Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomi
  • Svenska
  • English
  • Kirjaudu
Hakuohjeet
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Ammattikorkeakoulut
  • Yrkeshögskolan Arcada
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite
  •   Ammattikorkeakoulut
  • Yrkeshögskolan Arcada
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite

Additive Manufacturing (3D Printing) - A Potential Future for Tennis Racket Production : Could 3D Printing / Additive Manufacturing eventually replace the current manufacturing method?

Kollataj, Julian (2017)

Avaa tiedosto
ataj - Thesis - vFINAL - Additive Manufacturing 3D Printing - Future of Tennis Racket Production.pdf (14.14Mt)
Lataukset: 


Kollataj, Julian
Yrkeshögskolan Arcada
2017
All rights reserved
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:amk-2017053011031
Tiivistelmä
Currently, tennis racket production is lengthy and labour-intensive, using carbon composite
materials, produced mainly in the Far East to keep production costs low, keep companies
competitive and profitable.

The main objective of this thesis was to establish what production advantages additive
manufacturing (AM) could have, if it were to become the new generally-accepted method of racket
production.

The method involved understanding aspects of innovation, racket production history, 3D printing
(3DP) history, types, and solid modelling, to produce a standard tennis racket design process
framework, to then produce a standard, full-length, 1:1 scaled, tennis racket prototype – including final assembly parts for the stringing of the racket – made of PA2200 Nylon, within the constraints of a SLS (Selective Laser Sintering) 3DP machine. An aesthetically different variant of the original “basic” model, keeping within the external surface boundaries of the racket’s main body, was produced to highlight the potential of future racket production with 3DP.

Theoretically, a standard tennis racket of 685.8 mm, could have been produced as one part, in the
then-largest, commercially-accessible SLS 3D printing machine, the EOSINT P760, whose length
is 700 mm (according the manufacturer’s (EOS) documentation). However, the key technical
challenge, was that the racket length dimension exceeded 650 mm (the limitation set by the service provider, Shapeways) to limit production risk associated with large parts.

The solution resulted in a multi-part racket, designed in Dassault Systèmes’ SolidWorks: The main
part was set to a length of 650 mm, while one removable “Outer Grip”, which, when produced
twice, and added to the final assembly, would create the grip. Once the “Basic” model was created, including grommets and bumpers, the variant, “Hexa”, could be designed and produced, keeping in mind that the Basic’s bumpers, grommets, and grips, could be interchangeable between rackets.
By comparing two current production methods, by production activities, the ability to produce
custom-designed and -produced 3D printed rackets, production could require less labour,
machinery and tools at the production site, while resulting in innovation developing more rapidly, giving focus to creativity, and potentially, the democratization of racket design and production.
Kokoelmat
  • Opinnäytetyöt (Avoin kokoelma)
Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatKoulutusalatAsiasanatUusimmatKokoelmat

Henkilökunnalle

Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste