Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomi
  • Svenska
  • English
  • Kirjaudu
Hakuohjeet
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Ammattikorkeakoulut
  • Centria-ammattikorkeakoulu
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite
  •   Ammattikorkeakoulut
  • Centria-ammattikorkeakoulu
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite

AI-driven diagnostics: accuracy vs. ethical considerations

Ayoubi, Salma (2025)

 
Avaa tiedosto
Ayoubi_Salma.pdf (1.051Mt)
Lataukset: 


Ayoubi, Salma
2025
All rights reserved. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:amk-2025121536469
Tiivistelmä
Artificial intelligence (AI) is transforming the work of a healthcare provider, providing physicians with an opportunity to diagnose and treat patients differently. This thesis explores the application of deep learning in medical imaging in a responsible way, using as a case study the brain-tumour segmentation. To enhance accuracy and reduce bias, a U-Net model was trained using the Brain Tumor MRI dataset (Nickparvar, 2021) that is normalized, augmented, and crossvalued. This model obtained a Dice score and an IoU of 0.961 and 0.937, respectively, which indicated that the model segmented the tumours effectively and reliably. Although the results were strong, the real challenge was to keep the system within ethical and legal limits during its design.

All patient data were anonymized before training, and checks were performed to ensure that the model treated each case fairly. To comply with GDPR requirements, audit trails were implemented so that every experiment could be traced if necessary. These measures went beyond administrative compliance, demonstrating that trust in medical AI is rooted in careful and transparent practice. Ultimately, accuracy alone does not make a system responsible; what matters is that the technology is developed fairly and openly, and that it respects the individuals whose data make the research possible.
Kokoelmat
  • Opinnäytetyöt (Avoin kokoelma)
Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatKoulutusalatAsiasanatUusimmatKokoelmat

Henkilökunnalle

Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste