Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomi
  • Svenska
  • English
  • Kirjaudu
Hakuohjeet
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Ammattikorkeakoulut
  • Yrkeshögskolan Novia
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite
  •   Ammattikorkeakoulut
  • Yrkeshögskolan Novia
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite

Integration of Artificial Intelligence into Safety, Health & Environment (SHE) Management

Hamza, Muhammad Ameer (2025)

 
Avaa tiedosto
Hamza_Muhammad Ameer.pdf (931.3Kt)
Lataukset: 


Hamza, Muhammad Ameer
2025
All rights reserved. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:amk-2025121637089
Tiivistelmä
This thesis discusses the integration of artificial intelligence (AI) into Safety, Health and Environment (SHE) management through the practices, digital preparedness as well as the perceptions of four case companies in Finland and Pakistan. The investigation based on qualitative research design and semi-structured interviews determines the existing issues in hazard recognition, employee observation, documentation quality, and equipment maintenance. The results indicate that AI-enabled systems, such as computer vision systems, wearable health sensors, predictive maintenance platforms, and natural language processing have the potential of greatly improving proactive safety performance as long as they are aligned with organizational requirements. More specifically, computer vision has the potential to enhance real-time unsafe behavior detection, wearable can be used to enable continuous physiological measuring, and predictive analytics can be applied to detect equipment anomalies prior to failure. The findings also suggest that organizations that have more robust data governance and digital maturity are in good position to embrace AI in accordance with the ISO 31000 framework of systematic and data-based risk management. The research is relevant to the understanding of how AI can transform SHE practices into predictive instead of reactive and provide useful recommendations to companies that want to reinforce safety outcomes with the help of technological innovation.
Kokoelmat
  • Opinnäytetyöt (Avoin kokoelma)
Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatKoulutusalatAsiasanatUusimmatKokoelmat

Henkilökunnalle

Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste