Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomi
  • Svenska
  • English
  • Kirjaudu
Hakuohjeet
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Ammattikorkeakoulut
  • Metropolia Ammattikorkeakoulu
  • Opinnäytetyöt
  • Näytä viite
  •   Ammattikorkeakoulut
  • Metropolia Ammattikorkeakoulu
  • Opinnäytetyöt
  • Näytä viite

Scalable automated monitoring solution for virtual infrastructure

Sarkar, Itale (2023)

 
Avaa tiedosto
Sarkar_Itale.pdf (1003.Kt)
Lataukset: 


Sarkar, Itale
2023
All rights reserved. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:amk-202305088228
Tiivistelmä
The objective of this study was to create a monitoring solution for Ericsson Oy R&D department. The solution is based on open-source tools and metrics from company data. The goal was to create a scalable automated system for general monitoring purposes in virtualized environments, bare-metal servers, and clouds.

System monitoring helps to detect errors and warnings both in hardware and software. Moreover, it improves resource utilization and ensures system performance and security are tracked. One of the goals set for this project was to encourage a proactive approach towards error mitigation within system administrators.

During the development process, several existing monitoring products were reviewed, both licensed and open source. Also, a team of experts in system administration from the case company were asked to prioritize which metrics and KPIs (Key Performance Indicator) need to be visualized and monitored. Grafana was selected as a visualization and alerting tool. It was installed in a Docker container and sends critical system error alerts via email.

The proposed system displays real-time data about resource consumption and status of components. The data center infrastructure team can now recognize patterns in the measurements taken from the systems regarding resources consumption and act proactively when metrics indicate an upcoming fault.
Kokoelmat
  • Opinnäytetyöt
Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatKoulutusalatAsiasanatUusimmatKokoelmat

Henkilökunnalle

Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste