Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomi
  • Svenska
  • English
  • Kirjaudu
Hakuohjeet
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Ammattikorkeakoulut
  • Yrkeshögskolan Arcada
  • Opinnäytetyöt (Käyttörajattu kokoelma)
  • Näytä viite
  •   Ammattikorkeakoulut
  • Yrkeshögskolan Arcada
  • Opinnäytetyöt (Käyttörajattu kokoelma)
  • Näytä viite

Tumor Detection in Distributed Data Silos

Khan, Muhammad Irfan (2023)

 
Avaa tiedosto
Khan_Irfan.pdf (690.7Kt)
Lataukset: 

Rajoitettu käyttöoikeus / Restricted access / Tillgången begränsad
Khan, Muhammad Irfan
2023
All rights reserved. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:amk-2023060117081
Tiivistelmä
This thesis focuses on a computer vision problem of tumor detection from magnetic resonance images in federated learning settings and investigates the performance of using different subsets of collaborators in each federated learning round. The benchmark dataset used is from Brats (Brain Tumor Segmentation) initiative. The experiments using two different aggregation algorithms show that using a smaller subset of collaborators, such as 10\%, can achieve comparable performance to using a larger subset, such as 30\%. This finding suggests that it is practical and pragmatic to use a subset of collaborators in each federated learning round in large-scale industrial applications. This approach reduces computational cost while still improving the global model in an iterative fashion. The optimal subset of available collaborators may vary depending on the specific application specially collaborators data. Therefore, it's essential to experiment with different available collaborator subset sizes and evaluate their footprint on the overall performance of the federated learning system. This work contributes to the field of federated learning and provides insights into its practical implementation in real-world scenarios.
Kokoelmat
  • Opinnäytetyöt (Käyttörajattu kokoelma)
Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatKoulutusalatAsiasanatUusimmatKokoelmat

Henkilökunnalle

Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste