Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomi
  • Svenska
  • English
  • Kirjaudu
Hakuohjeet
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Ammattikorkeakoulut
  • Yrkeshögskolan Arcada
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite
  •   Ammattikorkeakoulut
  • Yrkeshögskolan Arcada
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite

Machine learning-driven waste sorting with robotic arms

Qu, Qiongxia (2026)

 
Avaa tiedosto
Qu_Qiongxia.pdf (3.035Mt)
Lataukset: 


Qu, Qiongxia
2026
All rights reserved. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:amk-202601281934
Tiivistelmä
Machine learning-driven waste sorting systems, integrated with robotic arms, can mitigate the limitations of manual sorting. This study develops and deploys a YOLO-based system for automatic identification and sorting of five waste categories: metal, cardboard, glass, paper, and plastic. A key contribution of this study is the integration of the vision-based detection model with robotic arms, implemented in both single-arm and dual-arm experimental setups. To comprehensively evaluate the performance of the purposed system, this study designed a progressive five-layer evaluation framework: from pre-deployment performance of the YOLO model (layer 1) and its adaptability after deployment (layer 2), to the sorting reliability of the single-arm system in both fixed workspace (layer 3) and conveyor workspace (layer 4), and finally, the efficiency and safety validation of the dual-arm system (layer 5). The YOLO model achieved 92.7% precision on the test set before deployment (layer 1). After deployment, precision under static camera views of the robotic arms dropped to 70.9% in the fixed workspace and 65.5% on the conveyor belt (layer 2); single-arm overall success rates were 76.7% (fixed workspace, layer 3) and 63.3% (conveyor workspace, layer 4), and the dual-arm
system handled 40% of samples (layer 5), all with 100% picking success for correctly detected objects. The evaluation results show that although object detection performance declines under real-world conditions, especially on dark conveyor belts, robotic grasping remains highly reliable once targets are successfully identified. This confirms that low-cost robotic arms possess stable physical operational capabilities in practica sorting tasks. The study further highlights the limitations of vision-only classification under cost constraints. Given that many small and medium-sized recycling facilities cannot afford industrial-grade equipment, exploring the feasibility and limitations of low-cost solutions holds significant practical relevance. Finally, this study proposes future directions for improvement, including enhancing dataset diversity, integrating multi-sensor, and optimizing dual-arm coordination strategies, with the aim of further improving system efficiency and robustness, thereby providing a reference for promoting economically viable robotic sorting solutions in industrial applications.
Kokoelmat
  • Opinnäytetyöt (Avoin kokoelma)
Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatKoulutusalatAsiasanatUusimmatKokoelmat

Henkilökunnalle

Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste