Hyppää sisältöön
    • Suomeksi
    • På svenska
    • In English
  • Suomi
  • Svenska
  • English
  • Kirjaudu
Hakuohjeet
JavaScript is disabled for your browser. Some features of this site may not work without it.
Näytä viite 
  •   Ammattikorkeakoulut
  • Turun ammattikorkeakoulu
  • Julkaisut
  • Näytä viite
  •   Ammattikorkeakoulut
  • Turun ammattikorkeakoulu
  • Julkaisut
  • Näytä viite

An Extension of the Kinetic Battery Model for Optimal Control Applications

Karami, Masoomeh; Shahsavari, Sajad; Immonen, Eero; Haghbayan, Mohammad-Hashem; Plosila, Juha (2023)

Avaa tiedosto
Karami_et_al_An_extension_2023.pdf (1.253Mt)
Lataukset: 


Karami, Masoomeh
Shahsavari, Sajad
Immonen, Eero
Haghbayan, Mohammad-Hashem
Plosila, Juha
Institute of Electrical and Electronics Engineers
2023
All rights reserved. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
doi:10.1109/isie51358.2023.10227986
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe20231017140433
Tiivistelmä
Optimal control of electric vehicle (EV) batteries for maximal energy efficiency, safety and lifespan requires that the Battery Management System (BMS) has accurate realtime information on both the battery State-of-Charge (SoC) and its dynamics, i.e. energy supply capacity, at all times. However, these quantities cannot be measured directly from the battery, and, in practice, only SoC estimation is typically carried out. Moreover, the so-called Equivalent Circuit Models (ECM) commonly utilized in BMS solutions only display a memoryless algebraic dependence of voltage and current on SoC, without an ability to predict battery energy supply capacity based on its recent charge/discharge history. In this article, we propose a novel parametric algebraic voltage model coupled to the well-known Manwell-McGowan dynamic Kinetic Battery Model (KiBaM), which is able to predict both battery SoC dynamics and its electrical response. We present an offline model parameter identification procedure that yields SoC-dependent model parameters from standard dynamic battery tests, and we introduce an algorithm based on the Extended Kalman Filter (EKF) for standard SoC estimation on the proposed model. Numerical simulations, based on laboratory measurements, are presented for prismatic Lithium-Titanate Oxide (LTO) battery cells. Such cells are prime candidates for modern heavy offroad EV applications.
Kokoelmat
  • Julkaisut
Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatKoulutusalatAsiasanatUusimmatKokoelmat

Henkilökunnalle

Ammattikorkeakoulujen opinnäytetyöt ja julkaisut
Yhteydenotto | Tietoa käyttöoikeuksista | Tietosuojailmoitus | Saavutettavuusseloste