Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomi
  • Svenska
  • English
  • Kirjaudu
Hakuohjeet
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Ammattikorkeakoulut
  • Yrkeshögskolan Arcada
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite
  •   Ammattikorkeakoulut
  • Yrkeshögskolan Arcada
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite

Operational State Recognition of a Rotating Machine Based on Measured Mechanical Vibration Data

Junttila, Jukka (2021)

 
Avaa tiedosto
Operational State Recognition of a Rotating Machine Based on Measured Mechanical Vibration Data (3.701Mt)
Lataukset: 


Junttila, Jukka
2021
All rights reserved. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:amk-2021060314066
Tiivistelmä
Digital twin is a relatively new concept. Also, it lacks a formal definition and can be applied in virtually any field of technology. Considering digital twins of rotating machines, and especially the in-service phase of their lifecycle, a digital twin should produce valuable information for the owner and operator of the application. The information produced by a digital twin should be accurate, up-to-date, and available anywhere. These requirements act as limiting factors for the complexity of the digital twin and promote the need for efficient data transfer, data acquisition and especially data processing methods at the source of information.
This study investigates how these requirements can be fulfilled in continuous, near real-time operational state recognition of a gas engine genset. Therefore, the objective of this study is to provide a data-based model for operational state recognition and detection of abnormal operation of a gas engine generating set in near real-time.
Two different types of machine learning models for the state recognition of the generating set are presented. The first, a classification model, can identify the current power output level of the generating set using the measured mechanical vibration data. The second, a novelty detection model, can detect abnormal operation of the generating set, in fault situations, at a specific power output level. A two-step state recognition model can be built by combining the classification and novelty detection models.
Kokoelmat
  • Opinnäytetyöt (Avoin kokoelma)
Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatKoulutusalatAsiasanatUusimmatKokoelmat

Henkilökunnalle

Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste