Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomi
  • Svenska
  • English
  • Kirjaudu
Hakuohjeet
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Ammattikorkeakoulut
  • Centria-ammattikorkeakoulu
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite
  •   Ammattikorkeakoulut
  • Centria-ammattikorkeakoulu
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite

Deep learning approach in food detection : An application for nutrition tracking

Loc, Hoang (2021)

 
Avaa tiedosto
Hoang Loc (2.306Mt)
Lataukset: 


Loc, Hoang
2021
All rights reserved. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:amk-202104195093
Tiivistelmä
Tracking food intake can give insights into eating habits, hence it is useful to confront the rising public health threat of obesity and overweight. Because of high pace of modern life, people usually do not have time for manually recording their daily meals. Therefore, it is necessary to have an application which can accelerate the tracking process by automatically detecting foods from input image, collecting nutrition facts and recording. Deep learning methods have already proved promising in the food detection challenge. Among these methods, TensorFlow Object Detection API is an open-source framework, consists of many pre-trained models that can be used to train and deploy a custom object detection model. Furthermore, there are some pre-trained models uses the MobileNet which is an efficient convolutional neural network for mobile vision applications.

The project uses aforementioned framework for training with modified UECFOOD-256 dataset, which is reduced from 256 classes in original dataset to 10 classes. The obtained model can detect and localize 10 types of food present in image. After that, the model is used in web application which is developed responsive for both mobile and desktop devices. Its aims are detecting food object, summarizing total nutrition, recording to database, and providing insight for users.
Kokoelmat
  • Opinnäytetyöt (Avoin kokoelma)
Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatKoulutusalatAsiasanatUusimmatKokoelmat

Henkilökunnalle

Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste