Näytä suppeat kuvailutiedot

An Extension of the Kinetic Battery Model for Optimal Control Applications

Karami, Masoomeh; Shahsavari, Sajad; Immonen, Eero; Haghbayan, Mohammad-Hashem; Plosila, Juha (2023)

dc.contributor.authorKarami, Masoomeh
dc.contributor.authorShahsavari, Sajad
dc.contributor.authorImmonen, Eero
dc.contributor.authorHaghbayan, Mohammad-Hashem
dc.contributor.authorPlosila, Juha
dc.date.accessioned2023-10-17T05:34:01Z
dc.date.available2023-10-17T05:34:01Z
dc.date.issued2023
dc.identifier.isbn979-8-3503-9971-4
dc.identifier.isbn979-8-3503-9972-1
dc.identifier.urihttp://www.theseus.fi/handle/10024/808213
dc.description.abstractOptimal control of electric vehicle (EV) batteries for maximal energy efficiency, safety and lifespan requires that the Battery Management System (BMS) has accurate realtime information on both the battery State-of-Charge (SoC) and its dynamics, i.e. energy supply capacity, at all times. However, these quantities cannot be measured directly from the battery, and, in practice, only SoC estimation is typically carried out. Moreover, the so-called Equivalent Circuit Models (ECM) commonly utilized in BMS solutions only display a memoryless algebraic dependence of voltage and current on SoC, without an ability to predict battery energy supply capacity based on its recent charge/discharge history. In this article, we propose a novel parametric algebraic voltage model coupled to the well-known Manwell-McGowan dynamic Kinetic Battery Model (KiBaM), which is able to predict both battery SoC dynamics and its electrical response. We present an offline model parameter identification procedure that yields SoC-dependent model parameters from standard dynamic battery tests, and we introduce an algorithm based on the Extended Kalman Filter (EKF) for standard SoC estimation on the proposed model. Numerical simulations, based on laboratory measurements, are presented for prismatic Lithium-Titanate Oxide (LTO) battery cells. Such cells are prime candidates for modern heavy offroad EV applications.
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers
dc.relation.ispartof2023 IEEE 32nd International Symposium on Industrial Electronics (ISIE)
dc.relation.ispartofseriesProceedings of the IEEE International Symposium on Industrial Electronics
dc.rightsAll rights reserved. This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
dc.titleAn Extension of the Kinetic Battery Model for Optimal Control Applications
dc.typepublication
dc.identifier.urnURN:NBN:fi-fe20231017140433
dc.type.versionfi=Final draft|sv=Final draft |en=Final draft|
dc.contributor.organizationfi=Turun ammattikorkeakoulu|sv=Turun ammattikorkeakoulu|en=Turku University of Applied Sciences|
dc.type.otherRinnakkaistallennetut julkaisut - Self-archived publications
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|sv=A4 Artikel i en konferenspublikation|en=A4 Conference proceedings|
dc.relation.issn2163-5137
dc.relation.doi10.1109/isie51358.2023.10227986
dc.okm.selfarchivedfi=Rinnakkaistallennettu|sv=parallellpublicerad|en=self-archived version|
dc.relation.conferenceInternational Symposium on Industrial Electronics
dc.source.identifier87611


Tiedostot

Thumbnail

Viite kuuluu kokoelmiin:

Näytä suppeat kuvailutiedot