Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomi
  • Svenska
  • English
  • Kirjaudu
Hakuohjeet
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Ammattikorkeakoulut
  • Lapin ammattikorkeakoulu
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite
  •   Ammattikorkeakoulut
  • Lapin ammattikorkeakoulu
  • Opinnäytetyöt (Avoin kokoelma)
  • Näytä viite

The impact of Business Intelligence for data-facilitated decision-making in software engineering

Ivanics, Péter (2025)

 
Avaa tiedosto
Ivanics_Peter.pdf (6.064Mt)
Lataukset: 


Ivanics, Péter
2025
All rights reserved. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:amk-2025060319721
Tiivistelmä
Digital transformation significantly impacts business operations, compelling organizations to leverage digital data to maintain competitiveness, responsiveness, and operational efficiency. Business Intelligence encompasses various methodologies designed to support data-facilitated decision-making. However, its optimal application, especially within the software engineering domain, is an understudied area.

This thesis research conducts an exploratory literature review to define the concept of Business Intelligence, identify its primary goals and challenges, and relate these aspects specifically to the domain of software engineering. The thesis research presents a single case study of Webstar Csoport Kft., a Hungarian software engineering agency, which previously relied heavily on decision-making processes based on intuition and prior experience. The thesis research examines how the implementation of Business Intelligence methods improved decision-making processes, resulting in more structured, data-facilitated operations.

Initial expectations and qualitative insights regarding this problem-oriented research were obtained in a semi-structured interview with key informants at the case organization. Further quantitative data was collected through a survey and analysis of system data across two strategic focus areas: Team Happiness and Software Delivery Performance, covering a period of 1.5 years. Analytical methods including pattern matching, time series analysis and exploratory data analysis were used to examine the obtained data.

The research findings indicate that effectively applied Business Intelligence methods allowed setting baselines to enhance decision-making quality and organizational responsiveness at Webstar Csoport Kft. The thesis research highlights critical challenges, such as technological complexity, data management and ongoing employee training faced during the development work, that must be systematically addressed to fully capitalize on the benefits of the developed tools. By adopting the proposed DevOps metrics, Webstar Csoport Kft. can bridge existinggaps between Business Intelligence capabilities, decision-making processes,
and strategic organizational goals.
Kokoelmat
  • Opinnäytetyöt (Avoin kokoelma)
Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatKoulutusalatAsiasanatUusimmatKokoelmat

Henkilökunnalle

Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste