Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomi
  • Svenska
  • English
  • Kirjaudu
Hakuohjeet
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Ammattikorkeakoulut
  • Laurea-ammattikorkeakoulu
  • Opinnäytetyöt (Käyttörajattu kokoelma)
  • Näytä viite
  •   Ammattikorkeakoulut
  • Laurea-ammattikorkeakoulu
  • Opinnäytetyöt (Käyttörajattu kokoelma)
  • Näytä viite

Artificial Intelligence in Auditing : Impacts on Quality, Efficiency, and Professional Judgment in Global Audit Firms

Tillder, Eva-Maria (2025)

 
Avaa tiedosto
Tillder_Eva-Maria.pdf (390.9Kt)
Lataukset: 

Rajattu käyttöoikeus / Restricted access / Tillgången är begränsad
Tillder, Eva-Maria
2025
All rights reserved. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:amk-2025100725705
Tiivistelmä
The purpose of this thesis was to investigate how the integration of artificial intelligence (AI) affects audit quality, efficiency, and the role of professional judgment within large international audit firms. The objective was to contribute to the broader understanding of how AI is transforming professional audit practices and to offer insights that may benefit auditing firms, educators, and regulatory bodies navigating this digital transition. Although the thesis was not commissioned by a specific organisation, it aligns with current development initiatives in the accounting and auditing fields focused on technological innovation.

The development task was to evaluate the operational and strategic implications of AI implementation in external auditing. The theoretical framework combined the Technology Acceptance Model (TAM), sociotechnical systems theory, and algorithmic accountability theory to explore how auditors adopt, use, and interact with AI tools.

The study employed a qualitative case study method, supported by a structured literature review. The empirical material consisted of publicly available documentation and secondary sources from three global audit firms: Ernst & Young (EY), KPMG, and PricewaterhouseCoopers (PwC), each of which has implemented proprietary AI platforms—Helix, Clara, and Halo, respectively.

The findings revealed that AI enhances audit quality through full-population testing and anomaly detection, while also improving efficiency by automating routine audit tasks. At the same time, the role of professional judgment was found to be transformed rather than diminished, with auditors required to critically interpret AI outputs. The study concluded that while AI adoption offers clear benefits, it also introduces new challenges related to transparency, ethical oversight, and auditor training. Recommendations include expanding AI literacy, updating auditing standards, and ensuring explainability in AI-supported engagements.
Kokoelmat
  • Opinnäytetyöt (Käyttörajattu kokoelma)
Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatKoulutusalatAsiasanatUusimmatKokoelmat

Henkilökunnalle

Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste