer->size()); 
        auto *texture = new Texture2D(); 
        texture->initWithImage(image); 
        tileSprite[counter_fetched] = Sprite::createWithTexture(texture); 
        tileSprite[counter_fetched]->setAnchorPoint(Vec2(0,1)); 
        tileSprite[counter_fetched]->setPosition(Point(queue[counter_fetched].x, 
queue[counter_fetched].y)); 
        this->addChild(tileSprite[counter_fetched], 0); 
        counter_fetched++; 
    } 
    else 
    { 
        log("HTTP Request failed : %s", response->getErrorBuffer()); 
    } 

} 



 

 

 

48 

 

 

Figure 10. The placement of map tiles on screen 

 

Calculation of how right tiles can be fetched from the server was described in the theo-

ry part. The implementation was done using a method that finds out the x and y coordi-

nates of the specific map tile based on given longitude and latitude information (See 

Listing 5). 

 

Listing 5. Calculating x and y coordinates of map tile 

 

// Converts longitude to tile x coordinate 
int TileMapLayer::long2tilex(double lon, int z) 
{ 
    return (int)(floor((lon + 180.0) / 360.0 * pow(2.0, z))); 
} 
 
 
// Converts latitude to tile y coordinate 
int TileMapLayer::lat2tiley(double lat, int z) 
{ 
    return (int)(floor((1.0 - log( tan(lat * M_PI/180.0) + 1.0 / cos(lat * M_PI/180.0)) / M_PI) / 2.0 * pow(2.0, 
z))); 
} 

4096 

16*256 

 

  

  

4096 

16*256 

0,0 

visibleSize.height 

visibileSize.width 



 

 

 

49 

 

6.7 Orienteering Track Implementation 

 

Orienteering would not be a game if there were no tracks including checkpoints placed 

on the map and having motivation for the player. Orienteering is played using a track 

containing a starting point and several checkpoints.  Different game modes exist that 

specifies how the track checkpoints are collected. For the proof of concept a very sim-

ple game mode was implemented. In this game all checkpoint coordinates are random-

ly picked near the user location when the game starts.  In practise this does not make 

sense but enables the use of the game anywhere for demonstration purpose. Further-

more a simple “fan” orienteering can be implemented. In this mode (Figure 12) the in-

tention is to find each checkpoint one at the time by returning to the starting place after 

each checkpoint. The track is indicated with red lines to be followed but in practise the 

player would find out the most suitable route on terrain. Typical starting point in orient-

eering is indicated by a triangle symbol to help see where track starts. 

 

 

Figure 11. A fan orienteering track 

 

The track was be implemented with own C++ class that uses random coordinates that 

will be generated when a game is setup. Cocos2d-x layer object was used including 

information about the checkpoints and the track. The reason was same as with the 

map layer case. Each checkpoint has been built as a sprite object and placed on the 

layer to the right place to correspond map coordinates. Checkpoint coordinates are 

based on latitude and longitude information. A right coordinate conversion is done so 

that checkpoint sprites can be placed on the device screen as in Listing 6.  

   

 

 

 
  

 



 

 

 

50 

 

 
Listing 6. Calculating x and y coordinates from latitude and longitude 

   

Normally checkpoints in orienteering are indicated as circle objects. In this game a 

graphical orienteering flag is used instead as a sprite object. Cocos2d-x sprites have a 

specific anchor point. By default an anchor point for Cocos2d-x sprite is in the middle of 

the image.  This can be used to place orienteering flag in the centre of the coordinate 

location when placement is needed exactly in the centre of the object. Mandatory use 

of centre as an anchor point was noticed as it is required by the physics engine of Co-

cos2d-x, which is described in the next chapter. 

 

 

6.8 Using Game Engine Physics 

 

In a virtual orienteering game orienteering checkpoint flags are not visible in a terrain. A 

player location should be known and when the she approaches a virtual flag the sys-

/* 
 calculates point in image when image center is lat&lng corresponds the center 
 */ 
Point TrackLayer::fromLatLngToPoint(double lat, double lng) 
{ 
    // Calculate pixel per degree ratio with Tile size of 256 
    int pixelsPerLonDegree_ = 256 / 360; 
    int pixelsPerLonRadian_ = 256 / (2 * M_PI); 
     
    //auto pointx = origin.x + lng * pixelsPerLonDegree_; 
     
    // Truncating to 0.9999 effectively limits latitude to 89.189. This is 
    // about a third of a tile past the edge of the world tile. 
     
   // auto siny = bound(sin(degreesToRadians(lat)), -0.9999, 0.9999); 
    //auto siny = sin(degreesToRadians(lat)); 
    
    //auto pointy = origin.y + 0.5 * log((1 + siny) / (1 - siny)) * -pixelsPerLonRadian_; 
    
    log("Point lat %f", lat); 
    log("Point lng %f", lng); 
  
    long pointx; 
    long pointy; 
     
    this->latLongToPixelXY(lat, lng, 17, &pointx, &pointy); 
    log("Point x %ld", pointx); 
    log("Point y %ld", pointy); 
     
    return Point(pointx / pixelsPerLonRadian_, pointy / pixelsPerLonRadian_); 

 



 

 

 

51 

 

tem should notify this. This detection can be called as virtual punching or catching the 

flag. The game engines provide ways how this detection can be done. A typical way 

would be to compare the coordinates of the latitude and longitude of the checkpoint to 

the player coordinates. However, this would need an additional logic and would not be 

necessary the optimum way. To benefit game engine features Cocos2d-x implements a 

physics engine (SlackMoeri et al, 2015:95). This engine can be used to simulate phys-

ics to graphics objects (sprites) by e.g. implementing different objects that are falling or 

colliding each other. Collision detection of an object can be used in virtual punching of 

the checkpoints. In this way there is no need to compare location of a player and 

checkpoints but to let physics engine to manage checkpoints and user sprites and find 

out when there is a collision i.e. when user has found the virtual checkpoint. Physics is 

set with own methods and applied for all desired sprite objects separately. To enable 

physics for sprite object Listing 7 shows how this can be done. 

 

Listing 7. Drawing a circle 

In this snippet a circular physics body is applied. As when an object is near another 

object physics engine will compare circular objects together when they collide. In addi-

tion other physical features can be applied for these circular objects if needed. 

 

To specify what happens when collision is happening between sprites can be seen in 

the following code snippet (Listing 7): 

 

 

Listing 8. Applying physics engine 

 

Physics engine specifies callback functions for a collision beginning and ending. In a 

virtual orienteering game it is enough to check when a collision is occurring. When a 

auto body = PhysicsBody::createCircle(playerSprite-

>getContentSize().width/2); 

    body->setContactTestBitmask(true); 

    body->setDynamic(true); 

    playerSprite->setPhysicsBody(body); 

    auto contactListener = EventListenerPhysicsContact::create(); 

    contactListener->onContactBegin = 

CC_CALLBACK_1(GameScreen::onContactBegin, this); 

    contactListener->onContactSeperate = 

CC_CALLBACK_1(GameScreen::onContactSeparated, this); 

    _eventDispatcher-

>addEventListenerWithSceneGraphPriority(contactListener, this); 



 

 

 

52 

 

collision has occurred it can be interpreted that the user has found the virtual check-

point and necessary game related actions could be made. These are book keeping of 

found checkpoints and other needs for the game control. 

 

 

6.9 Location Implementation 

 

Location detection is needed to find out the location of the player and virtual check-

points. After studying available APIs and based on the interpretation Cocos2d-x does 

not provide any location API directly and this needs to be implemented by the game 

designer. Location enabled smartphones can report a GNSS coordinates based on 

latitude and longitude values. In iOS this has been kept on a simple level but in Android 

it is possible to receive also NMEA messages that give more information about the 

satellites. Both platforms can report latitude and longitude values directly in a similar 

manner and a necessary C++ based wrapper class can be implemented that can be 

used in the general Cocos2d-x application. A low-level location API can be done by 

utilizing each platform’s own location framework that is used by a wrapper class. 

 

6.9.1 iOS Location API 

 

Apple iOS developer guide provides Core Location framework (Apple, 2015:Location 

dand Maps programming Guide). A Device location can be acquired using the following 

simple code snipped (Listing 9): 



 

 

 

53 

 

 

Listing 9. Reading location in iOS system 

 

In addition relevant initializations should be made to get the code work correctly. To 

mention that Apple supports nowadays also Swing programming language but that is 

not considered because Swing is not directly compliant with C++ language used by 

Cocos2d-x. In iOS one typical the design pattern is delegate pattern. The code above 

states that a location manager itself is used as delegate and thus taking care of all 

location manager actions. This means that when location updates are started, a loca-

tion manager is listening updates through locationManag-

er:didUpdateLocations: method. IOS provides location information with latitude 

and longitude values that can be used directly without any conversion. 

 

6.9.2 Android Location API 

 

Android supports Location Service and uses Java class system called LocationManag-

er (Android 2015). Location Service provides necessary means and methods for device 

to acquire its location. Listing 10 shows how that can be used. 

- (void)startStandardUpdates 

{ 

    // Create the location manager if this object does not 

    // already have one. 

    if (nil == locationManager) 

        locationManager = [[CLLocationManager alloc] init]; 

 

    locationManager.delegate = self; 

    locationManager.desiredAccuracy = kCLLocationAccuracyKilometer; 

 

 

    // Set a movement threshold for new events. 

 

    locationManager.distanceFilter = 500; // meters 

 

  

    [locationManager startUpdatingLocation]; 

 

} 

 



 

 

 

54 

 

 

Listing 10. Android location manager 

 

First, when a location service is taken into use LocationManager needs to be initiat-

ed and necessary Android Listerners defined. Second, through these listeners a loca-

tion service will send a message about a location update and necessary actions can be 

taken. Also Android provides direct latitude and longitude information in similar manner 

as in iOS case. 

 

To call Android Java methods from native application Java Native Interface call (JNI) 

invocation is required. In JNI C++ method can call a Java method running inside a 

Java virtual machine and respond data back. The following snippet shows how latitude 

and longitude information can be read from an Android Java virtual machine applica-

tion to Cocos2d-x C++ based application (Listing 11). 

// Acquire a reference to the system Location Manager 

LocationManager locationManager = (LocationManager) 

this.getSystemService(Context.LOCATION_SERVICE); 

 

// Define a listener that responds to location updates 

LocationListener locationListener = new LocationListener() { 

    public void onLocationChanged(Location location) { 

      // Called when a new location is found by the network location 

provider. 

      makeUseOfNewLocation(location); 

    } 

 

    public void onStatusChanged(String provider, int status, Bundle 

extras) {} 

 

    public void onProviderEnabled(String provider) {} 

 

    public void onProviderDisabled(String provider) {} 

  }; 

 

// Register the listener with the Location Manager to receive location 

updates 

locationManag-

er.requestLocationUpdates(LocationManager.NETWORK_PROVIDER, 0, 0, loca-

tionListener); 

 



 

 

 

55 

 

 

Listing 11. An example of JNI interface 

 

The actual reading of the location information is performed with a Java based Android 

activity and example of this can be found in Android developer info (Android Developer, 

2015:Location Manager). An example of this can be seen in the Listing 12. 

double Location::getLatitude() 
{ 
    cocos2d::JniMethodInfo methodInfo; 
    if (!cocos2d::JniHelper::getStaticMethodInfo(methodInfo, "org/cocos2dx/cpp/AppActivity", "getLati-
tude", "()D")) { 
        //return 0.0; 
    } 
     
    double jdouble = methodInfo.env->CallStaticDoubleMethod(methodInfo.classID, methodIn-
fo.methodID); 
    methodInfo.env->DeleteLocalRef(methodInfo.classID); 
    return jdouble; 
} 
 
 
double Location::getLongitude() 
{ 
    cocos2d::JniMethodInfo methodInfo; 
    if (!cocos2d::JniHelper::getStaticMethodInfo(methodInfo, "org/cocos2dx/cpp/AppActivity", "getLongi-
tude", "()D")) { 
        //return 0.0; 
    } 
     
    double jdouble = methodInfo.env->CallStaticDoubleMethod(methodInfo.classID, methodIn-
fo.methodID); 
    methodInfo.env->DeleteLocalRef(methodInfo.classID); 
    return jdouble; 
} 



 

 

 

56 

 

 

Listing 12. Reading location in Android 

In this case Java methods are defined as static ones i.e. singleton methods in AppAc-

tivity activity. This activity is created automatically by Cocos2d-x initial project for An-

droid. Java methods are called with a JNI helper method provided by Cocos2d-x and 

where it is also defined what kind of result is expected. Only a double type that corre-

sponds a double precision floating-point number was used although other primitive 

types can be used. Necessary Java methods in Android utilize its Location Framework 

in normal Java enabled way and it can be coded as typical Android application.  

 

6.10 Compass Implementation 

 

Many midrange smart phones or devices contain a suitable magnetometer that can be 

used as compass. For a virtual orienteering game it is not mandatory to use compass 

but it gives nice additional user experience and in addition helps orienteering. A map in 

a device is always pointing to up of the device so use of compass helps to set the de-

vice position to face to the north.   

 

// Acquire a reference to the system Location Manager 

LocationManager locationManager = (LocationManager) 

this.getSystemService(Context.LOCATION_SERVICE); 

 

// Define a listener that responds to location updates 

LocationListener locationListener = new LocationListener() { 

    public void onLocationChanged(Location location) { 

      // Called when a new location is found by the network loca-

tion provider. 

      makeUseOfNewLocation(location); 

    } 

 

    public void onStatusChanged(String provider, int status, Bundle 

extras) {} 

 

    public void onProviderEnabled(String provider) {} 

 

    public void onProviderDisabled(String provider) {} 

  }; 

 

// Register the listener with the Location Manager to receive loca-

tion updates 

locationManag-

er.requestLocationUpdates(LocationManager.NETWORK_PROVIDER, 0, 0, 

locationListener); 

 



 

 

 

57 

 

The electrical compass implementation was kept simple and in a similar manner as API 

was shown previously in the theory part. A separate compass image (needle) was de-

signed so that it can be used as a sprite object on the screen. The compass is basically 

implemented as just turning the sprite angle based on a device orientation compared to 

the magnetic north. The graphical compass is included in HUD layer (Heads Up Dis-

play) that gives other kind of information about the game. Both iOS and Android re-

quires the implementation of APIs that gives heading information for HUD layer so that 

it can display graphical compass sprite correctly. 

 

6.10.1 iOS 

 

Implementing compass on an iOS device is easy. Heading information is supported 

directly with the location framework. Heading gives directly the necessary information 

that can be used to indicate a compass reading. The implementation of this part was 

very straightforward. 

 

6.10.2 Android 

 

Android provides a much lower lever API than iOS for a compass reading and it is not 

granted that each Android device includes a magnetometer.  To access an Android 

magnetometer API a special JNI (Java Native Interface) interface is required in a simi-

lar manner as in acquiring a device location. Only one additional method was required 

to be implemented so that a device reports heading in a similar manner as iOS. For 

Cocos2d-x application reading compass or heading interface is same. The following 

Java code snippet (Listing 13) shows that on an Android device additional calculation is 

required so that a device heading can be read (Meier, 2012)) 



 

 

 

58 

 

 

Listing 13. An example of reading Android sensor 

 

In Android reading of the heading information is based on the combination of a magne-

tometer and a device orientation. The implementation (Listing 13) seems to give quite 

much noise and heading information varies a lot. This makes the compass quite unreli-

able. The heading information could be improved by creating a low-pass filtering func-

tion in order to reduce the noise of the magnetometer reading. 

 

6.11 Summary 
 

Code examples show that a virtual orienteering game can be implemented using the 

Cocos2d-x game engine. A basic orienteering game was made where the user can find 

virtual checkpoints that do not exist on terrain but on a device map and screen. When 

the player moves near to the virtual checkpoint the device will indicate of the check-

point found. For a proof of concept the game mode was kept very simple and more 

final SensorEventListener compassListener = new SensorEventListener() 

{ 

   

   float[] R = new float[9]; 

   

   /** 

    * handler for notifying when heading has changed 

    */ 

   public void onSensorChanged(SensorEvent sensorEvent) { 

      if (sensorEvent.sensor.getType() == Sensor.TYPE_MAGNETIC_FIELD) 

{ 

 //Log.d("Orienteering", "Compass sensed"); 

 orientationValues = sensorEvent.values;   

 SensorManager.getRotationMatrix(R, null, accelerometerVal-

ues, orientationValues); 

 SensorManager.getOrientation(R, orientationValues); 

 orientationValues[0] = (float) 

Math.toDegrees(orientationValues[0]); 

 orientationValues[1] = (float) 

Math.toDegrees(orientationValues[1]); 

 orientationValues[2] = (float) 

Math.toDegrees(orientationValues[2]); 

 //Log.d("Orientgames", "orientation 

"+orientationValues[0]+" "+orientationValues[1]+" 

"+orientationValues[2]); 

 heading = (int) orientationValues[0]; 

 if (heading < 0) heading = heading + 360; 

       } 

   } 

   

   public void onAccuracyChanged(Sensor sensor, int accuracy) { 

   } 

}; 



 

 

 

59 

 

advanced orienteering games are left out of the scope for potential future implementa-

tions.  

 

Cocos2d-x game engine supports necessary navigation between menu and game 

screens and the scaling of graphics to various device screen sizes. The game engine 

provides a sprite mechanism that can be used to display different graphical information. 

Additional functions were implemented on top of Cocos2d-x so that it can be used to 

implement a virtual orienteering game. The first one was a map implementation based 

on an online tile map. Methods were created to support fetching online map information 

from the Nokia HERE maps server. Secondly, track information was created as an 

overlay on top of map information. Both the map and the track were implemented as 

Cocos2d-x graphical layers.  Cocos2d-x functionally needed augmentation so that user 

location and compass information can be read. Both iOS and Android require their own 

API implementation and a certain wrapper class is needed so that location and heading 

information can be used device agnostically. 

 

The actual game consists of checkpoints and a user that needs to find and reach the 

checkpoints. The intention was that when a gamer reaches a certain checkpoint this is 

implemented as a collision between a gamer sprite and a checkpoint sprite.  A collision 

detection of different game objects (sprites) can be done in several ways. The first way 

to come up was to match when pixel locations of the two or more sprites are at same 

coordinate. To code this kind of a feature would require an additional logic to select 

which conditions are valid for real collision. Nowadays many games use a physics en-

gine. This can be seen in games where something is falling from the sky or colliding to 

something else.  Cocos2d-x includes a physics engine called Chipmunk (or the other 

one) that is used to simulate different objects movements typically in the earth gravity 

system. For orienteering this feature was not used because all objects lie on the elec-

tronic map. To benefit of the physics engine in this game is that it can be used to find 

out “collision” of the user orienteering and the checkpoints of the map. 

 

A virtual orienteering game was implemented by combining different pieces together 

where typical game features (such as menus and graphics) could be done directly by 

Cocos2d-x supported functions and with additional location and compass functions. 

The actual game implemented is an orienteering game where intention is to find 

checkpoints on the map in a predefined or random order. To make this more interesting 



 

 

 

60 

 

and demonstrative, flags can be collected in free order. The purpose in this case is not 

to follow the track in an orienteering way i.e. finding checkpoints in the predetermined 

order. However, it is still important to find the checkpoints. 

 

 

  



 

 

 

61 

 

7 Results and Analysis  

 

As a result the proof of concept game of virtual orienteering was created. The game 

can be run on both iOS and Android platforms. The implementation contained basic 

components of any game and was constructed as a typical game application created 

with Cocos2d-x. This included a menu system and simple graphics that can be scaled 

to several screen sizes. The game uses an online map provider, which in the game can 

be selected but is hardcoded in the source files.  As an example Nokia HERE map was 

used as the primary online map provider. In addition a map proxy server providing 

OpenStreet map tile had been used (Figure 12).  

 

The objective of the proof of concept game is to find all orienteering flags, which have 

been randomly placed on the map when the game starts. The player symbol is visible 

all the time on the map so it easy to follow where the smartphone is located at the mo-

ment.  A simple scoring system was used to indicate how many flags are to be found 

and how many have been already found. The game could be paused and continued. 

The new game starts always by the loading of the map tiles from the online map server 

and randomly placing orienteering flags on the screen.  

 

The implementation demonstrated that the Cocos2d-x game engine could be used for 

developing a virtual orienteering game. The game engine provided necessary graphical 

functions that software can be run on various screen sizes and devices. The applica-

tion part of the software had been made using C++ programming language that can be 

used in both Android and iOS environments without any major modifications. The proof 

of concept application used a single code base with necessary platform dependent 

modifications. These modifications were done in order to read hardware related infor-

mation such as the magnetometer and device location information and platform de-

pendent code was used to cover this part. The map part of the application has been 

done using general methods (such as sprites) provided by Cocos2d-x directly.  Any 

platform dependent changes were not needed when implementing the map part. 

 



 

 

 

62 

 

 

Figure 12. Screenhot of the map scene 

 

All device manufactures provide their own tools and development environments to de-

velop software to their devices. This would be a long road because several code based 

would be needed to develop. An application designer would need additional skills and 

effort so that a similar user experience could be achieved. Cocos2d-x suited well to 

program virtual orienteering game to several platforms and supports various other 

ways to implement portable applications.  

 

During the implementation it was noticed how easily a virtual orienteering mini game 

can be done using Cocos2d-x game engine. Additional skills were needed to program 

with C++ programming language because that is not used by primary iOS and Android 

development environment. So if the programmer knows Android and iOS development 

there is a need to study Cocos2d-x in addition. Because Cocos2d-x uses a own pattern 



 

 

 

63 

 

of developing the games there was no need to concentrate on developing C++ skills 

further and programming with C++ should not be a barrier. 

 

Cocos2d-x is a commonly used game engine and lots of books and resources are 

available through the Internet. The learning curve is short and different kind of games 

can be programmed with low effort. During the study and the implementation the ver-

sion of Cocos2d-x evolved from 3.2 to 3.6 and at the time being version 3.7 is out. This 

required some additional work with the implementation to upgrade the development 

environment now and then and some parts of the code. The most the adaptation work 

was needed in the Android system because C++ programming language cannot be 

directly used in the applications interfacing directly the location and magnetometer sys-

tems. The both hardware adaptations required in iOS and Android was kept as simple 

as possible and lots of error handling or performance optimization was dropped off. 

 

The proof of game implemented the bare minimum for a virtual orienteering game and 

lots of additional features can be developed further. Perhaps the most important could 

be to use a real world orienteering map or a self-made artificial map of the terrain. 

There are also other applications where the results of this game could be used. Several 

geocaching or tourist applications could benefit of similar functions as implemented 

here and make the benefit of code once run everywhere. 

 

 

 

 

  



 

 

 

64 

 

8 Conclusions  

 

At the beginning it was not sure how well a virtual orienteering game could be created 

using Cocos2d-x. The idea of using a freely available game engine that supports multi-

ple device platforms was found to be an interesting subject to study. As virtual orient-

eering has not been widely implemented and it is not known if anyone has yet used a 

game engine for the implementation of this kind of an application this study was seen 

feasible. As a conclusion, a virtual orienteering game application can be implemented 

as a kind of serious game application to a smartphone.  

 

Cocos2d-x is an open source game engine that can be expanded relatively easily to 

support functions required by virtual orienteering. Adaptations for iOS and Android 

environment to support functions needed by virtual orienteering were easy to imple-

ment. However that required studying a bit of the low level architecture of both sys-

tems and mechanisms how native applications are created with both systems. In the 

iOS system the benefit was to study or know some of the Objective-C environment so 

that the necessary adaptations could be made. The situation is the same with Android. 

In Android it is recommended to know how a typical Java based application is made 

prior to moving to program hardware related adaptations or native applications. 

 

Creating the software-based bridge between different systems requires some 

knowledge of the C/C++ programming language because Cocos2d-x applications are 

created using that. However, comprehensive skills are not needed. During the imple-

mentation the version of Cocos2d-x evolved from version 3.2 to 3.6. That caused quite 

many problems with the implementation because some versions of the Cocos2d-x did 

not run well with both the iOS and Android systems. The most practical problems were 

faced with Android development and were caused by the bugs lying in the base Co-

cos2d-x. Problems such as using bitmap fonts caused the Android system to crash and 

the only solution was to wait for a newer version of Cocos2d-x. The Cocos2d-x 3.x ver-

sions are still sort of development versions and the programmer needs to study and 

follow an open source society quite tightly to overcome the problems caused by bugs 

in the game engine itself. In many cases bugs solutions were found in Web forums 

discussing Cocos2d-x.  

 



 

 

 

65 

 

At the end a proof of concept game could be made that could be run on multiple iOS 

and Android devices. The variation of Android devices is huge and finding support for 

all available and different screen sizes and hardware would still require additional pro-

gramming and testing. Furthermore, the programming of the Android magnetometer 

was a challenge because very few devices used for testing contained a magnetometer. 

It was also found out that magnetometers are quite noisy causing the compass needle 

to be unstable and this could be overcome by adding low-pass filtering. In addition, 

acquiring the user location in an Android device had lots of variation. Even with the A-

GPS enable devices it took sometimes a long time for an Android device to “lock” its 

position. To get the best user experience in the virtual orienteering it would require the 

use of high-end devices having good and supportive hardware. At the end of the day 

this is somewhat a drawback and sets the limitation of what kind of a device can be 

used for the purpose of virtual orienteering. 

 

The Cocos2d-x game engine supports several other platforms e.g. Microsoft Windows 

Phone. The estimated workload to support Windows Phone or other platforms would 

be low. Most likely the approach would be similar with the Android environment. In 

that sense the use of Cocos2d-x looks even more attractive because the same applica-

tion would be adapted relatively easily to support a Windows Phone.  

 

The topic of the study was to find the answer to the research question how Cocos2d-x 

game engine could be used for implementing a virtual orienteering game. For the final 

conclusion the answer had been found. A virtual orienteering game using Cocos2d-x 

can be implemented easily but requires programming of additional hardware depend-

ent adaptations. After necessary adaptations the actual Cocos2d-x application can be 

deployed and run on multiple different platforms using one single code base. Also Co-

cos2d-x can be seen a valid engine for other types of serious game development. 

 

 
 
 
 
  



 

 

 

66 

 

References 

 

Android Developer pages. Available http://developer.android.com and 

http://source.android.com. [Accessed 22 Februaty 2015]. 

 

Apple (2015). Apple Appstore. Application Store. Available 

http://www.apple.com/fi/itunes/. [Accessed 26 Appril 2015]. 

 

Apple Developer pages. Available http://developer.apple.com. [Accessed 22 February 

2015]. 

 

Bronson Gary J. (2010). C++ For Engineers & Scientists. Third Edition. 

 

Cocos2d-x Developer Pages. Available http://www.cocos2d-x.org. [Accessed 22 Feb-

ruary 2015]. 

 

Engelbert Roger (2013). Cocos2D-x By Example Beginner’s Guide. Packt Publishing. 

Kindle edition. 

 

Google (2015). Google Play. Application store. Available https://play.google.com. [Ac-

cessed 26 Appril 2015]. 

 

Google Maps for Ios, Available https://developers.google.com/maps/documentation/ios/ 

[Accessed 22 February 2015]. 

 

Häggman, Bjarne, Mäkinen, Matti, and Oikarinen, Erkki (1981). Suunnista luontoon. 

Suunnistajan käsikirja. WSOY. 

 

Harvey, Francis (2008). A primer of GIS, Fundamental Geographics and cartographic 

concepts. The Guilford Press.  

 

Hussain, Frahaan, Gurung, Arutosh, and Jones, Gareth (2014). Cocos2d-x Game De-

velopment Essentials. Packt Publishing. Kindle edition.  

 

http://developer.android.com/
http://source.android.com/
http://www.apple.com/fi/itunes/
http://www.cocos2d-x.org/
https://play.google.com/
https://developers.google.com/maps/documentation/ios
https://developers.google.com/maps/documentation/ios


 

 

 

67 

 

International Orienteering Federation, About Orienteering, IOF.  Available 

http://orienteering.org. [Accessed 28 February 2015]. 

 

International Specification for Orienteering Maps, International Orienteering Founda-

tion, IOF.  Available http://orienteering.org. [Accessed 2 February 2015]. 

 

Iuppa, Nick, and Borst, Terry (2010). End-to-End Game Development. 

 

Lonka, Eero-Antti (2012). Pihakartan kuvausohjeet. Suomen Suunnistusliitto. 

 

Meier, Reto (2012). Proferssional Android 4 Application Development. Wronx. 

 

Microsoft, Bing Maps Tile System, Harvey, Available http://msdn.microsoft.com. [Ac-

cessed 14 March 2015].  

 

Mistra, Pratab, Enge, Per (2011). Global Positioning System, Signals, Measurements, 

and Performance, Ganga-Jamuna Press. 

 

Muzykov, Kirill (2014). Learning iPhone Game Development with Cocos2D 3.0. Pact 

Publishing. Kindle edition. 

 

Nahavadinpoor, Vandad (2013). The iOS 7 Programming Cookbook, O’Reilly 

 

Nikulainen, Pekka, Vartiainen, Börje, Salmi, Janne, Minkkinen, Juha, Laaksonen, Petri, 

and Inkeri, Jukka (1995). Suunnistustaito. Suomen Suunnistusliitto. 

 

Nokia, Map Tile Developer’s Guide, Version 2.1.60.0, Available 

http://developer.here.com. [Accessed 6 April 2015].  

 

Open Geospatial Consortium Inc. (2010). OpenGIS® Web Map Tile Service Implemen-

tation Standard, Version: 1.0.0. OpenStreetMap Foundation. Available 

http://wiki.osmfoundation.org/wiki/Main_Page. [Accessed 22 February 2015]. 

 

OpenStreetMap (2015). OpenStreetMap. Available https://www.openstreetmap.org. 

[Accessed 22 February 2015]. 

http://orienteering.org/
http://orienteering.org/
http://msdn.microsoft.com/
http://developer.here.com/
http://wiki.osmfoundation.org/wiki/Main_Page
http://wiki.osmfoundation.org/wiki/Main_Page


 

 

 

68 

 

 

Rogers, Scott (2014). Level UP! The Guide To Great Video Game Design. Wiley. Kin-
dle edition. 

 

Schirme, Maximilian, Höpfner, Hagen, Smartphone Hardware Sensors, Mobile Media 

Group.  Available https://www.uni-weimar.de/medien/wiki/images/Zeitmaschinen-

smartphonesensors.pdf. [Accessed 1 March 2015]. 

 

Shekar, Siddharth (2014). Learning Cocos2d-x Game Development. Packt Publishing. 
Kindle edition. 

 

SlackMoehrle, Ricardo, Justin, Nite, Kai, Minggo, Wenhai, Tony, Yingtao, Rao (2015). 
Cocos2d-x Programmers Guide v3.3. Available http://www.cocos2d-
x.org/programmersguide/ProgrammersGuide.pdf. [Accessed 29 June 2015].  

 

Sylvain, Ratabouild (2010). Android NDK, Beginner’s Guide, Packt Publishing, Kindle 

edition. 

 

Tufró Francisco (2013). Developing Mobile Games with MOAI SDK. Packt Publishing. 

 

Van Diggelen, Frank (2009). A-GPS Assisted GPS, GNSS, and SBAS. GNSS Tech-

nology and Applications series. 

 

 


