Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomi
  • Svenska
  • English
  • Kirjaudu
Hakuohjeet
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Ammattikorkeakoulut
  • Satakunnan ammattikorkeakoulu
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite
  •   Ammattikorkeakoulut
  • Satakunnan ammattikorkeakoulu
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite

Detecting and Explaining Performance Differences and Cycle Time Variability in Industrial Robots Using Multivariate Machine Learning Models

Ranbandi Dewage, Bhagya Lakmini Karunarathne (2025)

 
Avaa tiedosto
Dewage_Bhagya.pdf (4.916Mt)
Lataukset: 


Ranbandi Dewage, Bhagya Lakmini Karunarathne
2025
All rights reserved. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:amk-2025072423668
Tiivistelmä
Modern material handling relies heavily on automation, so it is important to understand why some robots complete tasks faster and more efficiently than others. This thesis looks at performance differences and cycle time variation in customized gantry robots built by Cimcorp Oy. The analysis uses machine learning models and real-world data collected from eight robots over a long period of operation.

The full dataset was divided into eight groups based on different working conditions, and two operating states were chosen for detailed study. Each dataset included numeric signal data from individual robot cycles. Time-based features were removed to focus on internal signals, and all signal names were anonymised to protect the client’s confidentiality.

A supervised XGBoost regression model was used to predict cycle times in both selected conditions. The model gave high predictive accuracy, with R² values of 0.92 and 0.77. To understand which signals had the biggest impact on cycle time, SHAP (SHapley Additive exPlanations) and Sobol sensitivity analysis were used. PCA (Principal Component Analysis) was also used to find patterns in robot behaviour and show how different robots performed under the same conditions.

These results show that machine learning, combined with explainable AI methods, can help predict and understand differences in robot performance. The model's reliability was further confirmed by testing on new unseen data, and an additional efficiency ranking method was developed using predicted versus actual cycle times to highlight robot level performance differences. This approach supports improved monitoring, decision making, and operational efficiency in industrial automation systems.
Kokoelmat
  • Opinnäytetyöt (Avoin kokoelma)
Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatKoulutusalatAsiasanatUusimmatKokoelmat

Henkilökunnalle

Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste