Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomi
  • Svenska
  • English
  • Kirjaudu
Hakuohjeet
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Ammattikorkeakoulut
  • Jyväskylän ammattikorkeakoulu
  • Opinnäytetyöt (Käyttörajattu kokoelma)
  • Näytä viite
  •   Ammattikorkeakoulut
  • Jyväskylän ammattikorkeakoulu
  • Opinnäytetyöt (Käyttörajattu kokoelma)
  • Näytä viite

Rare Arrhythmia Diagnosis Using Synthetic ECG Data

Rabbi, Golam Fazle; Wadud, Abdul; Shamsuddin, Rittika (2025)

 
Avaa tiedosto
Rabbi_GolamFazle.pdf (2.551Mt)
Lataukset: 

Rajoitettu käyttöoikeus / Restricted access / Tillgången begränsad
Rabbi, Golam Fazle
Wadud, Abdul
Shamsuddin, Rittika
2025
All rights reserved. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:amk-2025053018576
Tiivistelmä
In cardiovascular healthcare, an accurate diagnosis of cardiac arrhythmias is needed to reduce mortality due
to heart diseases and enhance clinical results. Although deep learning-based automated electrocardiogram
(ECG) classification has demonstrated encouraging outcomes, the detection of uncommon and potentially
fatal arrhythmias is still very difficult to classify because of the scarcity of data and the obvious class
imbalance among classes. Due to these constraints, machine learning models frequently perform poorly
when it comes to identifying minority classes. For example—third-degree atrioventricular block, ventricular
tachycardia, and ventricular fibrillation disorders are difficult to classify because of their rarity and
necessitate immediate medical attention (Rajpurkar et al., 2017; Liu et al., 2023).
To overcome the lack of data in rare arrhythmia classes, this study suggests a unique architecture that makes
use of synthetic data production via a Guided Evolutionary Synthesiser (GES). GES can generate high-fidelity
ECG signals with little annotation needed, maintaining class-specific characteristics crucial for clinical
differentiation, in contrast to traditional GAN-based methods that require large labelled datasets and are
computationally demanding (Abhishek et al., 2018). To improve class representation, the artificial ECG signals
are added to the training set after being verified by statistical and expert-driven methods. The synthetic
signals are validated and integrated into the training set to increase the availability of data for three distinct
rare arrhythmia groups.
This research uses a deep neural network adapted to ECG time-series data that is based on ResNet-50 for
ECG classification. To guarantee resilience against class imbalance, the model integrates sophisticated
training techniques such as class-weighted loss functions and hyperparameter optimisation (Romdhane & Pr,
2020). Each class measures its performance with accuracy, sensitivity, specificity and F1-score with a
particular emphasis on improving the diagnosis of under-represented arrhythmias. Results show that the
suggested GES-augmented training pipeline significantly improves performance across all parameters for
rare arrhythmia classes. The efficacy of the synthetic data augmentation approach is validated by the GES-
enhanced model’s better F1-scores and sensitivity for minority classes when compared to the baseline model
trained without synthetic data.
Kokoelmat
  • Opinnäytetyöt (Käyttörajattu kokoelma)
Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatKoulutusalatAsiasanatUusimmatKokoelmat

Henkilökunnalle

Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste