Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomi
  • Svenska
  • English
  • Kirjaudu
Hakuohjeet
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Ammattikorkeakoulut
  • Yrkeshögskolan Arcada
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite
  •   Ammattikorkeakoulut
  • Yrkeshögskolan Arcada
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite

Image-Based Evaluation of Fiber volume fraction in Composite Cross Sections

Ravichandren, Sivamayuran (2025)

Avaa tiedosto
Ravichandren_Sivamayuran.pdf (6.438Mt)
Lataukset: 


Ravichandren, Sivamayuran
2025
All rights reserved. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:amk-2025053018736
Tiivistelmä
This thesis introduces an innovative, non-destructive way for measuring fiber volume fraction in filament-wound composite tubes using microscopic image analysis and Python-based automation. Recognizing fiber volume fraction's crucial role in defining composite mechanical behavior, the study proposes a digital technique that outperforms traditional destructive testing in terms of precision, repeatability, and efficiency. A carefully structured procedure was carried out on glass fiber composite samples provided by L-Tec Sport, including sample polishing, multi-magnification optical microscopy, and greyscale threshold-based segmentation. Python
modules such as OpenCV, NumPy, and Matplotlib were used to classify fibers, matrix, and voids, allowing for pixel-level examination of microstructure with minimal input from users. What highlights this work is the combination of statistical fiber diameter analysis (from over 200 hand-measured fibers, ranged from 29 to 39 pixels) with automated pixel-based fiber volume fraction computation, resulting in findings that nearly match manufacturer data 50-60%. The Python-derived fiber volume fraction values varied from 52% to 55%, while hand computations produced 46-54%. A ±1 pixel inaccuracy in fiber diameter may affect area estimations by up to 77.8% at lower magnifications (magnification of 25X), emphasizing the importance of balancing resolution and accuracy at 100X magnification, the error percentage reduces to less than 5%, indicating the lowest measured error. Edge-based approaches, such as Canny detection, were investigated, but they failed to provide a reliable result. This research is mix of digital image analysis and engineering knowledge establishes a compelling new benchmark for composite material evaluation.
Kokoelmat
  • Opinnäytetyöt (Avoin kokoelma)
Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatKoulutusalatAsiasanatUusimmatKokoelmat

Henkilökunnalle

Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste