Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomi
  • Svenska
  • English
  • Kirjaudu
Hakuohjeet
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Ammattikorkeakoulut
  • Jyväskylän ammattikorkeakoulu
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite
  •   Ammattikorkeakoulut
  • Jyväskylän ammattikorkeakoulu
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite

Impact of Generative Artificial Intelligence in Software Development Life Cycle : A Mixed-Methods Study in Finland and Abroad Using Concurrent Triangulation Design Approach

Mohamed, Fahad Hamad Rashid (2025)

 
Avaa tiedosto
Mohamed_Fahad.pdf (1.645Mt)
Lataukset: 


Mohamed, Fahad Hamad Rashid
2025
All rights reserved. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:amk-2025051311244
Tiivistelmä
Generative Artificial Intelligence (AI) is revolutionising the Software Development Life Cycle (SDLC) by enhancing productivity, efficiency, and collaboration, especially in coding, testing, and documentation. This study examines the adoption and impact of generative AI tools in SDLC phases within Finland and internationally, aiming to address the growing integration of AI in software development. The research was conducted to assess how AI influences SDLC phases, exploring both its advantages and challenges. A mixed-methods approach with a concurrent triangulation design to validate and cross-verify findings was employed. It combined surveys and secondary data to provide a comprehensive understanding. The quantitative survey analysed adoption rates and user perceptions, while secondary data validated the findings with broader industry perspectives. Findings reveal that AI significantly improves coding and testing efficiency, but adoption remains limited in earlier phases like requirement gathering and design due to complexity and subjectivity. Developers widely adopt AI for routine tasks, reporting increased productivity, though they express concerns about job displacement, data security, and ethical risks. These results highlight the importance of improving AI's reliability and contextual understanding to maximise its potential. Addressing these challenges could pave the way for AI's broader adoption in software development. Future research should focus on advancing AI capabilities in early SDLC phases, such as requirement gathering, to enhance its value in complex tasks.
Kokoelmat
  • Opinnäytetyöt (Avoin kokoelma)
Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatKoulutusalatAsiasanatUusimmatKokoelmat

Henkilökunnalle

Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste