Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomi
  • Svenska
  • English
  • Kirjaudu
Hakuohjeet
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Ammattikorkeakoulut
  • Jyväskylän ammattikorkeakoulu
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite
  •   Ammattikorkeakoulut
  • Jyväskylän ammattikorkeakoulu
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite

Using Artificial Intelligence (AI) to Manage Buyer Persona in E-commerce based on Kotler & Keller’s 2016 Model of Consumer Behaviour: Studying Consumer behaviour in E-commerce through Archival Research based on Secondary Data in form of Relevant Publications.

Okonkwo, Kosisochukwu (2024)

 
Avaa tiedosto
Okonkwo_Kosisochukwu.pdf (1.812Mt)
Lataukset: 


Okonkwo, Kosisochukwu
2024
All rights reserved. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:amk-2024060119620
Tiivistelmä
Consumer behaviour has long been an interesting area of research, particularly in the rapidly evolving e- commerce environment, where technological advancements have created new opportunities and challenges. Understanding the factors behind consumer actions is crucial for businesses to navigate this dynamic landscape successfully and stay competitive. The study primary objectives were to examine the key factors influencing consumer behaviour, as proposed by Kotler and Keller's 2016 model, and to identify specific AI techniques and tools capable of analyzing and comprehending buyer personas in e-commerce. An inductive approach based on interpretivism philosophy was adopted, utilizing secondary data from relevant publications for a longitudinal time zone. Data analysis was conducted using Nvivo 12. The results revealed various factors influencing consumer behaviour, including price sensitivity, cultural influences, ideologies, demographic variables, marketing advertisements, reviews and feedback, personalization initiatives, and brand image. Additionally, some AI tools and techniques that could be used to understand and predict consumer behaviour were identified, such as predictive analytics, chatbots, algorithms, automated recommender systems, Machine Learning (ML), Natural Language Processing (NLP), Convolutional Neural Networks (CNN), Text Mining techniques, Bayesian models, and automated data analytics. The research contributes to a comprehensive understanding of consumer behavior in e- commerce and highlights AI tools and techniques that businesses can utilize to effectively manage consumer behavior in the e-commerce environment. In addition, the study recommends future research into a specific sector of e-commerce, using primary data and a deductive approach to investigate consumer behaviour based on the type of product or service offered.
Kokoelmat
  • Opinnäytetyöt (Avoin kokoelma)
Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatKoulutusalatAsiasanatUusimmatKokoelmat

Henkilökunnalle

Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste